
Query Evaluation

Techniques for large DB

By: David Lee

(modified slides by Daniela Stasa

and Rachel Pottinger)

Purpose

 To analyze practical query evaluation

techniques including execution of complex

query evaluation plans and efficient

algorithms in large databases

Discussion: Why not more DBs?

 On the first page, the author states that

DBMSs have not been used for two

reasons. 1. application development and

maintenance is difficult. 2. the data in

those areas is SO big, that speed trumps

all, and people would rather hand-code.

Why do you think databases aren't used

more? Why don't you use them on your

data?

Steps

 Parses then validates an SQL query to a query tree in logical
algebra (ie relational algebra)

 Optimizer translates the query tree in logical algebra to an
optimized physical plan (QEP) with minimum cost

 Optimal physical plan is prepared for execution and compiled into
machine code

 query execution engine executes the plan

Query execution engine

 What is it?

Collection of query execution operators and

mechanisms for operator communication and

synchronization

Query execution engine runs an optimal plan

chosen by the query optimizer

Pipelining is the parallel execution of different

operators in a single query.

Some of the techniques discussed

 Algorithms and their execution costs

 Sorting versus hashing

 Parallelism

 Resource allocation

 Scheduling issues

 Performance-enhancement techniques

 And more …

Some notes

On the context
While many of the techniques were developed

for relational database systems most are
applicable to any data mode that allows
queries over sets and lists.

 Type of queries
Discusses only read-only queries but mostly

applicable to updates.

Architecture of query execution

engines

 Focus on useful mechanisms for

processing sets of items ie:

Records

Tuples

Entities

Objects

Physical Algebra

 Taken as a whole, the query processing

algorithms form an algebra which we call

physical algebra of a database system

Physical vs. Logical Algebra

 Equivalent but different

 Logical algebra: related to data model and
defines what queries can be expressed in
data model (ie: relational algebra)

 Physical algebra: system specific

Different systems may implement the same
data model and the same logical algebra but
may use different physical algebras

Physical vs. Logical Algebra

 Specific algorithms and therefore cost
functions are associated only with physical
operators not logical algebra operators

 Mapping logical to physical non–trivial:

Logical and physical operators not directly
mapped
 Sort algorithms not represented in logical algebra

Logical algebra joins are intersect and union
whereas physical algebra operators are
nested loop or hash join

etc

Sorting & Hashing

 The purpose of many query-processing
algorithms is to perform some kind of matching,
 i.e., bringing items that are “alike” together and

performing some operation on them.

 There are two basic approaches used for this
purpose:
 sorting

 and hashing.

 These are the basis for many join algorithms

Sorting

 All sorting in databases uses some kind of

merge joining

 i.e. sort a small set and keep merging it into

larger and larger sets until there are no more

sets left

 If a set can fit into main memory,

quicksort() is used

Design Issues

 Sorting should be implemented as an iterator
 In order to ensure that sort module interfaces well

with the other operators, (e.g., file scan or merge-
join).

 Input to the sort module must be an iterator, and
sort uses open, next, and close procedures to
request its input
 therefore, sort input can come from a scan or a

complex query plan, and sort operator can be
inserted into a query plan at any place or at several
places.

More on Sorting

 For sorting large data sets there are two distinct sub-
algorithm :
 One for sorting within main memory

 One for managing subsets of the data set on the disk.

 QS and MS use divide and conquer.
 MS divides physically, then merges

 QS divides on logical keys, then combines

Level 0 run

 There are two

alternative methods

for creating initial runs

 In-memory sort

algorithm (usually

quick sort)

 Replacement

Selection (aka

heapsort)

Quick Sort vs. Replacement

Selection (aka HeapSort)

 Run files in RS are typically larger than memory ,as
oppose to QS where they are the size of the memory

 Qs results in burst of reads and writes for entire memory
loads from the input file to initial run files while RS
alternates between individual read and write

 In RS memory management is more complex

 The advantage of having fewer runs must be balanced
with the different I/0 pattern and the disadvantage of
more complex memory management.

Hashing

 Alternative to sorting

 Expected complexity of hashing algorithms

is O(N) rather than O(N log N) as for

sorting.

 Hash-based query processing algorithms

use an in-memory hash table of database

objects to perform their matching task.

Hashing Overflow

 When hash table is larger than memory,
hash table overflow occurs and must be
dealt with. Avoidance or Resolution

 Input divided into multiple partition files
such that partitions can be processed
independently from one another,

 Concatenation of results of all partitions is
the result of the entire operation.

Hash overflow

Associative Access Using Indices

 Goal:

 To reduce the number of accesses to secondary

storage

 How?

 By employing associative search techniques in the

form of indices

 Indices map key or attribute values to locator

information with which database objects can be

retrieved. (use of B trees)

 There are clustered (sparse or dense) and non

clustered (must be dense)

Buffer Management

 Goal: reduce I/O cost by cashing data in an I/O
buffer.

 Issues
 Recovery

 Replacement policy

 performance effect of buffer allocation

 Interactions of index retrieval and buffer management

 Implementation
 Interface provided : fixing (fixed page not subject to

replacement) and unfixing

 More on Wednesday

Discussion: DB vs OS

 Many of the topics handled in DBs are

also handled in OSs. Sometimes people

(e.g., Microsoft) have tried combining the

two. Do you think this is a good idea?

Why or why not?

BINARY MATCHING OPERATIONS

 Relational join most prominent binary matching

operation (others: intersection, union, etc)

 Set operations such as intersection and

difference needed for any data model

 Most commercial db systems as of 1993 used

only nested loops and merge-join. As per

research done for SystemR, these two were

supposed to be most efficient.

 SystemR researchers did not consider Hash join

algorithms, which are today considered even

better in performance.

NESTED-LOOPS JOIN ALGORITHMS:

simple elegance

 For each item in one input, scan entire other

input to find matches.

 Performance is really poor, because inner input

is scanned often.

 Tricks to improve performance include:

 Use K pages of outer relation and Mem – K pages of

inner relation

 create an index on the join attribute

 Inner input can be scanned once for each „page‟ of

outer input.

MERGE-JOIN ALGORITHMS

 First sort relations by join attribute

So linear scans will encounter join attribute

sets at the same time

 Uses QS to sort or can use interesting

orderings (if already exists)

MERGE-JOIN VARIANTS

 Heap-Filter merge-join

Combination of nested loop join and merge

join. # of scans is about 50% of block nested

loops

 Hybrid join (used by IBM for DB2), uses

elements from index nested-loop joins and

merge join, and techniques joining sorted

lists on index leaf entries.

HASH JOIN ALGORITHMS

 based on in-memory hash table on the smaller relation
(„build‟ input), then scan the larger relation to find
matching rows by probing in the hash table („probe‟

 Very effective if build input fits into memory, regardless
of size of probe input.

 overflow avoidance or resolution methods needed for
inputs that are larger than memory.

 both inputs partitioned using same partitioning function.
Final join result formed by concatenating join results of
pairs of partitioning files.

 Recursive partitioning may be used for both inputs

 More effective when the two input sizes are very different
(smaller being the build input).

Duality of sort and hash-based

algorithms

 Equivalent but uses dividing and merging

in different ways

Sort

 Divides data by physical step (mem) and combines

via logical step (merging)

Hash

 Divides by logical rule (hash) and combines by

physical step (concatenating subsets)

Can be seen by observing the disc arm I/O

operations for merging and partitioning

