
Query Evaluation

Techniques for large DB

By: David Lee

(modified slides by Daniela Stasa

and Rachel Pottinger)

Purpose

 To analyze practical query evaluation

techniques including execution of complex

query evaluation plans and efficient

algorithms in large databases

Discussion: Why not more DBs?

 On the first page, the author states that

DBMSs have not been used for two

reasons. 1. application development and

maintenance is difficult. 2. the data in

those areas is SO big, that speed trumps

all, and people would rather hand-code.

Why do you think databases aren't used

more? Why don't you use them on your

data?

Steps

 Parses then validates an SQL query to a query tree in logical
algebra (ie relational algebra)

 Optimizer translates the query tree in logical algebra to an
optimized physical plan (QEP) with minimum cost

 Optimal physical plan is prepared for execution and compiled into
machine code

 query execution engine executes the plan

Query execution engine

 What is it?

Collection of query execution operators and

mechanisms for operator communication and

synchronization

Query execution engine runs an optimal plan

chosen by the query optimizer

Pipelining is the parallel execution of different

operators in a single query.

Some of the techniques discussed

 Algorithms and their execution costs

 Sorting versus hashing

 Parallelism

 Resource allocation

 Scheduling issues

 Performance-enhancement techniques

 And more …

Some notes

On the context
While many of the techniques were developed

for relational database systems most are
applicable to any data mode that allows
queries over sets and lists.

 Type of queries
Discusses only read-only queries but mostly

applicable to updates.

Architecture of query execution

engines

 Focus on useful mechanisms for

processing sets of items ie:

Records

Tuples

Entities

Objects

Physical Algebra

 Taken as a whole, the query processing

algorithms form an algebra which we call

physical algebra of a database system

Physical vs. Logical Algebra

 Equivalent but different

 Logical algebra: related to data model and
defines what queries can be expressed in
data model (ie: relational algebra)

 Physical algebra: system specific

Different systems may implement the same
data model and the same logical algebra but
may use different physical algebras

Physical vs. Logical Algebra

 Specific algorithms and therefore cost
functions are associated only with physical
operators not logical algebra operators

 Mapping logical to physical non–trivial:

Logical and physical operators not directly
mapped
 Sort algorithms not represented in logical algebra

Logical algebra joins are intersect and union
whereas physical algebra operators are
nested loop or hash join

etc

Sorting & Hashing

 The purpose of many query-processing
algorithms is to perform some kind of matching,
 i.e., bringing items that are “alike” together and

performing some operation on them.

 There are two basic approaches used for this
purpose:
 sorting

 and hashing.

 These are the basis for many join algorithms

Sorting

 All sorting in databases uses some kind of

merge joining

 i.e. sort a small set and keep merging it into

larger and larger sets until there are no more

sets left

 If a set can fit into main memory,

quicksort() is used

Design Issues

 Sorting should be implemented as an iterator
 In order to ensure that sort module interfaces well

with the other operators, (e.g., file scan or merge-
join).

 Input to the sort module must be an iterator, and
sort uses open, next, and close procedures to
request its input
 therefore, sort input can come from a scan or a

complex query plan, and sort operator can be
inserted into a query plan at any place or at several
places.

More on Sorting

 For sorting large data sets there are two distinct sub-
algorithm :
 One for sorting within main memory

 One for managing subsets of the data set on the disk.

 QS and MS use divide and conquer.
 MS divides physically, then merges

 QS divides on logical keys, then combines

Level 0 run

 There are two

alternative methods

for creating initial runs

 In-memory sort

algorithm (usually

quick sort)

 Replacement

Selection (aka

heapsort)

Quick Sort vs. Replacement

Selection (aka HeapSort)

 Run files in RS are typically larger than memory ,as
oppose to QS where they are the size of the memory

 Qs results in burst of reads and writes for entire memory
loads from the input file to initial run files while RS
alternates between individual read and write

 In RS memory management is more complex

 The advantage of having fewer runs must be balanced
with the different I/0 pattern and the disadvantage of
more complex memory management.

Hashing

 Alternative to sorting

 Expected complexity of hashing algorithms

is O(N) rather than O(N log N) as for

sorting.

 Hash-based query processing algorithms

use an in-memory hash table of database

objects to perform their matching task.

Hashing Overflow

 When hash table is larger than memory,
hash table overflow occurs and must be
dealt with. Avoidance or Resolution

 Input divided into multiple partition files
such that partitions can be processed
independently from one another,

 Concatenation of results of all partitions is
the result of the entire operation.

Hash overflow

Associative Access Using Indices

 Goal:

 To reduce the number of accesses to secondary

storage

 How?

 By employing associative search techniques in the

form of indices

 Indices map key or attribute values to locator

information with which database objects can be

retrieved. (use of B trees)

 There are clustered (sparse or dense) and non

clustered (must be dense)

Buffer Management

 Goal: reduce I/O cost by cashing data in an I/O
buffer.

 Issues
 Recovery

 Replacement policy

 performance effect of buffer allocation

 Interactions of index retrieval and buffer management

 Implementation
 Interface provided : fixing (fixed page not subject to

replacement) and unfixing

 More on Wednesday

Discussion: DB vs OS

 Many of the topics handled in DBs are

also handled in OSs. Sometimes people

(e.g., Microsoft) have tried combining the

two. Do you think this is a good idea?

Why or why not?

BINARY MATCHING OPERATIONS

 Relational join most prominent binary matching

operation (others: intersection, union, etc)

 Set operations such as intersection and

difference needed for any data model

 Most commercial db systems as of 1993 used

only nested loops and merge-join. As per

research done for SystemR, these two were

supposed to be most efficient.

 SystemR researchers did not consider Hash join

algorithms, which are today considered even

better in performance.

NESTED-LOOPS JOIN ALGORITHMS:

simple elegance

 For each item in one input, scan entire other

input to find matches.

 Performance is really poor, because inner input

is scanned often.

 Tricks to improve performance include:

 Use K pages of outer relation and Mem – K pages of

inner relation

 create an index on the join attribute

 Inner input can be scanned once for each „page‟ of

outer input.

MERGE-JOIN ALGORITHMS

 First sort relations by join attribute

So linear scans will encounter join attribute

sets at the same time

 Uses QS to sort or can use interesting

orderings (if already exists)

MERGE-JOIN VARIANTS

 Heap-Filter merge-join

Combination of nested loop join and merge

join. # of scans is about 50% of block nested

loops

 Hybrid join (used by IBM for DB2), uses

elements from index nested-loop joins and

merge join, and techniques joining sorted

lists on index leaf entries.

HASH JOIN ALGORITHMS

 based on in-memory hash table on the smaller relation
(„build‟ input), then scan the larger relation to find
matching rows by probing in the hash table („probe‟

 Very effective if build input fits into memory, regardless
of size of probe input.

 overflow avoidance or resolution methods needed for
inputs that are larger than memory.

 both inputs partitioned using same partitioning function.
Final join result formed by concatenating join results of
pairs of partitioning files.

 Recursive partitioning may be used for both inputs

 More effective when the two input sizes are very different
(smaller being the build input).

Duality of sort and hash-based

algorithms

 Equivalent but uses dividing and merging

in different ways

Sort

 Divides data by physical step (mem) and combines

via logical step (merging)

Hash

 Divides by logical rule (hash) and combines by

physical step (concatenating subsets)

Can be seen by observing the disc arm I/O

operations for merging and partitioning

