
The ObjectStore Database
System

Charles Lamb
Gordon Landis
Jack Orenstein
Dan Weinreb

(1991)

Goals

• Uniform programmatic interface to both
persistent and transient data

• Object access speed for persistent data equal
to (in-memory) pointer dereferencing to
transient data

Close integration with Programming
Language

• Choose C++: popular language in targeted
applications (CAx, GIS)

• Adding persistence to C++

• Persistence is not part of the type of an object

Motivations

• Ease of learning
– no need for a new type or new object definition

• No translation code
– Between persistent data representation and transient data

representation

– Solve the ‘Impedance mismatch’ : persistent data is
treated like transient data

• Expressive power
– general purpose language (as opposed to SQL)

Motivations

• Reusability:
– same code can operate on persistent or transient

data

• Ease of conversion
– data operations are syntactically the same for

persistent and transient data

• Type checking
– same static type-checking from C++ works for

persistent data.

Motivations

• Temporal/Spatial locality

– take advantage of common access patterns

• Fine interleaving

– low overhead to allow frequent, small database
operations

• Performance

– do it all with good performance compared to
RDBMSs

C++ extension
to access persistent data

• Keyword: persistent
– Used when declaring variables

• Keyword: db
– Used when object being created should be

allocated in database db.

• A few other keywords
– inverse_member, indexable

– for defining how objects in the DB relate.

main()

{

database *db = database::open(“/company/records”);

persistent<db> department* engineering_department;

transaction::begin();

employee *emp = new(db) employee(“Fred”);

engineering_department->add_employee(emp);

emp->salary = 1000;

transaction::commit();

}

Discussion

Do you think it is a good idea to tie Object store
to a popular programming language?

- If no, give your reason and a specific example.

- If yes, why? Given that there are other popular
Object-oriented languages today such as
Eiffel, C#, Java and Smalltalk, would you still
go with C++? In addition to popularity, what
are the other criteria needed to choose such
an Object-oriented programming language?

ObjectStore supports

• Library of collection types

• Bidirectional relationships

• Access to persistent data inside transactions

• Optimizing query facility

• Version facility for collaborative work

Collections

• Similar to arrays in PL or tables in RDBMS

• Variety of behaviors:

– Ordered collections (lists)

– Collections with or without duplicates (bags or
sets)

• Allow performance tuning

– developers specify access patterns

– an appropriate data structure is chosen
transparently

Relationships

• Pairs of inverse pointers which are maintained
by the system.

• One-to-one, one-to-many, and many-to-many
relationships are supported.

• Syntactically, relationships are C++ data
members

• Updates cause its inverse member to be
updated.

Accessing persistent data

• Overhead is a major concern.

• Once objects have been retrieved, subsequent
references should be as fast as an ordinary pointer
dereference.

• Similar goals as a virtual memory system

-- use VM system in OS for solution:
– Set flags so that accessing a non-fetched persistent object

causes page fault.

– Upon fault, retrieve object.

– Subsequent access is a normal pointer dereference

Associative Queries

• More closely integrated with the host
language than SQL

• Any collections can be queried

• Special syntax: [: predicate :]

employees [: salary >= 10000 :]

• Queries may be nested to form more complex
queries

Queries

• ObjectStore also uses indexes and a query
optimizer

• BUT indexes are more complex

– fields directly contained in objects

– paths through objects and collections

• Index maintenance is more of a problem
(embedded collections)

Query optimizations

Some RDBMS query optimization techniques
don’t work or make sense

• Collections are not known by name

• Queries over a single top-level collection

• Join optimization is less of a problem

– paths can be viewed as precomputed joins

– join optimization now index selection issue

– “true joins” are rare

Discussion

Would you rather use a relational database, or
Object Store? More pointedly: for each of the
following, list applications you would use with
them and why:

- object store

- C++ and a relational dbms

Conclusion

• ObjectStore provides

– Ease of use

– Expressive power

– Tight integration with host environment

– High performance due to VM mapping architecture

• Performance experiments show caching and virtual
memory-mapping architecture work.

• Small case study shows productivity benefits

Of Objects and Databases: A
Decade of Turmoil

Carey, M.J.; DeWitt, D.J.
(1996)

http://cs.ubc.ca/~rap/teaching/504/2005/readings/objects.pdf
http://cs.ubc.ca/~rap/teaching/504/2005/readings/objects.pdf

Objects and Databases. Areas of research

• Extended relational database systems.

• Persistent programming languages.

• Object-oriented database systems.

• Database system toolkits/components.

 Allow the addition of new, user-defined abstract data types (ADTs).

 ADTs are implemented in an external language.

 After being registered with the database, ADT’s functions
can be used in queries.

 Projects:

 Ingres

 Postgres
 Query optimizers with ADT’s properties and functions awareness.

 Support for storing and querying complex data types.

Extended relational database systems

 Add data persistence and atomic program execution to traditional
object-oriented programming languages.

 Problems addressed:
 Impedance mismatch

 Orthogonality

 Persistence models

 Binding and namespace management for persistent roots

 Type systems and type safety

 Alternative implementation techniques for supporting transparent
navigation, maintenance, and garbage collection of persistent data
structures

Persistent Programming Languages

 Combination of all of the features of a modern database system
with those of an object-oriented programming language

 Focus on:
 Reducing or eliminating ‘Impedance Mismatch’

 Supporting querying, indexing and navigation

 Addressing version management needs of engineering apps

 Projects:
 Gemstone (Smalltalk)

 Vbase (CLU-like language)

 Orion (CLOS)

Object-Oriented Database Systems

 Provide a DBMS that can be extended at almost any level

 Use mostly kernel facilities plus additional tools that help building
domain-appropriate DBMS.

 Projects:
EXODUS.

 Storage manager for objects

 Persistent Programming Language (E)

 Query optimizer generator

Starburst.

 Part extended relational DBMS, part component–based DBMS

 Clean architectural model that facilitates storage and indexing
extensions

 Rule-based extensible query subsystem

Database system toolkits/components

1996: What has happened since 1986?

 System toolkits & persistent programming languages
 In spite of some interesting results these were a failure from a

commercial point of view.

 OO database systems
 Many results from the academic point of view. Not expanded

commercially as expected by its developers.

 Language-specific object wrappers for relational databases
 New approach that appears to be important for building OO, client side

apps.

 Extended relational DBMS
 Renamed as Object-Relational DBMS. Appears to be settling in terms of

providing objects for enterprise DB apps.

 Require a lot of expertise

 Inflexible, awkward or incomplete

 Not worthwhile to start from scratch despite toolkits to ease the
process since OO-DBMS and OR-DBMS provide enough
extensibility

The Database Toolkit approach problem

 Its storage manager’s Client/Server architecture interfered with
users’ implementation of their own object servers.

 E programming language
 Too high-level for skilled database implementors

 Too low-level for application-oriented programmers

 The query optimizer was inefficient and hard to use

Why did EXODUS fail?

Was all that bad after all?

 Interesting research by-products relevant to OO-DBMS and OR-
DBMS

 No commercial implementation

 Still active as a research area in academia.

 Work transferred to OO-DBMS in areas
 Navigational programming interfaces

 Persistence models

 Pointer Swizzling schemes

 Garbage collection schemes for persistent data

Persistent Programming Language

 No complete agreement on standards

 Tight coupling between an OO-DBMS and its application
programming language

 OO-DBMS products lagging behind RDBMS (e.g. no view
facilities!)

 Low availability of application development tools

 Difficult schema evolution

 Not adapted to prevalent computing environment of thin
client/fat servers

What went wrong with OO-DBMS?

Discussion

Given the problems stated with each of the four areas
• Extended relational database systems

o Ingres, Postgres
• Persistent programming languages

o JADE
• Object-oriented database systems

o Objectstore
• Database system toolkits/components

o EXODUS, Starburst
Which one would you still choose to research? Why? How would
you overcome its issues?

What is OR-DBMS?

 Subsume RDBMS
 starts from the relational model and its query language SQL and builds

from there

 Top level: collection of named relations BUT objects in the relations are as
rich as can be supported by OO-db

 Supports object features
 ADTs - extend set of built in types to new data types: text, image, audio,

video, etc.

 Row Types - direct extensions of type systems for tuples: rows in table can
have object-like properties (named types & functions/methods)

 SQL extensions for object queries
 Path expressions

 Support for nested sets

Object relational servers will provide:

 Scalability and robustness

 Support for OO ADTs
 Inheritance among ADTs

 ADT implementation in various programming languages

 Full OO support for row types

 Methods and queries will be run on cached data on servers or
clients depending on which method is faster

OO-dbms will remain:

 Niche solutions for areas such as engineering design, telecom…

2006: a fully integrated solution

2006: Research Challenges

 Server functionality and performance

 Client integration

 Parallelization

 Legacy data sources

 Standards

Discussion

• Was their vision for 2006 correct? In what ways?

• How is the reality different from their
predictions? Why?

• Predict the future: What do you expect from
OO-DBMS and OR-DBMS in 2016?

What are Object Oriented Client Wrappers?

 Gaining favour in commercial world

 Support the development of object-oriented, client side
applications working against legacy databases

 Language specific

 Act as proxies for data in the underlying database allowing more
natural interaction with data for programming tools.

 Tools to aid in the definition and construction of objects from the
underlying db and maintain correspondences between
programming objects and database data through key-to-OID

 Very weak querying side

