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The Motivation for Tukwila:

Key characteristics of the data integration problem:

� No statistics

� Unpredictable data transfer rates 

� Overlap & redundancy of data

� Quick initial results more important than total plan cost

Conclusion: Adaptivity is critical to performance!  
Traditional static query processing inadequate.

Discussion #1

Why does optimizing initial answers 

matter more in data integration? 

Can you imagine needing it elsewhere?

Tukwila Architecture How is Tukwila adaptive?

Between the optimizer & the execution engine 
via “interleaved planning & execution”

� Compensates for lack of information and 
unpredictable data transfer rates

Within the execution engine via “adaptive 
query operators”

� Manage overlapping data sources (dynamic 
collectors)

� Produce initial results quickly (double pipelined hash 
join)
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Interleaved Optimization & Execution

Query plans can be reoptimized or 

rescheduled by the query optimizer after the 

execution of each fragment by the query 

execution engine based on the event-

condition-action rules.  

The Optimizer

Novel characteristics of Tukwila’s optimizer:

The optimizer generates a query plan and a 

set of rules to define adaptive behaviour

The query plan need not be complete - if 

essential statistics are missing or uncertain a 

partial query plan can be produced

The optimizer conserves the state of its 

search space when it calls the execution 

engine; can resume optimization 

incrementally

The Query Plan

Query plan = a partially-ordered set of 
fragments + a set of rules 

Fragment = a fully pipelined tree of physical 
operators 

Rules = describe when and how to modify the 
implementation of certain operators at runtime if 
needed; detect opportunities for re-optimization. 

The fragment is the source of adaptivity
� At the end of each fragment, the rest of the plan can 

be re-optimized or rescheduled according to the rules

The Rules 

Implement one of four “adaptive” behaviours:

1. Re-optimization: if the optimizer’s cardinality 
estimate for the fragment’s result is significantly 
different from the actual size � re-invoke 
optimizer 

2. Contingent planning: the execution engine 
checks properties of the result to select the 
next fragment

3. Rescheduling: if a source times out

4. Adaptive operators: overflow resolution for the 
double pipelined join; collector implementation

Query Execution

The query plan (represented as an operator tree) is 

executed using the top-down “iterator” model:

Control flow

� Iterator (top-down) 

Most common database 

model

Control flows from the node 

down to the leaves within 

each fragment
SelectStatus = “Delivered”

JoinOrders.TrackNo = UPS.TrackNo

Read

Orders

Read

UPS

“Show which orders have

been delivered”

Query Execution

Multiple fragments; end at 

materialization points

Execution engine generates 

events when execution 

state changes (e.g., fragment 

completes)

Events trigger rules

E.g., Re-optimize remainder 

(terminate current plan & 

reinvoke optimizer, sending 

back statistics)

When(closed(1)): 

if size_of(Orders) > 1000 

then reoptimize {2, 3}

SelectStatus = “Delivered”

JoinOrders.TrackNo = UPS.TrackNo

Read

Orders

Read

UPS

(1) (2)

(3)
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Dynamic Collector

Dynamic collectors provide a policy for 

guiding access to overlapping data 

sources
Provided by the optimizer based on estimates of 

the “overlap relationships” between sources

� Data source access order

� Potential fallback sources

Implemented by query execution engine by 

contacting data sources in parallel

� Is flexible – can contact only some of the sources

Double Pipelined Hash Join

Main features:
Each source relation has its own hash table in 
memory

As a tuple comes in, add to its own hash table and 
probe opposite hash table

Benefits: 
Produces results as soon as a tuple is received; time 
to first output tuple minimized!

Symmetric – no “inner” relation to wait for (as in 
nested loop joins & hash joins)

Drawbacks:
Requires memory for two has tables

Data-driven, bottom-up execution model (but 
execution is top-down)

UPS

OrderNo

1234

1235

1399

……

TrackNo

01-23-45

02-90-85

02-90-85

……

TrackNo

01-23-45

02-90-85

03-99-10

……

Status

In Transit

Delivered

Delivered

……

Orders

Hash Table

(Orders)

Hash Table

(UPS)

01-23-45

Join
Orders.TrackNo = UPS.TrackNo

(Orders, UPS)

Example
Double-Pipelined Hash Join:
Adapted to the Iterator Model

Use multiple threads with queues

Each child (A or B) reads tuples until full, 

then sleeps & awakens parent

Join sleeps until awakened, then:

Joins tuples from QA or QB, returning all 

matches as output

Wakes owner of queue

Join

A B

QA QB

Double-Pipelined Hash Join:
Handling Memory Overflow

May not be able to fit hash tables in memory

� Only feasible recovery strategy is flush portion of 

hash table to disk when system runs out of memory

Two algorithms implemented in Tukwila:

� Incremental Left Flush – read only from right, flush 

from left

� Incremental Symmetric Flush – choose a bucket and 

flush from both sources

Conclusions 

Tukwila’s main contributions:

Tukwila achieves adaptivity by 

segmenting a query plan into fragments 

and, interleaving the execution of these 

with reoptimization

Tukwila minimizes the time to the first 

output tuple through its use of the double 

pipelined hash join 
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Discussion #2

How do you evaluate the double pipelined 

hash join? 

Is it efficient? 

Would you use it if you were not doing 

data integration, why or why not?


