CPCS 504 — Data Management

The ObjectStore
Database System

Charles Lamb
Gordon Landis
Jack Orenstein

Dan Weinreb

Presented by: Nguyet Minh Nguyen
Discussion by: Immad Naseer

Outline

® |ntroduction (ObjectStore, Motivation, Goals)

® Application interface (Collection facility,
Relationship facility, Accessing persistent data, Query
facility)

® Memory-mapped architecture
® Distributed data access

® Query optimization

® Conclusions

ObjectStore

® Object-oriented DBMS

® Some different packages (C++, Java)

® C++ package
OClosely integrated with the C++ language
OPersistent storage capabilities for C++ objects
OAssociative queries
OTransaction management
ODistributed data access

Motivation

® Target applications (CAD, CAE, GIS...)
OComplex manipulations
OLarge databases of objects with intricate
structure
® Impedance mismatch between application
code and database code

® a uniform programmatic interface to both
persistent and transient data.

Goal: add persistence to C++

® Ease of learning:
OC++ plus a little extra.

® No translation code:
O Persistent data is treated like transient data.

® Expressive power:
O General purpose language (as opposed to SQL)

©® Reusability:
O Same code can operate on persistent or transient data
® Ease of conversion:

OData operations are syntactically the same for persistent
and transient data.

Goal: add persistence to C++

® Type checking:
O The same static type-checking from C++ works for
persistent data.

® Temporal/Spatial locality:
O Take advantage of common access patterns.

® Fine interleaving:

O Low overhead to allow frequent, small database
operations

® Performance:
ODo it all with good performance compared to RDBMSs




Discussion #1

® What are the pros and cons of merging
programming languages & databases ?
For example:

O“Expressive power”: You can express more queries
using a programming language as compared to, say,
SQL. What are the pros and cons? Are there alternate
solutions?

O “Reusability”: Does the data model become more or less
reusable across applications?

O “Using the data™ Does manipulating the data in the
application become easier or difficult?

O Other?

Application Interface

® Three programming interfaces

OC library interface
OC++ library interface
OExtended C++ language

® Collection facility

®Relationship facility

® Accessing persistent data

®Query facility

Collection facility

® Object class library
OOrdered collections (os_list)

OCollections with or without duplicates (os_bag
or os_set)

® Behaviors
Oinsert(e), remove(e), create(e),...
® L ooping construct (Cursor interator)

Collection facility (cont.)

I+ file records H +/ departmants d;

class employee foreach (employee* e, d—>employees)
{ e—>galary = 11;
public:

chars name;

1nt salary; [ zicurss. |
K Iteration over a collection

class department
{

public:
o08_Set(employee) employees; employee

void add_employee (employee ) N
{ employees—>insert (e); }

int works_here (employee *6) 1

{ return employees—>contains (e); }
13 department
[ Froume 2]

Relationship facility

® Modeling complex objects
® A pair of inverse pointers
® Maintaining the integrity of the pointers

® Relationships
OOne-to-one
OOne-to-many
OMany-to-many

Relationship facility (cont.)

I+ file records.H */
class employee
{
public:
string name;
int salary;
department* dept
inverse_member department::employees;
3
class department

{
publte: employee

os_Set(employee*) employees N
inverse_member employee::dept;
void add_employee (employee ¥e) 1

{ employees—>insert (e); }
department
void works here (employee *6)

{ employees—>contains (e) ; }
%




Accessing Persistent Data

main ()

{
database *db = database: :open (“/company/records”) ;
persistent<db> department* engineering department;
transaction: :begin() ;
employee *emp = new(db) employee (“Fred”);
engineering department->add employee (emp) ;

emp->salary = 1000;

transaction::commit() ;

Accessing Persistent Data (cont.)

® Manipulation of persistent data like an
ordinary C++ program

® Protecting the integrity of database
OAutomatically set read and write locks
OKeep track of what has been modified

OAccess to persistent data guaranteed to be
transaction-consistent, and recoverable

Discussion #2

® ObjectStore employs page level locking as
the only mode of locking
OWhat implications does it have for transactions
and concurrency?

OShould other granularities of locking be
provided as well? If yes, which ones?

Query Facility

® Closely integrated with the host language
OExpressions operating on collections
OProducing a collection or a reference to an object
® Selection predicates can be applied to
collections.
OSpecial syntax: [: predicate :]
OEg.
employees [: salary >= 10000 :]

Query Facility (cont.)

OQueries may be nested to form more
complex queries

os_Set<employee*> &work_with_fred =
all_employees - query (‘employee™,
“dept > employees [: name == \'Fred’\ :]");

Memory-mapped Architecture

® Goal: object-access speed for persistent data equal to
that of an in-memory dereference of a pointer to
transient data

® Once objects have been retrieved, subsequent
references should be as fast as an ordinary pointer
dereference

® Similar goals as a virtual memory system- use VM
system in OS for solution:

O Set flags so that accessing a non-fetched persistent object
causes page fault

O Upon fault, retrieve object
O Subsequent access is a normal pointer dereference




Distributed Data Access

® Client/Server communication method
OLocal area network
O Shared memory, local sockets
® During transaction
OWhole pages of data brought from server to client
OPlaced in the client's cache
OMapped into virtual memory
O Objects stored on the server in the same format
® Transaction finish
OAIll the pages removed from the address space
O Modified pages written back to server

Distributed Data Access (cont.)

® Applications control the placement of objects
within databases
O Cluster objects that are frequently referenced together
® Objects can cross page boundaries
OEXx. Image data
O Page-granularity transfer
® Many small objects can reside on a single page
O Locking granularity on a per-page basic
O Clustering - decreasing locking overhead

Query optimizations

Some RDBMS query optimization techniques
don’t work or make sense

® Collections are not known by name

® Join optimization is less of a problem
Opaths can be viewed as precomputed joins
O optimization is index selection
O*“true joins” are rare

® Index maintenance is more of a problem
OData members (indexable)-> potential index keys

Conclusions

® ObjectStore provides the applications
OHigh productivity
OHigh performance

® Achieved by a virtual memory-mapping
architecture

® Support for conceptual modeling
constructs by collection, relationship, and
query facilities




