
2/24/2009

1

Relational Databases for Querying XML

Documents:

Limitations and Opportunities

XML DTD

 Semi-structured

 SGML

 Emerging as a

standard

 E.g.
<student>

<name>John</name>

<phone>604xxxxxxxx</phone>

<phone>778xxxxxxxx</phone>

</student>

 Schema for XML

 E.g.

 [*] = zero or more

 [+] = one or more

 [?] = zero or one
<!ELEMENT student(name,

phone+, fax*)>

DTD to relational schema

 XML is powerful when there is an agreement

among inter-operating applications

 Vast majority of the Internet files are XML docs

conforming to DTDs

 Simplifying DTDs

 E.g. (e1, e2)* > e1*, e2*

Let's say that you can perform both relational and

XML queries on a relational database that can also

process XML data (aka XML-enabled database).

1) On what kind of data would you prefer using XML

queries?

2) On what kind of data would you prefer using

relational queries?

DISCUSSION
5min

Inlining

 having “as many descendants of an element

as possible into a single relation”.

 No correspondence between elements and

attributes of the ER-model

 Excessive fragmentation

 Basic / Shared / Hybrid Inlining

Basic inlining

 Use of a DTD graph (fig. 8)

 Elements appear exactly once

 Attributes and operators appear as many time as

they appear in the DTD

 Traverse DTD graph to Element graph (fig. 9)

 Do not inline for set sub-element

 Connect relations using foreign keys

2/24/2009

2

Basic inlining (pros & cons)

 Pros:

 Good for certain queries, such as “list all authors of

books” (fig. 10)

 Cons:

 Large number of relations

 Inefficient for queries such as “list all authors having

first name Jack” (fig. 10)

 Complicated to handle DTD recursion

 Separated schema for each root element

 High resource consumption for schema translation

Shared inlining

 Based on Basic Inlining

 Identify element nodes which are represented

in multiple relations in Basic

 Do not inline set, recursive, and shared sub-

element

 In-degree > 1 in the DTD graph

Shared inlining (pros & cons)

 Pros:

 Reduced relations through shared elements (fig.

11)

 Reduced joins (e.g. list all authors having first name

Jack)

 Cons:

 Inefficient when comparing to Basic Inlining

(increased no. of joins starting at a particular node)

Hybrid inlining

 Based on Shared Inlining

 Do not inline set and recursive sub-element

 In-degree > 1 in the DTD graph

 i.e. inline shared sub-element with in-degree > 1

Hybrid inlining (pros & cons)

 Pros:

 Further reduced joins

 As good as Shared in most cases

 Better than Shared in some cases

 Cons:

 Higher degree of inlining could cause more SQL

queries to be generated

DISCUSSION 10min

Their evaluation metric is "the average

number of SQL joins required to

process path expressions of a certain

length N".

- Do you think this is a good idea? Why

or why not?

2/24/2009

3

The paper concludes that it is possible to use standard Relational DB

to evaluate queries over XML data but with limitations.

NOW, If you were to build a XML database, which approach would

you take?

 1) Start with a standard relational technology and try to

remove these limitations.

 2) Start with a new native XML technology and try to

add the power and sophistication of current relational

DB.

DISCUSSION 10min What Goes Around Comes Around

Michael Stonebraker, Joseph M. Hellerstein

Hierarchical (IMS) (late 60s-70s)

Pros:

 facilitates simple data manipulation language
(DL/I)

Cons:

 Information is repeated

 Existence depends on parents

 no physical data independence (can‟t tune
physical level without tuning app)

 Not much logical data independence either
(can‟t tune schema without changing app
(think views))

Lessons From Hierarchical:

Lesson 1. Physical and logical data
independence are highly desirable

Lesson 2. Tree structured data models are very
restrictive

Lesson 3. It‟s a challenge to provide
sophisticated logical reorganizations of tree
structured data

Lesson 4. Record-at-a-time user interface
forces manual query optimization (hard!)

Directed Graph (CODASYL) (70s)

Pros:

 Yeah! Graphs, not trees!

 Can model many-to-many relationships

Cons:

 Still no physical data independence.

 Much more complex than IMS

 Lesson 5: Directed graphs are more flexible
than hierarchies, but more complex

 Lesson 6: Loading and recovering directed
graphs is more complex than hierarchies

DISCUSSION 5min
The paper says,,,

The XML data model is really nothing different

from CODASYL (and others) and CODASYL

failed. Don't repeat history!

Do you think that we should try to avoid

focussing on ideas that have failed

before?

 Why or why not?

2/24/2009

4

Relational

(70s-early 80s)
Pros:

 Store the data in a simple data structure

 Access through a high level set-at-a-time
DML

 No need for a physical storage proposal

Lots of good arguing by various sides “the great
debate”

Non-technical factor: CODASYL systems were
not portable  not porting to first
microprocessors (VAX) (whoops)

Lessons from Relational:

Lesson 7: Set-at-a-time languages are good;
offer improved physical data independence

Lesson 8: logical data independence is easier
with a simple data model than with a complex
one

Lesson 9: Technical debates are usually settled
by the elephants of the marketplace, and
often for reasons not related to technology

Lesson 10: query optimizers can beat all but the
best record at a time DBMS application
programmers

Entity-Relationship (70s)

 Response to normalization

 Standard wisdom: create table, then
normalize. Problems for DBAs:

1. Where do I get initial tables

2. Can‟t understand functional dependences

 Lesson 11: Functional dependencies
are too difficult for mere mortals to
understand. Another reason for KISS

Extended Relational (80s)

 How many features must relational databases

have…

 Set valued attributes

 Aggregation

 Generalization

 And many, many more

Lesson 12: unless there is a big performance or

functionality advantage, new constructs will

go nowhere

Semantic (late 70‟s and 80‟s) (SDM)

 Similar ideas, but more radical; change

whole model to be semantically richer.

 Lots of machinery, little benefit. Died

without a trace.

Object-oriented

(late 80‟s and early 90‟s)

+Support OO languages

-market failure: no leverage, no standards,

some versions had reliance on C++

Lesson 13: Packages will not sell to users

unless they are in “major pain”

Lesson 14: Persistent languages will go

nowhere without support of PL community

2/24/2009

5

Object-Relational

(late 80s and early 90s)

 OO + R

+ Some commercial success

+ put some code in DBMS

- no standards

Lesson 14: OR puts code in DB which makes
for fast adaptability

Lesson 15: Widespread adoption of new
technology requires either standards and/or
an elephant pushing hard

XML (late 90s to - ?)

 Semantic heterogeneity

 Schema later: best for semi-structured…
authors claim there aren‟t that many of these

 XML Schema:

 Can be hierarchical, as in IMS

 Can have links to other records as in CODASYL &
SDM

 Can have set-based attributes as in SDM

 Can inherit from other records, as in SDM

 Even more complexity!

Three visions of the future of

XML Schema:

 XML schema fails because of excessive complexity

 A “data-oriented” subset of XML Schema will be
proposed that is vastly simpler

 “It will become popular. Within a decade, all problem
with IMS and CODASYL that motivated Codd to
invent the relational model will resurface. At that time
some enterprising researcher, call him Y, will „dust
off‟ Codd‟s original paper, and there will be a replay
of „the Great Debate‟ Presumably it will end the same
way as the last one. Moreover, Codd won the Turing
award in 1981 for his contribution. In this scenario, Y
will win the Turing award circa 2015”.

DISCUSSION 10min

So, the future?

1)XML Schema will fail because of its

complexity

2) A “data-oriented” subset of XML

Schema will be proposed that is vastly

simpler

3) XML will become popular and replay of

the “Great Debate”

Lessons from XML

Lesson 16: Schema-later is probably a
niche market

Lesson 17: XQuery is pretty much OR
SQL with a different syntax

Lesson 18: XML will not solve semantic
heterogeneity either inside or outside
the enterprise

Discussion 5min
 The authors claim that XML still doesn‟t

solve the semantic heterogeneity

problem.

 Is it possible to add to XML to solve the

semantic heterogeneity problem. If so,

what would you add?

2/24/2009

6

Summary

 9 epochs in database research:

 Hierarchical, Network, Relational, Entity-

Relationship, Extended Relational,

Semantic, Object-oriented, Object-

Relational, Semi-structured.

 We are repeating old ideas.

 We are failing to learn from old

mistakes.

Discussion 5min

Do you agree with the claim that the only

two “new” concepts developed in the

last 20 years were:

1. code in the database and

2. schema last applications?

Thank you

