
1

What Goes Around Comes

Around
Michael Stonebraker, Joseph M. Hellerstein

Summary

� 9 epochs in database research:

� Hierarchical, Network, Relational, Entity-

Relationship, Extended Relational,

Semantic, Object-oriented, Object-

Relational, Semi-structured.

� We are repeating old ideas.

� We are failing to learn from old

mistakes.

Hierarchical (IMS) (late

60s-70s)

Pros:

� facilitates simple data manipulation language
(DL/I)

Cons:

� Information is repeated

� Existence depends on parents

� no physical data independence (can’t tune
physical level without tuning app)

� Not much logical data independence either
(can’t tune schema without changing app
(think views))

Lessons From

Hierarchical:

Lesson 1. Physical and logical data
independence are highly desirable

Lesson 2. Tree structured data models are very
restrictive

Lesson 3. It’s a challenge to provide
sophisticated logical reorganizations of tree
structured data

Lesson 4. Record-at-a-time user interface
forces manual query optimization (hard!)

Directed Graph (CODASYL)

(70s)

Pros:

� Yeah! Graphs, not trees!

� Can model many-to-many relationships

Cons:

� Still no physical data independence.

� Much more complex than IMS

� Lesson 5: Directed graphs are more flexible
than hierarchies, but more complex

� Lesson 6: Loading and recovering directed
graphs is more complex than hierarchies

Discussion

Do you agree with the claim that the only

two “new” concepts developed in the

last 20 years were:

1. code in the database and

2. schema last applications?

2

Relational (70s-early

80s)

Pros:

� Store the data in a simple data structure

� Access through a high level set-at-a-time
DML

� No need for a physical storage proposal

Lots of good arguing by various sides “the great
debate”

Non-technical factor: CODASYL systems were
not portable � not porting to first
microprocessors (VAX) (whoops)

Lessons from

Relational:

Lesson 7: Set-at-a-time languages are good;
offer improved physical data independence

Lesson 8: logical data independence is easier
with a simple data model than with a complex
one

Lesson 9: Technical debates are usually settled
by the elephants of the marketplace, and
often for reasons not related to technology

Lesson 10: query optimizers can beat all but the
best record at a time DBMS application
programmers

Entity-Relationship

(70s)

� Response to normalization

� Standard wisdom: create table, then
normalize. Problems for DBAs:

1. Where do I get initial tables

2. Can’t understand functional dependences

� Lesson 11: Functional dependencies
are too difficult for mere mortals to
understand. Another reason for KISS

Extended Relational

(80s)

� How many features must relational databases

have…

� Set valued attributes

� Aggregation

� Generalization

� And many, many more

Lesson 12: unless there is a big performance or

functionality advantage, new constructs will

go nowhere

Semantic (late 70’s and 80’s)

(SDM)

� Similar ideas, but more radical; change

whole model to be semantically richer.

� Lots of machinery, little benefit. Died

without a trace.

Object-oriented

(late 80’s and early 90’s)

+Support OO languages

-market failure: no leverage, no standards,

some versions had reliance on C++

Lesson 13: Packages will not sell to users

unless they are in “major pain”

Lesson 14: Persistent languages will go

nowhere without support of PL community

3

Object-Relational

(late 80s and early 90s)

� OO + R

+ Some commercial success

+ put some code in DBMS

- no standards

Lesson 14: OR puts code in DB which makes
for fast adaptability

Lesson 15: Widespread adoption of new
technology requires either standards and/or
an elephant pushing hard

XML (late 90s to - ?)

� Semantic heterogeneity

� Schema later: best for semi-structured…
authors claim there aren’t that many of these

� XML Schema:
� Can be hierarchical, as in IMS

� Can have links to other records as in CODASYL &
SDM

� Can have set-based attributes as in SDM

� Can inherit from other records, as in SDM

� Even more complexity!

Three visions of the

future of XML Schema:

� XML schema fails because of excessive complexity

� A “data-oriented” subset of XML Schema will be
proposed that is vastly simpler

� “It will become popular. Within a decade, all problem
with IMS and CODASYL that motivated Codd to
invent the relational model will resurface. At that time
some enterprising researcher, call him Y, will ‘dust
off’ Codd’s original paper, and there will be a replay
of ‘the Great Debate’ Presumably it will end the same
way as the last one. Moreover, Codd won the Turing
award in 1981 for his contribution. In this scenario, Y
will win the Turing award circa 2015”.

Lessons from XML

Lesson 16: Schema-later is probably a
niche market

Lesson 17: XQuery is pretty much OR
SQL with a different syntax

Lesson 18: XML will not solve semantic
heterogeneity either inside or outside
the enterprise

Discussion

� The authors claim that XML still doesn’t

solve the semantic heterogeneity

problem.

� What is the semantic heterogeneity

problem?

� What is missing from the XML approach?

