
3/25/2009

1

Introduction to Introduction to
Spatial Database Spatial Database

Management Management
SystemSystem

Presenter Discussion Lead
James Huynh Srujan Kumar

Paper author: Ralf Hartmut Guting
Original slides by: Farnoush Banaei-Kashani

OutlineOutline

 Introduction & definition

 Modeling

 Querying

 Data structures and algorithms

 System architecture

 Conclusion and summary

IntroductionIntroduction

 Various fields/applications require management
of geometric, geographic or spatial data:
◦ A geographic space: surface of the earth

◦ Man-made space: layout of VLSI design

◦ Astronomy space: the universe

 Examples of non-spatial data:
◦ Names, phone numbers, email addresses of people

 Examples of Spatial data:
◦ NASA satellites imagery

◦ Rivers, Farms

Introduction...

 Non-spatial query:
◦ List the names of all bookstore with more than
ten thousand titles

 Spatial query:
◦ List the names of all bookstores with ten
miles of Metrotown

Introduction...

 Common challenge: dealing with large
collections of relatively simple geometric
objects

 Different from image and pictorial
database systems:
◦ Containing sets of objects in space rather than
images or pictures of a space

Definition

 A spatial database system:
◦ Is a database system

◦ Offers spatial data types (SDTs) in its data
model and query language

◦ Supports SDT in its implementation

3/25/2009

2

Modeling

 Two basic things need to be represented:
◦ Objects in space: cities, forests, or rivers

 modeling single objects

◦ Space: every point in space (e.g., partition of a
country into districts)

 modeling spatially related collections of objects

Modeling...

 Fundamental abstractions for modeling
single objects:
◦ Point: object represented only by its location in
space, e.g., center of a state

◦ Line (actually a curve or ployline):
representation of moving through or
connections in space, e.g., road, river

◦ Region: representation of an extent in 2d-
space, e.g., lake, city

Modeling...

 Instances of spatially related
collections of objects:
◦ Partition: set of region objects that

are required to be disjoint
(adjacency or region objects with
common boundaries), e.g.,
thematic maps

◦ Networks: embedded graph in
plane consisting of set of points
(vertices) and lines (edges)
objects, e.g. highways, power
supply lines, rivers

Modeling...

A sample (ROSE) spatial type system
EXT={lines, regions}, GEO={points, lines, regions}

 Spatial predicates for topological relationships:
◦ inside: geo x regions  bool

◦ intersect, meets: ext1 x ext2  bool

◦ adjacent, encloses: regions x regions  bool

 Operations returning atomic spatial data types:
◦ intersection: lines x lines  points

◦ intersection: regions x regions  regions

◦ plus, minus: geo x geo  geo

◦ contour: regions  lines

Modeling...

 Spatial operators returning numbers
◦ dist: geo1 x geo2  real

◦ perimeter, area: regions  real

 Spatial operations on set of objects
◦ sum: set(obj) x (objgeo)  geo

 A spatial aggregate function, geometric union of
all attribute values, e.g., union of set of provinces determine
the area of the country

◦ closest: set(obj) x (objgeo1) x geo2  set(obj)

◦ Determines within a set of objects those whose spatial
attribute value has minimal distance from geometric
query object

Modeling...

 Spatial relationships:
◦ Topological relationships: e.g., adjacent, inside, disjoint.

◦ Direction relationships: e.g., above, below, or north_of,
sothwest_of, …

◦ Metric relationships: e.g., distance

 Enumeration of all possible topological
relationships between two simple regions (no
holes, connected):
◦ Based on comparing two objects boundaries (δA) and

interiors (Ao), filter to create 6 valid topological
relationships:

 disjoint, in, touch, equal, cover, overlap

3/25/2009

3

Modeling...

 DBMS data model must be extended by
SDTs at the level of atomic data types
(such as integer, string), or better be
open for user-defined types (OR-DBMS
approach):
◦ relation states (sname: STRING; area: REGION; spop: INTEGER)

◦ relation cities (cname: STRING; center: POINT; ext: REGION; cpop:
INTEGER);

◦ relation rivers (rname: STRING; route: LINE)

Discussion 1

 Most of the databases have some or the other

aspect of location/spatiality.

 What examples can you think of where time is

involved that you'd want the specialized support

of spatial databases, and when would normal

support be fine?

Querying

 Two main issues:
◦ 1. Connecting the operations of a spatial
algebra to the facilities of a DBMS query
language.

◦ 2. Providing graphical presentation of spatial
data (i.e., results of queries), and graphical
input of SDT values used in queries.

Querying...

 Fundamental spatial algebra operations:
◦ Spatial selection: returning those objects satisfying a

spatial predicate with the query object

 “All cities in Bavaria”:
◦ SELECT sname FROM cities c WHERE c.center inside

Bavaria.area

 “All rivers intersecting a query window”
◦ SELECT * FROM rivers r WHERE r.route intersects Window

 “All big cities no more than 100 Kms from Hagen”
◦ SELECT cname FROM cities c WHERE dist(c.center,

Hagen.center) <100 and c.pop > 500k

◦ Spatial join: A join which compares any two joined
objects based on a predicate on their spatial attribute
values.

Querying...

 “For each river pass through Bavaria, find all cities within less than 50
Kms.”
◦ SELECT r.rname, c.cname, length(intersection(r.route, c.area))
FROM rivers r, cities c
WHERE r.route intersects Bavaria.area and
dist(r.route,c.area) < 50 Km

◦ Graphical I/O issue: how to determine “Bavaria” (input); or how to
show “intersection(route, Bavaria.area)” or “r.route” (output) (results
are usually a combination of several queries).

 Requirements for spatial querying:
◦ Spatial data types
◦ Graphical display of query results
◦ Graphical combination (overlay) of several query results

(start a new picture, add/remove layers, change order of layers)
◦ Display of context (e.g., show background such as a raster image

(satellite image) or boundary of states)
◦ Facility to check the content of a display (which query contributed to

the content)

DBMS extensions required

 Representations for spatial algebra data types
 Procedures for the atomic operations (e.g., overlap)
 Spatial index structures
 Access operations for spatial indices (e.g., insert)
 Filter and refine techniques
 Spatial join algorithms
 Cost functions for all operations (for query optimizer)
 Statistics for estimating selectivity of spatial selection

and join
 Extensions of optimizer to map queries into the

specialized query processing method
 Spatial data types & operations within data definition

and query language
 User interface extensions to handle graphical

representation and input of SDT values

3/25/2009

4

Spatial Indexing...

 To deal with spatial selection quickly and efficiently (as well
as other operations such as spatial joins, …)

 It organizes space and the objects in it in some way so that
only parts of the space and a subset of the objects need to
be considered to answer query

 Two main approaches:
◦ 1. Dedicated spatial data structures (e.g., R-tree)
◦ 2. Spatial objects mapped to a 1-D space to utilize standard

indexing techniques (e.g., B-tree)

Spatial Indexing...

 A spatial index structure
organizes points into buckets.

 Each bucket has an associated
bucket region

 For point data structures, the
regions are disjoint & partition
space so that each point
belongs into precisely one
bucket.

 For rectangle data structures,
bucket regions may overlap.

Spatial Indexing...

 One dimensional embedding: z-order or bit-
interleaving
◦ Find a linear order for the cells of the grid while

maintaining “locality” (i.e., cells close to each other in
space are also close to each other in the linear order)

◦ Define this order recursively for a grid that is obtained by
hierarchical subdivision of space

Spatial join

 Traditional join methods such as hash join or
sort/merge join are not applicable.

 Filtering cartesian product is expensive.
◦ “For each river pass through Bavaria, find all cities within

less than 50 Kms.”
 SELECT r.rname, c.cname,

length(intersection(r.route, c.area))
FROM rivers r, cities c
WHERE r.route intersects Bavaria.area and
dist(r.route,c.area) < 50 Km

 Central ideas:
◦ filter + refine
◦ use of spatial index structures

Discussion 2

 “Time and space are modes by which we think and not
conditions in which we live” -- Albert Einstein

 Within Einstein's view time and space are
equivalent quantities, and time is only a fourth
dimension where existence resides.

 We can possibly think about merging the
concepts of temporal databases and spatial
databases and have everything defined within
the framework of spatial databases.

Yes, we can and we should.
No, even if we technically can, we should

not.

System Architecture Revisited

 The only clean way to accommodate these
extensions is an integrated architecture
based on the use of an extensible DBMS.

 Hence, current commercial solutions are
OR-DBMSs:
◦ IBM DB2 (spatial extenders)

◦ Informix Universal Server (spatial datablade)

◦ Oracle 10g (spatial cartridges)

http://thinkexist.com/quotation/time_and_space_are_modes_by_which_we_think_and/178726.html
http://thinkexist.com/quotation/time_and_space_are_modes_by_which_we_think_and/178726.html
http://thinkexist.com/quotation/time_and_space_are_modes_by_which_we_think_and/178726.html
http://thinkexist.com/quotation/time_and_space_are_modes_by_which_we_think_and/178726.html

3/25/2009

5

Conclusion

 SDBMS is valuable to many important
applications

 A spatial database system:
◦ Is a database system which offers SDTs in its data model

and query language and supports SDTs in its
implementation, especially spatial indexing and spatial
join

 Objects in space and space are two basic entities
need to be modeled/represented

 Fundamental spatial algebra operations includes
spatial selection, spatial join

