
3/3/2009

1

CPSC 504: DATA MANAGEMENT

2009

YONG

Niagara CQ : A Scalable
Continuous Query System for

Internet Databases

Outline

 Motivation

 What is NIAGARA CQ?

 What is Incremental Group Optimization?

 What is Query Split?

 Minor details + Performance

 Conclusion

Motivation

Continuous queries (CQ) : allow users to receive new
results when available.

Internet : large amount of frequently updating data.

CQs are popular & essential

Challenges

How can we manage millions of CQs to scale to the
Internet most efficiently?

What is NIAGARA CQ?

 The Continuous Query sub-system of NIAGARA,
which is a distributed database system for querying
distributed XML data.

 Supports scalable continuous query processing

NiagaraCQ : Novelty and Approaches

 Groups CQs based on similar query structure.
 Grouped CQs share computation and data

 -reduce I/O

 -reduce unnecessary query invocations

Niagara CQ’s Grouping Technique

1) Incremental Group Optimization Strategy
2) Query Split Strategy
3) Uniform grouping of both time/change based

queries

NiagaraCQ Command Language

 CREATE CQ_name

 XML-QL query

 DO action

 {START start_time} {EVERY
time_interval} {EXPIRE expiration_time}

 Delete CQ_name

3/3/2009

2

Incremental Group Optimization Strategy

How do you group these

continuous queries

most efficiently????

Incremental Group Optimization Strategy

 Groups are created for existing queries according to
their signatures
 Signatures= similar structures among the queries

 Groups allows the ‘common parts’ of queries to be
shared
 Common parts share result data from the ‘Group Plan’

 New query is merged into those existing groups that
match its signatures.

Expression Signature

 Represent the same syntax structure, but possibly different

constant values, in different queries.

 Expression signatures allow queries with the same syntactic
structure to be grouped together to share computation

Group

 Groups are created for queries based on their
expression signatures. Consists of 3 parts:
 Group signature: The common expression signature of all

queries in the group.

 Group constant table: The group constant table contains the
signature constants of all queries in the group.

Group (cont.)

 Group plan: the group plan is the query plan shared by all
queries in the group. It is derived from the common part of all
single query plans in the group.

Group (cont.)

3/3/2009

3

Discussion

 Expression signatures as described here are a very
simple transformation. Are they too simple? That is,
do they group together enough of the kinds of
queries that this system is meant to handle?

 Do you think they would work better or worse for
SQL queries instead of XML?

Incremental Grouping Algorithm

 When a new query is
submitted:

 Group optimizer
traverses query plan
bottom up to match its
expression signature
with the signatures of
existing groups.

 If no match, a new
group will be generated.

Query Split Strategy

 How do we implement the destination buffer for ‘split
operator’?

1)Pipeline (BAD)

2)Intermediate file (GOOD)

Pipeline buffer

 1) Timer-based CQ… which tuple to store and for
how long?

 2) results in a single execution plan for all queries in
the group

 -the query structure is a directed graph thus the plan may be
too complicated

 -The combined plan can be very large

 -A large portion of the query plan may not need to be executed
at each query invocation

 -Bottleneck

Materialized Intermediate Files Materialized Intermediate Files (cont.)

 Advantages
 Each query is scheduled independently.

 The potential bottleneck problem of the pipelined approach

is avoided.

 Disadvantages
 Extra disk I/Os.

 Split operator becomes a blocking operator.

3/3/2009

4

Other details

 Timer-based continuous queries fires at specific
times, but only if the corresponding input files have
been modified.

 Incremental evaluation allows queries to be invoked
only on the changed data = ‘delta file’

Some performance comparisons

Conclusion

NIAGARA CQ :

Incremental Group Optimization with Query Split

-scalable

-works better than non-groupings

-requires minimal change in query engine

Discussion

 The authors motivate Niagara with a simple stock
quote monitoring application. Is Niagara the best
way to support this particular application? What
other kinds of applications would Niagara be
appropriate for?

