
Extensible Query 
Processing in Starburst

Michael DiBernardo
September 26th, 2006



Motivation

• It’s 1989

• Databases are hard to use for domain-specific 
applications



Motivation 

• e.g. If I want to build an app for biological data mining

• I have to write my own predicates for sequence 
similarity

• I have to convert VARCHARs to DNA/RNA 
representations in the application

• This results in lots of “glue code” and data selection 
logic spread across db and application layers



Motivation

• Secondary motivation:

• Authors desire an arena in which they can invent 
many facetious names for things



Proposed Solution

• Make the system extensible, and allow “database 
customizers” with domain-specific knowledge to tailor

• Extensibility was a hot topic because of emergence of 
OO databases



Proposed Solution

• Extensions:

• Language extensions (new datatypes and operations)

• Data management extensions (access and storage)

• Processing extensions (new joins, query transforms)

• To support all these, need a powerful language 
processor



Anatomy of Starburst

• Design of query language

• Internal representation of a query

• Query rewriting

• Cost-based optimization



Outline

• Design of query language

• Internal representation of a query

• Query rewriting

• Cost-based optimization



Query language

• Derivative of SQL called “Hydrogen”

• Add hooks for language extensions

• Increases orthogonality

• Emphasize table as fundamental unit

• Views are tables

• Expressions evaluate to tables



Query language

• Keeps language simple, but there are many ways to 
describe the same query

• Makes optimization difficult

• Makes understanding queries difficult

• Also implies that queries can be verbose



Query language

• Keeps language simple, but there are many ways to 
describe the same query

• Makes optimization difficult

• Makes understanding queries difficult

• Also implies that queries can be verbose



Outline

• Design of query language

• Internal representation of a query

• Query rewriting

• Cost-based optimization



Representation

• Goal is to have a flexible representation that

• Is easily extensible

• Sufficiently expressive

• Easy to operate on



Query Graph Model

• Tables (normal and derived) are boxes with heads

• Table accesses are vertices

• Predicate applications are edges (with rectangles, for 
some reason)



Example



Example



Example



Example



Example



Example



Outline

• Design of query language

• Internal representation of a query

• Query rewriting

• Cost-based optimization



Query Rewriting

• First component of ‘optimization’

• Basic idea:

• Maintain a set of rules that recognize a condition and 
perform a transformation on QGM

• e.g. If you have two SELECTs (boxes) and they handle 
dups the same, merge them into one box



Query Rewriting

• Three classes of rules

• Predicate migration

• Projection push-down

• Operation merging

• DBC can add to or create new classes



Query Rewriting

• “Rule engine” applies rules

• Selects rule to apply based on some ordering 
(sequential, statistical, priority)

• Uses forward chaining to generate rewrites

• Has a “budget” to prevent it from running too long



Query Rewriting

• What if there’s more than one rule that works?

• We don’t have a notion of cost here

• So generate all alternatives and push them forward

• Maintains modularity at expense of performance



Outline

• Design of query language

• Internal representation of a query

• Query rewriting

• Cost-based optimization



Cost-based 
estimation

• The general framework we’re familiar with:

• Generate a space of plans from the QGM

• Estimate the cost of each plan

• Search the space

• Each operation is optimized independently



Plan generation

• Build a plan using a grammar-driven approach

• Terminals are “low level plan operators” (LOLEPOPS)

• i.e. relational algebra primitives implemented as 
functions that operate on and produce tuples

• Nonterminals are “strategy alternative rules” (STARs

• i.e. higher-order functions that combine nonterminals 
and LOLEPOPS



Plan costing
• Each table (normal or derived) has a set of properties

• Properties are modified on the fly as LOLEPOPS are 
applied to them

• Three kinds:

• Relational (e.g. tables joined, columns accessed)

• Operational (e.g. ordering of tuples)

• Estimated (e.g. cardinality)



Search Strategy

• Nothing especially exciting here

• Alternative STARs are ranked for pruning

• Change queueing to implement different searches

• Other parameters

• e.g. Turn off bushy trees



Wrapup

• Starburst = 

• Orthogonal and extensible query language

• Generic query representation (QGM)

• Rule-based query rewriting

• Plan optimization w/ grammar-driven generation

• Lots of silly subcomponent names



Discussion


