
The ObjectStore Database
System

Charles Lamb
Gordon Landis
Jack Orenstein
Dan Weinreb

(1991)

Goals

• Uniform programmatic interface to both
persistent and transient data

• Object access speed for persistent data equal
to (in-memory) pointer dereferencing to
transient data

Close integration with Programming
Language

• Choose C++: popular language in targeted
applications (CAx, GIS)

• Adding persistence to C++

• Persistence is not part of the type of an object

Motivations

• Ease of learning
– no need for a new type or new object definition

• No translation code
– Between persistent data representation and transient data

representation

– Solve the ‘Impedance mismatch’ : persistent data is
treated like transient data

• Expressive power
– general purpose language (as opposed to SQL)

Motivations

• Reusability:
– same code can operate on persistent or transient

data

• Ease of conversion
– data operations are syntactically the same for

persistent and transient data

• Type checking
– same static type-checking from C++ works for

persistent data.

Motivations

• Temporal/Spatial locality

– take advantage of common access patterns

• Fine interleaving

– low overhead to allow frequent, small database
operations

• Performance

– do it all with good performance compared to
RDBMSs

C++ extension
to access persistent data

• Keyword: persistent
– Used when declaring variables

• Keyword: db
– Used when object being created should be

allocated in database db.

• A few other keywords
– inverse_member, indexable

– for defining how objects in the DB relate.

main()

{

database *db = database::open(“/company/records”);

persistent<db> department* engineering_department;

transaction::begin();

employee *emp = new(db) employee(“Fred”);

engineering_department->add_employee(emp);

emp->salary = 1000;

transaction::commit();

}

Discussion

Do you think it is a good idea to tie Object store
to a popular programming language?

- If no, give your reason and a specific example.

- If yes, why? Given that there are other popular
Object-oriented languages today such as
Eiffel, C#, Java and Smalltalk, would you still
go with C++? In addition to popularity, what
are the other criteria needed to choose such
an Object-oriented programming language?

ObjectStore supports

• Library of collection types

• Bidirectional relationships

• Access to persistent data inside transactions

• Optimizing query facility

• Version facility for collaborative work

Collections

• Similar to arrays in PL or tables in RDBMS

• Variety of behaviors:

– Ordered collections (lists)

– Collections with or without duplicates (bags or
sets)

• Allow performance tuning

– developers specify access patterns

– an appropriate data structure is chosen
transparently

Relationships

• Pairs of inverse pointers which are maintained
by the system.

• One-to-one, one-to-many, and many-to-many
relationships are supported.

• Syntactically, relationships are C++ data
members

• Updates cause its inverse member to be
updated.

Accessing persistent data

• Overhead is a major concern.

• Once objects have been retrieved, subsequent
references should be as fast as an ordinary pointer
dereference.

• Similar goals as a virtual memory system

-- use VM system in OS for solution:
– Set flags so that accessing a non-fetched persistent object

causes page fault.

– Upon fault, retrieve object.

– Subsequent access is a normal pointer dereference

Associative Queries

• More closely integrated with the host
language than SQL

• Any collections can be queried

• Special syntax: [: predicate :]

employees [: salary >= 10000 :]

• Queries may be nested to form more complex
queries

Queries

• ObjectStore also uses indexes and a query
optimizer

• BUT indexes are more complex

– fields directly contained in objects

– paths through objects and collections

• Index maintenance is more of a problem
(embedded collections)

Query optimizations

Some RDBMS query optimization techniques
don’t work or make sense

• Collections are not known by name

• Queries over a single top-level collection

• Join optimization is less of a problem

– paths can be viewed as precomputed joins

– join optimization now index selection issue

– “true joins” are rare

Discussion

Would you rather use a relational database, or
Object Store? More pointedly: for each of the
following, list applications you would use with
them and why:

- object store

- C++ and a relational dbms

Conclusion

• ObjectStore provides

– Ease of use

– Expressive power

– Tight integration with host environment

– High performance due to VM mapping architecture

• Performance experiments show caching and virtual
memory-mapping architecture work.

• Small case study shows productivity benefits

Of Objects and Databases: A
Decade of Turmoil

Carey, M.J.; DeWitt, D.J.
(1996)

http://cs.ubc.ca/~rap/teaching/504/2005/readings/objects.pdf
http://cs.ubc.ca/~rap/teaching/504/2005/readings/objects.pdf

Objects and Databases. Areas of research

• Extended relational database systems.

• Persistent programming languages.

• Object-oriented database systems.

• Database system toolkits/components.

 Allow the addition of new, user-defined abstract data types (ADTs).

 ADTs are implemented in an external language.

 After being registered with the database, ADT’s functions
can be used in queries.

 Projects:

 Ingres

 Postgres
 Query optimizers with ADT’s properties and functions awareness.

 Support for storing and querying complex data types.

Extended relational database systems

 Add data persistence and atomic program execution to traditional
object-oriented programming languages.

 Problems addressed:
 Impedance mismatch

 Orthogonality

 Persistence models

 Binding and namespace management for persistent roots

 Type systems and type safety

 Alternative implementation techniques for supporting transparent
navigation, maintenance, and garbage collection of persistent data
structures

Persistent Programming Languages

 Combination of all of the features of a modern database system
with those of an object-oriented programming language

 Focus on:
 Reducing or eliminating ‘Impedance Mismatch’

 Supporting querying, indexing and navigation

 Addressing version management needs of engineering apps

 Projects:
 Gemstone (Smalltalk)

 Vbase (CLU-like language)

 Orion (CLOS)

Object-Oriented Database Systems

 Provide a DBMS that can be extended at almost any level

 Use mostly kernel facilities plus additional tools that help building
domain-appropriate DBMS.

 Projects:
EXODUS.

 Storage manager for objects

 Persistent Programming Language (E)

 Query optimizer generator

Starburst.

 Part extended relational DBMS, part component–based DBMS

 Clean architectural model that facilitates storage and indexing
extensions

 Rule-based extensible query subsystem

Database system toolkits/components

1996: What has happened since 1986?

 System toolkits & persistent programming languages
 In spite of some interesting results these were a failure from a

commercial point of view.

 OO database systems
 Many results from the academic point of view. Not expanded

commercially as expected by its developers.

 Language-specific object wrappers for relational databases
 New approach that appears to be important for building OO, client side

apps.

 Extended relational DBMS
 Renamed as Object-Relational DBMS. Appears to be settling in terms of

providing objects for enterprise DB apps.

 Require a lot of expertise

 Inflexible, awkward or incomplete

 Not worthwhile to start from scratch despite toolkits to ease the
process since OO-DBMS and OR-DBMS provide enough
extensibility

The Database Toolkit approach problem

 Its storage manager’s Client/Server architecture interfered with
users’ implementation of their own object servers.

 E programming language
 Too high-level for skilled database implementors

 Too low-level for application-oriented programmers

 The query optimizer was inefficient and hard to use

Why did EXODUS fail?

Was all that bad after all?

 Interesting research by-products relevant to OO-DBMS and OR-
DBMS

 No commercial implementation

 Still active as a research area in academia.

 Work transferred to OO-DBMS in areas
 Navigational programming interfaces

 Persistence models

 Pointer Swizzling schemes

 Garbage collection schemes for persistent data

Persistent Programming Language

 No complete agreement on standards

 Tight coupling between an OO-DBMS and its application
programming language

 OO-DBMS products lagging behind RDBMS (e.g. no view
facilities!)

 Low availability of application development tools

 Difficult schema evolution

 Not adapted to prevalent computing environment of thin
client/fat servers

What went wrong with OO-DBMS?

Discussion

Given the problems stated with each of the four areas
• Extended relational database systems

o Ingres, Postgres
• Persistent programming languages

o JADE
• Object-oriented database systems

o Objectstore
• Database system toolkits/components

o EXODUS, Starburst
Which one would you still choose to research? Why? How would
you overcome its issues?

What is OR-DBMS?

 Subsume RDBMS
 starts from the relational model and its query language SQL and builds

from there

 Top level: collection of named relations BUT objects in the relations are as
rich as can be supported by OO-db

 Supports object features
 ADTs - extend set of built in types to new data types: text, image, audio,

video, etc.

 Row Types - direct extensions of type systems for tuples: rows in table can
have object-like properties (named types & functions/methods)

 SQL extensions for object queries
 Path expressions

 Support for nested sets

Object relational servers will provide:

 Scalability and robustness

 Support for OO ADTs
 Inheritance among ADTs

 ADT implementation in various programming languages

 Full OO support for row types

 Methods and queries will be run on cached data on servers or
clients depending on which method is faster

OO-dbms will remain:

 Niche solutions for areas such as engineering design, telecom…

2006: a fully integrated solution

2006: Research Challenges

 Server functionality and performance

 Client integration

 Parallelization

 Legacy data sources

 Standards

Discussion

• Was their vision for 2006 correct? In what ways?

• How is the reality different from their
predictions? Why?

• Predict the future: What do you expect from
OO-DBMS and OR-DBMS in 2016?

What are Object Oriented Client Wrappers?

 Gaining favour in commercial world

 Support the development of object-oriented, client side
applications working against legacy databases

 Language specific

 Act as proxies for data in the underlying database allowing more
natural interaction with data for programming tools.

 Tools to aid in the definition and construction of objects from the
underlying db and maintain correspondences between
programming objects and database data through key-to-OID

 Very weak querying side

