Eddies: Continuously Adaptive

%Query Processing

CPSC 504 Presentation

Avnur, R. and Hellestein, J. M. 2000. Eddies: continuously adaptive query processing. In Proceedings of the
2000 ACM SIGMOD international Conference on Management of Data (Dallas, Texas, United States, May 15 -
18, 2000). SIGMOD '00. ACM Press, New York, NY, 261-272.

i |=Outline

| = What's the Problem? |
= Synchronization Barriers
= Moments of Symmetry
= Choosing a Join Algorithm
= Eddies
= Lottery Scheduling
= Results

[

1 What's the Problem?

= “optimize-then-execute” does not work
well for data integration applications

(N

1 What's the Problem?

= Because of unpredictable environment:
= Fluctuations in computing resources
» Heterogeneous mix of hardware
= bursty performance
= Fluctuations in data characteristics
» Federated data
= Lack of statistics, complex data types
= Fluctuations in user preferences
= Queries run for a long time

= User might want to control properties of queries while they
execute (based on refining approximate results)

I - -
B IDlscu55|on 1

= Their approach is to "favor adaptability
over best-case performance."
= Is this a good approach? Did they succeed?

= How does this compare with other
approaches we've seen?

i |=Outline

= What's the Problem?

| = Synchronization Barriers |
= Moments of Symmetry
= Choosing a Join Algorithm
= Eddies
= Lottery Scheduling
= Results

B 1 Synchronization Barriers
|

= What are synchronization barriers?
= When table-scan A has to wait for table-
scan B to finish or reach something before
A can continue
= Synchronization barriers limit
concurrency

B 1 Synchronization Barriers
|

= Example

= Merge join - extreme case
» Recall: merge join always takes next tuple from
relation which had lowest value most recently
slowlow

D o e cam]) .
| fasthi had to wait for

fasthi +—— along time for

I soviow
output

A |IOutIine

= What's the Problem?
= Synchronization Barriers

| « Moments of Symmetry |
= Choosing a Join Algorithm
= Eddies
= Lottery Scheduling
= Results

A |=Moments of Symmetry

= What are moments of symmetry?

= Moment of symmetry = synchronization
barrier where the join algorithm can swap
inputs without modifying any state in the
join

A |!Moments of Symmetry

= Example
= Nested-loops join

outer (initially) J2d

| Moments of Symmetry

= We switched roles of R and S two times
during the join!
= But we still end up “matching up” all the
tuples (just in a different order)

= And we didn't have to change any internal
state (except for remembering Cy and C)

i |I0utline

= What's the Problem?
= Synchronization Barriers
= Moments of Symmetry
| = Choosing a Join Algorithm|
= Eddies
= Lottery Scheduling
= Results

i |=Choosing a Join Algorithm

= What do we want in a join algorithm?
= Frequent moments of symmetry

= Adaptive/Non-existent synchronization
barriers

= Minimal ordering constraints
= S0 we can't use hybrid hash join, merge
join, nested loop join...

i |IChoosing a Join Algorithm

= Instead, we choose the Ripple Join
family:
= Block Ripple Join
= Index Ripple Join
= Hash Ripple Join
= ...and relatives

i |=Choosing a Join Algorithm

= Example
= 1) Get tuple r from R, or tuple s from S

= 2) Compare r and s with every tuple in rxs
rectangle —————

i |IChoosing a Join Algorithm

i |IChoosing a Join Algorithm

= Ripple Join is basically like nested loops
join except that moments of symmetry
occur much more often
= In fact, at every corner of a rectangle there
is @ moment of symmetry (i.e. between
every tuple for hash and index ripple joins)

» Offers adaptivity at modest overhead in
performance and memory

A |IOutIine

= What's the Problem?

= Synchronization Barriers

= Moments of Symmetry

= Choosing a Join Algorithm
| = Eddies |

= Lottery Scheduling

= Results

A |Fddies

= What are eddies?
= Eddy = n-ary tuple router interposed between n
data sources and a set of query processing
operators
= Basically, eddy
= 1) takes n tuples as input
= 2) feeds tuples to operators
= 3) operators feed result back to eddy
= 4) eddy sends result
= to output; or
» to other operators

20

A |Fddies

= Each tuple entering eddy has a tuple
descriptor
= Eddy only sends tuple to operators with
corresponding Ready=1

= Eddy sets corresponding Done=1 when operator
sends tuple back, and updates Ready bits

= When all Done=1, eddy sends tuple to output

Join_1 |Select_1|Select_2|Join_2 |Select_3
Ready |0 1 1 0 0
Done |1 0 0 0 1

22

A |Fddies

= Naive Eddy
= Operator s1 lower-cost than s2
= S0 sl consumes input faster than s2
= Equal selectivity
= higher selectivity -> more likely to return tuples to eddy
= Back-pressure effect
= s1 consumes fast, s2 produces slow, so most
tuples end up being routed to s1 first
= Desired effect, even though costs were not
explicitly exposed or tracked!

A |IOutIine

= What's the Problem?
= Synchronization Barriers
= Moments of Symmetry
= Choosing a Join Algorithm
= Eddies

| = Lottery Scheduling |
= Results

24

|| ottery Scheduling

= Need a learning algorithm to track both consumption
and production over time

= Le. take into account selectivity (as well as cost)

Lottery Scheduling

Ealgh time eddy gives tuple to operator, operator gets 1
ticket

Each time operator returns tuple to eddy, operator loses 1
ticket

Operator must use possessed tickets to win “lottery” to get
new tuples

Therefore more “efficient” operator -> more tickets
-> more likely to win lottery -> more likely to get
tuples

| Outline

= What's the Problem?
= Synchronization Barriers
= Moments of Symmetry
= Choosing a Join Algorithm
= Eddies
= Lottery Scheduling
| = Results |

26

| Results

cost of s1.

rmance of two 50% selections, $2 has cost 5,
uns.

|Results

04 06
selectivity of s1

Figure 5: Performs of two selections of cost 5, 2 has 50%

selectivity, s1 varies across runs.

28

| Results

100

Figure 6: Tuple flow wi
selectivity experiment(Fig

|Results

» Other experiments
» Responding to dynamic fluctuations
= Using window, banked vs. escrow tickets...
= Delayed delivery
= Handling initial delay of tuples from input relation

30

I - -
B IPlscussmn 2

= Compare and contrast this system to
Mariposa's bidding approach.
= Is one better than the other?
= Could you combine the two?

= Compare and contrast Eddies and
Tukwila.
= Which is better?

