
Two Adaptive Query Execution Systems



Outline
 Motivation

 Tukwila

 Eddies

 Evaluation



Data integration
 Extreme form of distributed database

 Sources of data all over the internet (unrelated)

 Query optimization is difficult to do in advance 

 Missing/obsolete statistics

 Widely variable data arrival rate

 Overlap/redundancy among data sources



Adaptive query execution
 Mariposa accepts that statistics may be unavailable or 

unreliable, so it asks for a cost estimate

 But then execution is fixed – if an estimate is wrong, the 
query will be slow

 Adaptive query execution

 Do not just try to predict the best execution plan

 Instead, react to the data as it arrives and adapt the plan

 Emphasis on time to first result (online use)



Tukwila architecture
 Mediated schema for queries

 Data source catalog

 Overlap information

 Statistics (size of relations, time to access)

 Query rewriting (as discussed last class)

 Optimizer (may be called multiple times per query)

 Adaptive execution engine

 Stream wrappers to normalize data vs schema



Interleaved optimization
 The core of Tukwila’s adaptive query engine

 Guess an initial plan (does not need to be complete)

 Produce a new plan when:

 Reach the end of the current plan

 Events trigger reoptimization

 Timeout

 Go over a row threshold

 Etc

 Events generated by rules, triggers inserted by optimizer



Fragments
 Tukwila can only reoptimize at certain points

 Pipelining between operators prevents restructuring

 The optimizer splits a query plan (graph) into 
fragments

 Each fragment executes atomically

 Full pipelining within fragments

 Results materialized between fragments



Example

 Five table join

 If all tables are small, pipeline everything

 If size is unknown, start with a random set of 
independent joins

 hash join fragments (e.g., AB), materialize result, 
replan

 Can also try different orderings for events (e.g., 
timeout)



Dynamic collectors
 Perform union on disjoint result sets (e.g., overlap 

from different data sources)

 Can take action according to a policy (rules) to collect 
in a particular order, or switch on or off alternative 
sources

 Boolean combination of

 Closed

 Error

 Timeout

 Threshold



Double pipelined hash join
 Conventional hash join:

 read all of the (hopefully!) smaller side into hash table

 stream tuples from other side through hash (pipelined)

 Double pipelined hash join:

 As rows come in from either side

 Hash them

 Probe against other side’s partial hash table

 Produces output tuples as soon as possible, but 
consumes much more memory (two hashes)



Double pipelined hash join vs RAM
 Expected to be used on relatively small tables (typical 

data integration scenario)

 Maintains a hash of both sides of the join (not just the 
smaller), so it consumes much more RAM

 Policy for overflow resembles that of hybrid hash join, 
but with a choice about which side to favor

 Incremental Left Flush

 Incremental Symmetric Flush



Memory overflow
 Incremental Left Flush

 Stop reading left

 Read right until end, paging out left as necessary

 There may be a long pause here!

 Continue reading left (standard hybrid hash)

 Incremental Symmetric Flush

 Flush same bucket on both sides

 Keep reading from either side as before

 Steadier output, but may miss more



Data-driven iteration
 Normal query architecture is “pull”

 Request of a tuple from the output side causes an 
operator to process (deterministically) until it produces 
one tuple

 Adaptive execution is data-driven

 Feed operands to operator as they arrive

 Tukwila creates a thread per stream (inputs and 
output), where each thread tries to keep a small 
transfer buffer full



Discussion
 Q1: Would you use the double pipelined hash join if 

you were not doing data integration, why or why not? 



Discussion
 Q2: The authors mention that the data is 

unpredictable due to the absence of statistics, arrival 
characteristics and overlap and redundancy among 
sources. Do you agree? Can you imagine ways to make 
the data more predictable? What would be the 
problems/challenges?



Eddies
 More general and fine-grained than Tukwila

 Designed for parallelism

 Keep the pipelines full

 The engine behind Telegraph

 “intended to run queries over all the data available on 
line”



Challenges for Telegraph
 Hardware and workload complexity

 Bursty access patterns

 Heterogeneous hardware

 Data complexity

 Non-alphanumeric data (e.g., objects)

 Poor/no statistics for remote sources

 User interface “complexity”

 Allow users to interact with query while it runs



What’s an eddy?
 A scheduler for tuple processing

 Figures out which rows from the input tables to read 
next, and which operators to feed them to first

 Deals with three kinds of variation:

 Operator cost

 Operator selectivity

 Rate at which data arrives from inputs



Varying operator cost

 Assume foo is sorted by x ascending, and bar is sorted 
by y descending

 Initially it is cheaper to process foo, but later it 
becomes much more expensive than processing bar

SELECT foo.x, bar.y
FROM foo, bar
WHERE fibo(foo.x) / 1000 = 0
AND fact(bar.y) / 1000 = 0
AND foo.id = bar.id



Varying selectivity
 SELECT * FROM foo WHERE n > 20 AND n < 40

 INPUT: foo

 OUTPUT: a very small subset of foo

 Selectivity of predicates depends on distribution of n. 
If foo is sorted by n, initially the first predicate will be 
highly selective, but later it won’t be selective at all



Synchronization barriers
 We’d like to keep all operators busy all the time, but…

 Non-unary operators must wait for all operands

 Example: merge join (data already sorted)

 Table R returns data very slowly, and has many small 
values

 Table S returns data very quickly, but its values are 
mostly large

 Must wait for most of R before processing much of S



Moments of symmetry
 The common join operators are asymmetric

 Nested-loops: all tuples of S for each tuple in R

 Hash-join: all tuples of S before any tuple of R

 In both cases, reads of one side can proceed for some 
time before reaching a synchronization barrier

 At a synchronization barrier, it is possible to invert the 
asymmetric relation. This is a moment of symmetry.



Moments of symmetry example
 Switching the inner and outer loops at moments of 

symmetry in a nested-loops join



Ripple join
 For maximum parallelism, we desire operators with 

frequent moments of symmetry: more freedom to 
process whatever operand is available

 The ripple join is a family of joins with very frequent 
moments of symmetry

 Not a pure stream operation: keeps the history of all 
tuples seen from either side (consumes much more 
memory)

 Double pipelined hash join is one example



25

Ripple join example

R

S



Eddies in operation
 N inputs, 1 output

 Each input tuple has a ready bit and a done bit for each 
operator in the eddy, representing the dependency 
tree

 After processing a tuple, an operator sets its done bit 
and returns it to the eddy. All done: output!

 As long as these dependencies are maintained, an eddy 
can route tuples freely to maximize throughput



Basic routing: backpressure
 Tuples buffered in priority queue

 Tuples arrive in low priority

 After any processing they are given high priority: 
forces a tuple all the way through an eddy ASAP

 Automatically handles variance in arrival rate and 
operator cost: slower operators spend more time 
processing result from fast operators than consuming 
new tuples



Routing: lottery scheduling
 Prioritizes more selective operators

 The ratio of tuples received to tuples produced is used 
as a probability of receiving the next tuple first, when 
multiple operators are available for the same tuple 
(e.g., multiple predicates)

 This does not account for selectivity changing over 
time

 e.g., WHERE x LIKE ‘m%’ operating on sorted table

 Eddies use a simple window to handle this



Discussion
 Their general philosophy is: “we favor adaptability over 

best-case performance” Does this seem reasonable? In 
this case? In general: How does this compare with 
previous approaches that we’ve looked at?



Discussion
 Compare the lottery system here to the bidding in 

Mariposa. How is it similar? How is it different? Which 
would you rather use? Does it depend on the 
situation?



Evaluation: operator cost



Evaluation: selectivity variance



Discussion
 Which would you rather use: Tukwila or Eddies? Why?


