Applying Model Management to Classical Meta Data Problems	
Paper by: Philip A. Bernstein 2003 CIDR	000 0000 00000
Paper presentation : Anoop Paper discussion lead: Mike	

Motivation

- 00000
- Design, integration and maintenance of application artifacts involves meta data manipulation
- Current method map the models to an object oriented representation and manipulate using object-at-a-time primitives
- Instead, treat models and mappings as abstractions – use model-at-a-time and mapping-at-a-time operators to improve performance

Basic terminology

- Models
 - Set of objects and relationships between them that effectively model an application artifact e.g. DB schema
- Morphism
 - One-to-one mapping between two objects in two
 models
- Mapping
 - Between two models is also a model that has morphisms with each of the 2 models that undergoes mapping

Operators

- 000 00000 00000 00000 00000 00000 00000
- Match similarities between 2 models
 - Input 2 models
 - Output Mapping between models identifying equal or similar objects in models
 - Elementary and Complex match operators
 - Elementary simple definitions of equality
 - Complex be able to identify exact matches and similar matches maybe using semantic knowledge

Operators (2)

- Diff difference between 2 models M₁ & M₂
 Input a model M₁ and a mapping map₁ which is result of match of M₁ and M₂
 - Output a model M₁ with objects of M₁ that are not referenced in the mapping map₁ and a mapping to M₁ that distinguishes support objects
 - Support objects objects to provide model structural integrity

Operators (3)

Merge

- Input 2 models to merge and a mapping
- Output Model with all objects in input models with objects that are equal collapsed into a single object and mappings between merged model and input models
- Compose
- Creates a mapping by combining two other mappings – e.g. $M_1 map_1 M_2$ and $M_2 map_2 M_3$ composition of map_1 and map_2 is map_3 between M_1 and M_3 (map_3(M_1) = map_2(map_1(M_1)))

Operators (4)

- tion f as input and
- Apply takes a model and a function f as input and applies f to each object in model
- Copy takes a model as input and returns a copy of it
- DeepCopy copies model and associated mapping
- ModelGen takes a model A, and returns a model B based on A (typically B's data model would be different than A's) and a mapping between the two
- Enumerate returns objects in model one at a time

D2 (idea injection) Feasibility

- is it feasible? why or why not?
- is a subset feasible?
- is it feasible for certain applications/circumstances?