
1

An Adaptive Query Execution
Engine for Data Integration

Zachary Ives, Daniela Florescu, Marc

Friedman, Alon Levy, Daniel S. Weld

University of Washington

Slides by Peng Li, Modified by Rachel Pottinger,

Modified by April Webster

Outline

Motivation for Tukwila

Tukwila Architecture

How is Tukwila Adaptive?

Interleaved Optimization and Execution

Adaptive Query Operators: dynamic collectors

& double pipelined hash join

The Motivation for Tukwila:

Key characteristics of the data integration problem:

� No statistics

� Unpredictable data transfer rates

� Overlap & redundancy of data

� Quick initial results more important than total plan cost

Conclusion: Adaptivity is critical to performance!
Traditional static query processing inadequate.

Discussion #1

Why does optimizing initial answers

matter more in data integration?

Can you imagine needing it elsewhere?

Tukwila Architecture How is Tukwila adaptive?

Between the optimizer & the execution engine
via “interleaved planning & execution”

� Compensates for lack of information and
unpredictable data transfer rates

Within the execution engine via “adaptive
query operators”

� Manage overlapping data sources (dynamic
collectors)

� Produce initial results quickly (double pipelined hash
join)

2

Interleaved Optimization & Execution

Query plans can be reoptimized or

rescheduled by the query optimizer after the

execution of each fragment by the query

execution engine based on the event-

condition-action rules.

The Optimizer

Novel characteristics of Tukwila’s optimizer:

The optimizer generates a query plan and a

set of rules to define adaptive behaviour

The query plan need not be complete - if

essential statistics are missing or uncertain a

partial query plan can be produced

The optimizer conserves the state of its

search space when it calls the execution

engine; can resume optimization

incrementally

The Query Plan

Query plan = a partially-ordered set of
fragments + a set of rules

Fragment = a fully pipelined tree of physical
operators

Rules = describe when and how to modify the
implementation of certain operators at runtime if
needed; detect opportunities for re-optimization.

The fragment is the source of adaptivity
� At the end of each fragment, the rest of the plan can

be re-optimized or rescheduled according to the rules

The Rules

Implement one of four “adaptive” behaviours:

1. Re-optimization: if the optimizer’s cardinality
estimate for the fragment’s result is significantly
different from the actual size � re-invoke
optimizer

2. Contingent planning: the execution engine
checks properties of the result to select the
next fragment

3. Rescheduling: if a source times out

4. Adaptive operators: overflow resolution for the
double pipelined join; collector implementation

Query Execution

The query plan (represented as an operator tree) is

executed using the top-down “iterator” model:

Control flow

� Iterator (top-down)

Most common database

model

Control flows from the node

down to the leaves within

each fragment
SelectStatus = “Delivered”

JoinOrders.TrackNo = UPS.TrackNo

Read

Orders

Read

UPS

“Show which orders have

been delivered”

Query Execution

Multiple fragments; end at

materialization points

Execution engine generates

events when execution

state changes (e.g., fragment

completes)

Events trigger rules

E.g., Re-optimize remainder

(terminate current plan &

reinvoke optimizer, sending

back statistics)

When(closed(1)):

if size_of(Orders) > 1000

then reoptimize {2, 3}

SelectStatus = “Delivered”

JoinOrders.TrackNo = UPS.TrackNo

Read

Orders

Read

UPS

(1) (2)

(3)

3

Dynamic Collector

Dynamic collectors provide a policy for

guiding access to overlapping data

sources
Provided by the optimizer based on estimates of

the “overlap relationships” between sources

� Data source access order

� Potential fallback sources

Implemented by query execution engine by

contacting data sources in parallel

� Is flexible – can contact only some of the sources

Double Pipelined Hash Join

Main features:
Each source relation has its own hash table in
memory

As a tuple comes in, add to its own hash table and
probe opposite hash table

Benefits:
Produces results as soon as a tuple is received; time
to first output tuple minimized!

Symmetric – no “inner” relation to wait for (as in
nested loop joins & hash joins)

Drawbacks:
Requires memory for two has tables

Data-driven, bottom-up execution model (but
execution is top-down)

UPS

OrderNo

1234

1235

1399

……

TrackNo

01-23-45

02-90-85

02-90-85

……

TrackNo

01-23-45

02-90-85

03-99-10

……

Status

In Transit

Delivered

Delivered

……

Orders

Hash Table

(Orders)

Hash Table

(UPS)

01-23-45

Join
Orders.TrackNo = UPS.TrackNo

(Orders, UPS)

Example
Double-Pipelined Hash Join:
Adapted to the Iterator Model

Use multiple threads with queues

Each child (A or B) reads tuples until full,

then sleeps & awakens parent

Join sleeps until awakened, then:

Joins tuples from QA or QB, returning all

matches as output

Wakes owner of queue

Join

A B

QA QB

Double-Pipelined Hash Join:
Handling Memory Overflow

May not be able to fit hash tables in memory

� Only feasible recovery strategy is flush portion of

hash table to disk when system runs out of memory

Two algorithms implemented in Tukwila:

� Incremental Left Flush – read only from right, flush

from left

� Incremental Symmetric Flush – choose a bucket and

flush from both sources

Conclusions

Tukwila’s main contributions:

Tukwila achieves adaptivity by

segmenting a query plan into fragments

and, interleaving the execution of these

with reoptimization

Tukwila minimizes the time to the first

output tuple through its use of the double

pipelined hash join

4

Discussion #2

How do you evaluate the double pipelined

hash join?

Is it efficient?

Would you use it if you were not doing

data integration, why or why not?

