

- Introduction
- Note on Impedance
- Database System Toolkits/Components
- Persistent Programming Languages
- Extended Relational Database Systems
- OODB vs. ORDBMS: what's difference?
- Predicting the Present

Database Toolkits

- How does this address the impedance mismatch?
 - It doesn't ... it passes problem to the DBMS implementer to resolve
 - The impedance mismatch may or may not be an issue depending on the implementation of the DDL and DML

Persistent Programming Languages

- Extend the type system and programming model to add persistence to programs.
- An application developer specifies object persistence within code
- Applicable in domains where persistence is main concern as opposed to:
 - rich query support (optimization, expressiveness)
 - transaction management

Persistent Programming Languages

- How does this address the impedance mismatch?
 - By removing the DB there is no longer any mismatch. Problem solved ...
 But you lose many features of the DB
 - Whole host of new issues
 - Refer to previous discussion of Objectstore ...

Toolkits Example: EXODUS Project included storage manager,

- persistent language (based on C++), query optimizer generator
- Why did it fail?
 - Too much left to the implementer
 - The one thing people wanted to customize was already done (Client/Server Storage Manager) and 'got in the way'
 - Granularity of persistent storage language was not suitable

Object Oriented Database Systems

- Combine *all* RDBMS *features* with features of OO language to make *new* DBMS solution
- Similar to persistent programming
 - Difference lies in additional DB feature support (query language (i.e. OQL), indexing, transactions, etc.)

Object Oriented Database Systems

- How does this address the impedance mismatch?
 - Address the issue by providing tight integration between DB and programming language – no more mismatch
 - The OODB representation of an object identical or very similar to programming model

What features define an OODB?

The Object-Oriented Database System Manifesto (1990):

- Complex objects with unique identities
- Encapsulation
- Inheritance and Substitutability
- Late binding
- Extensible type systemPersistence, concurrency, recovery
- Ad-hoc query support
- And Optionally:

Multiple inheritance

- Static vs. dynamic type checking
- Distribution, Long Transactions
- Version Management

Discussion

- Was research into OODB driven solely by *OO* language needs, or can the OO paradigms of data abstraction and encapsulation enable a database system to store/manipulate data more efficiently as well?
- Do you agree with the paper's characterization of ObjectStore as an OODB? Why or why not?

Extended Relational Database Systems

- Provide an evolutionary path from current RDBMS
- Extend RDBMS to allow definition of user defined types
 - Abstract Data Types (ADTs) used as attributes
 ADT specified in an external language
 ADT methods can be used in queries
 - Row Types
 - add object-like properties to rows such as functions
 - Support Inheritance between row types
 - Multi-values attributes

Extended Relational Database Systems

- How does this address the impedance mismatch?
 - Lessening the mismatch from the DB side: creating attribute types that more closely match application objects.
 - Pushes some business logic to DB; the query can call functions on objects within the query predicates

What features define an ORDBMS?

Third-Generation Database System Manifesto (1990):

- Support for richer object structures and rules
- Subsume RDBMS functionality
- Open to subsystems (tools, middleware, etc.)

What is the difference?

Key difference:

"the top-most level of an objectrelational database schema is still a collection of named relations"

whereas

OODBMS has no relations

 Evolution vs. Revolution
 ORDBMS build on RDBMS instead of scrapping relational model

OODBMS: Undecided Circa 1996

- Huge amount of research papers, many research systems, many commercial products
- What was holding it back?
 - No consensus on feature set
 - Not as mature as RDBMS systems
 - Use of ODBC reduced impedance problem
 - Vendors already began embracing RDBMS

ORDBMS: Showing Promise

- Several commercial offerings were available
- Adopting attractive OODB features
- Standardization work in SQL3
- Vendors offering ready-made ADT type packages
 - Authors underestimated this trend this is how things are done today

Visions of 2006

- Commercial ORDBMS:
 - Full support for rich ADT's (implemented in multiple languages)
 - Exports high level OO data model for use by middle-tier and client
- Commercial OODB:
 - Serving niche markets that demand high performance and seamlessness (NO mismatch)

Not Covered (If We Have Time)

- OO Client Wrappers?
- CORBA, OLE, Java
- Middleware
- Research Challenges
 - Performance with objects (indexing, joining, selectivity predictions ...)
 - Client Integration
 - Parallelizing ORDBMS
 - Legacy DB support