OVERVIEW: DATA WAREHOUSING & OLAP TECHNOLOGY

Presentation: Sophia
Discussion: Tianyu

Motivation – Decision Support

- Decision Making: Everyday, Everywhere
- Decision Support System:
 - a class of computerized information systems that support decision making activities.
- What are needed to support decision making?

<table>
<thead>
<tr>
<th>Data</th>
<th>Heterogeneous Large Scale</th>
</tr>
</thead>
<tbody>
<tr>
<td>Analysis Tools</td>
<td>User Friendly Good Query Throughput</td>
</tr>
</tbody>
</table>

Data Warehouse
OLAP tools

Syllabus

- Motivation
- Definition
- Why not RDM & OLTP
- Typical OLAP Architecture
- Logical Model
- Schemas
- Materialized Views
- Metadata Requirements and Conclusion

Syllabus

- Motivation
- Definition
- Why not RDM & OLTP
- Typical OLAP Architecture
- Logical Model
- Schemas
- Materialized Views
- Metadata Requirements and Conclusion

“An Overview of Data Warehousing and OLAP Technology”

*author: Suraljit Chaudhuri
Umeshwar Doyal*
Definition--data warehouse

- A data warehouse is a

<table>
<thead>
<tr>
<th>Subject-oriented</th>
<th>Day-to-day, transaction</th>
</tr>
</thead>
<tbody>
<tr>
<td>Integrated</td>
<td>Usually from one source</td>
</tr>
<tr>
<td>Time-variant</td>
<td>Within a short period of time</td>
</tr>
<tr>
<td>Non-volatile</td>
<td>Frequent updates</td>
</tr>
</tbody>
</table>

OLAP | OLTP

collection of data in support of management’s decision making process.

OLAP VS. OLTP

- Manager: “I need to analyze the curve of sales of our company within the past 10 years.”
 “Let’s try to find something interesting!”
- Cashier: “One computer was sold and I got $1000. I need to update the database.”
 “That’s what I do everyday!”

OLTP vs. OLAP

<table>
<thead>
<tr>
<th>OLTP</th>
<th>OLAP</th>
</tr>
</thead>
<tbody>
<tr>
<td>Users</td>
<td>Clerk, IT professional, Knowledge worker</td>
</tr>
<tr>
<td>Function</td>
<td>Day-to-day operations, Decision support</td>
</tr>
<tr>
<td>DB Design</td>
<td>Application-oriented, Subject-oriented</td>
</tr>
<tr>
<td>Data</td>
<td>Current, up-to-date, detailed, Historical, summarized, multidimensional...</td>
</tr>
<tr>
<td>Usage</td>
<td>Repetitive, Ad-hoc</td>
</tr>
<tr>
<td>Access</td>
<td>Read/write, Lots of scans</td>
</tr>
<tr>
<td>Unit of work</td>
<td>Short, simple transaction, Complex query</td>
</tr>
<tr>
<td># rec accessed</td>
<td>Tens, Millions</td>
</tr>
<tr>
<td># users</td>
<td>Tens, Hundreds</td>
</tr>
<tr>
<td>DB size</td>
<td>MB-GB, GB-TB</td>
</tr>
<tr>
<td>Metric</td>
<td>Transaction throughput, Query throughput</td>
</tr>
</tbody>
</table>

Why not RDBM & OLTP?

Decision Maker VS. Daily User

- Decision Maker: "Alright, I’ll build my own system!
- Daily User: "Go away!"

Syllabus

<table>
<thead>
<tr>
<th>Motivation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Definition</td>
</tr>
<tr>
<td>Why not RDM & OLTP</td>
</tr>
<tr>
<td>Typical OLAP Architecture</td>
</tr>
<tr>
<td>Logical Model</td>
</tr>
<tr>
<td>Schemas</td>
</tr>
<tr>
<td>Materialized Views</td>
</tr>
<tr>
<td>Metadata Requirements and Conclusion</td>
</tr>
</tbody>
</table>
Typical OLAP architecture

Syllabus
- Motivation
- Definition
- Why not RDMS & OLTP
- Typical OLAP Architecture
- Logical Model
- Schemas
- Materialized Views
- Metadata Requirements and Conclusion

Logical Model
- Multidimensional
 Numerical Measure – Dimension – Attribute

Logical Model
- Front-end operations
 - Pivot
 - Rollup
 - Drilldown
 - Slice and dice

Syllabus
- Motivation
- Definition
- Why not RDMS & OLTP
- Typical OLAP Architecture
- Logical Model
- Schemas
- Materialized Views
- Metadata Requirements and Conclusion

Database Design Methodology
- Star Schema
 - Dimension Table (attributes)
 - Dimension Table (dimensions)
 - Fact Table
 - Foreign Key
 - Dimension Table (attributes)
Star Schema Example

Example Snowflake Schema

More Problems:
- Saving of space is negligible in comparison to the typical magnitude of the fact table.
- Efficiency

Database Design Methodology

- Problem of Star Schema
 - Un-normalized (redundancy)
 - No attribute hierarchy

 Ex: (Vancouver, BC, Canada, North America)
 (Victoria, BC, Canada, North America)

 Normalize dimension tables ➔
 Snowflake Schema

Syllabus

- Motivation
- Definition
- Why not RDMBS & OLTP
- Typical OLAP Architecture
- Logical Model
- Schemas
- Materialized Views
- Metadata Requirements and Conclusion

Warehouse Servers

- Indices
- Materialized Views
- Answer queries using indices and views
- Optimization of Complex queries
- Parallel Processing
- Server Architecture:
 - Specialized SQL Servers
 - ROLAP
 - MOLAP
 - SQL Extensions: next paper

Indices

- Bit map – One bit for each record
- Bitmap Compression
- Joint Indices
Materialized Views

- Joins of the fact table with a subset of dimension tables, with the aggregation of one or more measures.
- Example:

 ![Diagram]

 - What to Materialize?
 - Workload, cost of update, storage
 - A greedy algorithm

Use of Views

- **Selection, Rollup**

 ![Diagram]

- **Generator (V: view Q: query):**
 - Same dimensions
 - Selection clause of Q implies that of V
 - Group by of V is a subset of Q
- **Minimal Generator (M):**
 - A set of generators (could be more than one)
 - Other generators generate some member of it

Query: Total Sales of clothing in Washington

Minimal Generators:
- Total sales by each state for each product
- Total sales by each city for each category

Other Generators:
- Total sales by each city for each product

Metadata requirements

- **Administrative metadata**
 - Information necessary for setting up and using a warehouse
- **Business metadata**
 - Business terms; ownership; charging policy
- **Operational metadata**
 - Information collected during the operation of the warehouse
Conclusion

- Data Warehousing is really hard
- Data Cleansing
- Physical Design
- Management
- Visualization

There’re a lot of opportunities waiting for you guys~