
Two Adaptive Query Execution Systems



Outline
 Motivation

 Tukwila

 Eddies

 Evaluation



Data integration
 Extreme form of distributed database

 Sources of data all over the internet (unrelated)

 Query optimization is difficult to do in advance 

 Missing/obsolete statistics

 Widely variable data arrival rate

 Overlap/redundancy among data sources



Adaptive query execution
 Mariposa accepts that statistics may be unavailable or 

unreliable, so it asks for a cost estimate

 But then execution is fixed – if an estimate is wrong, the 
query will be slow

 Adaptive query execution

 Do not just try to predict the best execution plan

 Instead, react to the data as it arrives and adapt the plan

 Emphasis on time to first result (online use)



Tukwila architecture
 Mediated schema for queries

 Data source catalog

 Overlap information

 Statistics (size of relations, time to access)

 Query rewriting (as discussed last class)

 Optimizer (may be called multiple times per query)

 Adaptive execution engine

 Stream wrappers to normalize data vs schema



Interleaved optimization
 The core of Tukwila’s adaptive query engine

 Guess an initial plan (does not need to be complete)

 Produce a new plan when:

 Reach the end of the current plan

 Events trigger reoptimization

 Timeout

 Go over a row threshold

 Etc

 Events generated by rules, triggers inserted by optimizer



Fragments
 Tukwila can only reoptimize at certain points

 Pipelining between operators prevents restructuring

 The optimizer splits a query plan (graph) into 
fragments

 Each fragment executes atomically

 Full pipelining within fragments

 Results materialized between fragments



Example

 Five table join

 If all tables are small, pipeline everything

 If size is unknown, start with a random set of 
independent joins

 hash join fragments (e.g., AB), materialize result, 
replan

 Can also try different orderings for events (e.g., 
timeout)



Dynamic collectors
 Perform union on disjoint result sets (e.g., overlap 

from different data sources)

 Can take action according to a policy (rules) to collect 
in a particular order, or switch on or off alternative 
sources

 Boolean combination of

 Closed

 Error

 Timeout

 Threshold



Double pipelined hash join
 Conventional hash join:

 read all of the (hopefully!) smaller side into hash table

 stream tuples from other side through hash (pipelined)

 Double pipelined hash join:

 As rows come in from either side

 Hash them

 Probe against other side’s partial hash table

 Produces output tuples as soon as possible, but 
consumes much more memory (two hashes)



Double pipelined hash join vs RAM
 Expected to be used on relatively small tables (typical 

data integration scenario)

 Maintains a hash of both sides of the join (not just the 
smaller), so it consumes much more RAM

 Policy for overflow resembles that of hybrid hash join, 
but with a choice about which side to favor

 Incremental Left Flush

 Incremental Symmetric Flush



Memory overflow
 Incremental Left Flush

 Stop reading left

 Read right until end, paging out left as necessary

 There may be a long pause here!

 Continue reading left (standard hybrid hash)

 Incremental Symmetric Flush

 Flush same bucket on both sides

 Keep reading from either side as before

 Steadier output, but may miss more



Data-driven iteration
 Normal query architecture is “pull”

 Request of a tuple from the output side causes an 
operator to process (deterministically) until it produces 
one tuple

 Adaptive execution is data-driven

 Feed operands to operator as they arrive

 Tukwila creates a thread per stream (inputs and 
output), where each thread tries to keep a small 
transfer buffer full



Discussion
 Q1: Would you use the double pipelined hash join if 

you were not doing data integration, why or why not? 



Discussion
 Q2: The authors mention that the data is 

unpredictable due to the absence of statistics, arrival 
characteristics and overlap and redundancy among 
sources. Do you agree? Can you imagine ways to make 
the data more predictable? What would be the 
problems/challenges?



Eddies
 More general and fine-grained than Tukwila

 Designed for parallelism

 Keep the pipelines full

 The engine behind Telegraph

 “intended to run queries over all the data available on 
line”



Challenges for Telegraph
 Hardware and workload complexity

 Bursty access patterns

 Heterogeneous hardware

 Data complexity

 Non-alphanumeric data (e.g., objects)

 Poor/no statistics for remote sources

 User interface “complexity”

 Allow users to interact with query while it runs



What’s an eddy?
 A scheduler for tuple processing

 Figures out which rows from the input tables to read 
next, and which operators to feed them to first

 Deals with three kinds of variation:

 Operator cost

 Operator selectivity

 Rate at which data arrives from inputs



Varying operator cost

 Assume foo is sorted by x ascending, and bar is sorted 
by y descending

 Initially it is cheaper to process foo, but later it 
becomes much more expensive than processing bar

SELECT foo.x, bar.y
FROM foo, bar
WHERE fibo(foo.x) / 1000 = 0
AND fact(bar.y) / 1000 = 0
AND foo.id = bar.id



Varying selectivity
 SELECT * FROM foo WHERE n > 20 AND n < 40

 INPUT: foo

 OUTPUT: a very small subset of foo

 Selectivity of predicates depends on distribution of n. 
If foo is sorted by n, initially the first predicate will be 
highly selective, but later it won’t be selective at all



Synchronization barriers
 We’d like to keep all operators busy all the time, but…

 Non-unary operators must wait for all operands

 Example: merge join (data already sorted)

 Table R returns data very slowly, and has many small 
values

 Table S returns data very quickly, but its values are 
mostly large

 Must wait for most of R before processing much of S



Moments of symmetry
 The common join operators are asymmetric

 Nested-loops: all tuples of S for each tuple in R

 Hash-join: all tuples of S before any tuple of R

 In both cases, reads of one side can proceed for some 
time before reaching a synchronization barrier

 At a synchronization barrier, it is possible to invert the 
asymmetric relation. This is a moment of symmetry.



Moments of symmetry example
 Switching the inner and outer loops at moments of 

symmetry in a nested-loops join



Ripple join
 For maximum parallelism, we desire operators with 

frequent moments of symmetry: more freedom to 
process whatever operand is available

 The ripple join is a family of joins with very frequent 
moments of symmetry

 Not a pure stream operation: keeps the history of all 
tuples seen from either side (consumes much more 
memory)

 Double pipelined hash join is one example



25

Ripple join example

R

S



Eddies in operation
 N inputs, 1 output

 Each input tuple has a ready bit and a done bit for each 
operator in the eddy, representing the dependency 
tree

 After processing a tuple, an operator sets its done bit 
and returns it to the eddy. All done: output!

 As long as these dependencies are maintained, an eddy 
can route tuples freely to maximize throughput



Basic routing: backpressure
 Tuples buffered in priority queue

 Tuples arrive in low priority

 After any processing they are given high priority: 
forces a tuple all the way through an eddy ASAP

 Automatically handles variance in arrival rate and 
operator cost: slower operators spend more time 
processing result from fast operators than consuming 
new tuples



Routing: lottery scheduling
 Prioritizes more selective operators

 The ratio of tuples received to tuples produced is used 
as a probability of receiving the next tuple first, when 
multiple operators are available for the same tuple 
(e.g., multiple predicates)

 This does not account for selectivity changing over 
time

 e.g., WHERE x LIKE ‘m%’ operating on sorted table

 Eddies use a simple window to handle this



Discussion
 Their general philosophy is: “we favor adaptability over 

best-case performance” Does this seem reasonable? In 
this case? In general: How does this compare with 
previous approaches that we’ve looked at?



Discussion
 Compare the lottery system here to the bidding in 

Mariposa. How is it similar? How is it different? Which 
would you rather use? Does it depend on the 
situation?



Evaluation: operator cost



Evaluation: selectivity variance



Discussion
 Which would you rather use: Tukwila or Eddies? Why?


