
1

NiagaraCQ 

Professor : Rachel Potinger

Discussion by Linda li

Presentation by Massih Khorvash

Department of Computer Sciences 

University of British Columbia
Note: some of the slides are modified from J. Chen et al.

Overview

�Introduction
�Grouping queries
�NiagaraCQ grouping technique

�Incremental grouping optimization
�Query-split scheme
�Memory Caching
�Incremental evaluation technique

Introduction

» Continuous Queries 
- frequently changing environments

» Web queries 
- Similar structures

Writing continuous queries in 
NiagaraCQ language

�CREATE CQ_name
XML-QL query
DO action
{START start_time} {EVERY 
time_interval} {EXPIRE expiration_time}

Grouping queries

�Share common computation
�Common execution plan

- Saving I/O costs

NiagaraCQ grouping technique
�Incremental group optimization strategy 
�Query-split scheme
�Change-based and timer-based queries
�To ensure scalability:

�Incremental evaluation of continuous 
queries.

�Use of both pull and push models 
�Memory caching.



2

Incremental Grouping Algorithm

� When a new query is submitted:

� Match the expression signature with 
the signatures of existing groups.

� Group optimizer breaks new query 
plan into two parts

� Update constant table 

� If no match, then a new group

Expression Signature
�Represent the same syntax structure, but possibly different 

constant values, in different queries.
� Expression signatures allow queries with the same syntactic 

structure to be grouped together to share computation

Expression Signature (Fig. 3.2)

Components of Groups 

�Group signature
�in-memory hash table keyed by group signature

�Group constant table
�stored on disk

�Group plan (next slide)

Group plan

Discussion (1)

1.Is NiagaraCQ a better application for XML or for 

relational data? Why?

Query split buffer management

�The destination buffer for the split 
operator is needed
�Pipelined scheme

�Intermediate Files



3

Pipeline approach
�Tuples are pipelined from the output of 
one operator into the input of the next 
operator. 

�Main disadvantages:
�Doesn’t work for grouping timer-based CQ’s. 

�Bottle-neck

Split

Operator

…….

buffer

Operator

buffer

The use of Intermediate Files

Intermediate Files

�Advantages
�Each query is scheduled independently.
�The potential bottleneck problem of the 
pipelined approach is avoided.

�Disadvantages
�Extra disk I/Os.
�Split operator becomes a blocking operator

Incremental Evaluation 
technique

�Queries to be invoked only on the changed 
data.

�“delta file”
�A time stamp is added to each tuple in the 
delta file. 

Issues with Timer-based 
Continuous Queries

�monitor the timer

�Sharing the common computation 

�Intermediate files

Memory Caching

�The queries that didn’t fit into any 
group

�Recently accessed delta files

�“time window”



4

Discussion (2)
�1. The authors state "we assume that no more than thousands of groups

will be generated for millions of user queries". What kinds of applications can 
you imagine about this size being used/needed for? Can you imagine 
extending these techniques to other work, e.g., caching?

�2. Optional (if time permits) this paper has some conceptual/functional 
similarities with other systems, e.g. use of time concept, integration of 
information from various sources. Compare and contrast these things and 
what are the challenges for this system? 

Any Questions?


