CPSC 504 — Background

(aka, all you need to know about databases for
this course in two lectures)

Rachel Pottinger
September 13 and 18, 2006

‘Administrative notes

= Please note you're supposed to sign up
for one topic presentation and one
discussion... for different topics (send me
mail)

@ Please sign up for the mailing list

@ HW 1 is on the web, due beginning of
class a week from today

Overview of the next two classes

Levels of Abstraction

Entity Relationship (ER) diagrams
Relational databases

@ Object Oriented Databases (OODBs)
& XML

Other data types

Database internals (Briefly)

A major purpose of a DB
system is to provide an
abstract view of the data. Wiew 1] [View 2] [View 3]

@ Three abstraction levels:
Physical level: how data are actually
stored Conceptual Level

Conceptual (or Logical) level: how
Physical Level

data is perceived by the users
External (or View) level: describes
different part of the database to
different users

@ convenience, security, etc.
Compare views of student, registrar,
& database admin.

‘Schema and Instances

@ \We create the schema — the logical structure of the
database (e.g., students take courses)
® Conceptual (or logical) schema: db design at the logical level
Physical schema: db design at the physical level; indexes, etc
@ Later we'll populate instances — the actual content of the
database at a particular point in time
® E.g., currently there are no grades for CPSC 504 Winter term 2
Physical Data Independence — the ability to modify the
physical schema without changing the logical schema
@ Applications depend on the conceptual schema
@ Logical Data Independence — Provided by the views

@ Ability to change the conceptual scheme without changing the
applications

‘Conceptual Database Design

@ What are the entities and relationships in the
enterprise?
Entities are usually nouns, e.g., “course” “prof”
@ Relationships are statements about 2 or more
objects. Often, verbs., e.g., “a prof teaches a course”
® What information about these entities and
relationships should we store in the database?
@ What integrity constraints or other rules hold?
@ |n relational databases, this data is generally
encoded in an Entity-Relationship (ER)
Diagram

Entity / Relationship Diagrams

Keys in E/R Diagrams

Entities

Attributes
Relationships between entities

= Every entity set must have a key which is
identified by an underline

makes

Product

buys employs

Person

Gy Comed Con D

Roles in Relationships

What if we need an entity set twice in one relationship?

Product

salesperson buyer

Person

Attributes on Relationships

Person

Subclasses in E/R Diagrams

Qame category

Product

isa

Educational Product

Software Product

Summarizing ER diagrams

[

Basics: entities, relationships, and attributes
Also showed inheritance

Has things other things like cardinality

Used to design databases...

But how do you store data in them?

Overview of the next two classes

= Entity Relationship (ER) diagrams
Relational databases

& How did we get here?

What's in a relational schema?

£ From ER to relational

& Query Languages

Object Oriented Databases (OODBs)
XML
@ Other data types
= Database internals (Briefly)

How did we get the relational model?

= Prior to the relational model, there were
two main contenders

@ Network databases
< Hierarchical databases

@ Network databases had a complex data
model

Hierarchical databases integrated the
application in the data model

‘Example Hierarchical Model

Elections Prime Minister }\
Won

Native
‘ Election ‘ Sons

Government

Heedld
| Province | s
During \‘ Government

Example IMS (Hierarchical) query: Print the names of
all the provinces admitted during a Liberal Government

DLITPLIPROCEDURE (QUERY_PGB) OPTIONS (MAN) 2 RIGHT_PARENTHESIS CHAR(T) INT()):
LARE 1 province, ADMITTED SSA STATIC UNALIGNED,
2 SEGMENT_NAME CHAR(S) INITCSADMIT)
nnnnnnnnnnnnn s *

2SEGMENT_LEVEL CHAR(2), GNP CHAR(4) INIT(GNP)
2STATUS_GODE CHAR(2). FOUR FIXED BINARY (31)INIT (4
2PROCESSING_OPTIONS CHAR(), SUCCESSFUL CHAR(2) INT(),

2RESERVED_FOR_DLI FIXED BIRARY(1.0), RECORD_NOT_FOUND CHARIZ) INIT(GE';
2 SEGMENT_NAME_FEEDBACK CHAR(S) 17T procediure handios IS aror conditons *
2LENGTH OF KEY_FEEDBACK 7 _CODE)
2NUMBER_OF SENSITIVE SEGMENTS FIXED BINARY(31.0)

2KEY_FEEDBACK_AREA CHAR(2)
110 Buffers'l

DECLARE PRES_I0_AREA CHAR(GS), £r0 ERROR;
1 PRESIDENT DEFINED PRES.I0_AREA, Main Procedure
GALL PLITDLIFOUR GU.QUERY_PCB,PRES_ I0_AREA PRESIDENT_SSA):
2PRES_NAME CHARI20) DO WHLE(PCB.STATUS_CODE-SUCCESSFUL)
‘CALL PLITDLIFOLR,GNP,QUERY_PCE, SADMIT_IO_AREA pravinca_ADMITTED_SSA):
DO WHILE(PCB STATUS_CODE=SUCCESSFLL)
PUT EDIT(rovince, NAMENA)
‘GALL PLITDLI(FOUR.GNP.QUERY_PCB, SADMIT_I0_AREA province_ADMITTED_SSA):

N
IF PCB STATUS_CODE NOT = RECORD_KOT_FOUND.
THEN DO;

500 A ‘CALL ERROR(PCB STATUS_CODE)
DECLARE 1 PRESIDENT ETURN

2 SEGMENT_NAME CHAR(S) INTUPRES),

2 LEFT_PARENTHESIS CHAR (1) INIT((),
2FIELD_NAME CHAR(B) INT (PARTY),

2 CONDITIONAL_OPERATOR CHAR (2) INIT(=",
2 SEARCH VALUE CHAR(10) INI (Libral),

END;

(GALL PLITDLIFOUR GN.QUERY_POB,PRES_I0_AREA PRESDIENT_SSA)
EnD;
F PCB.STATUS_CODE NOT = RECORD_NOT_FOUND.

THEN DO;

‘CALL ERROR(PCB STATUS_CODE)
ETURN

END;
ENDDLITPL

k4
v

Relational model to the rescue! | #
A4

® |ntroduced by Edgar Codd (IBM) in 1970 -
@ Most widely used model today.

@ Vendors: IBM, Informix, Microsoft, Oracle,
Sybase, etc.

@ Competitor: object-oriented model

@ ObjectStore, Versant, Ontos

@ A synthesis emerging: object-relational model
@ Informix Universal Server, UniSQL, 02, Oracle, DB2

@ Recent competitor: XML data model

Key points of the relational model

Structure of Relational Databases

= Exceedingly simple to understand — main
abstraction is represented as a table

@& Simple query language separate from
application language

2 | ots of bells and whistles to do
complicated things

i)

Relational database: a set of relations

@ Relation: made up of 2 parts:
= Schema : specifies name of relation, plus name and
domain (type) of each field (or column or attribute).
@ e.g., Student (sid: string, name: string, address: string,
phone: string, major. string).
& Instance : a table, with rows and columns.
#Rows = cardinality, #fields = dimension / arity /
degree
& Relational Database Schema: collection of
schemas in the database
& Database Instance: a collection of instances of
its relations (e.g., currently no grades in CPSC
504)

Example of a Relation Instance

Product Attribute names or columns
Name Price Category Manufacturer
gizmo $19.99 gadgets GizmoWorks
Power gizmo| $29.99 gadgets GizmoWorks
/ SingleTouch | $149.99 photography | Canon
MultiTouch | $203.99 household Hitachi

Tuples or rows Relation or table
Order of rows isn’t important

Formal Definition:
Product(Name: string, Price: double, Category: string,
Manufacturer: string)

Overview of the next two classes

£ Entity Relationship (ER) diagrams
® Relational databases
How did we get here?
What's in a relational schema?
From ER to relational
& Query Languages
@ Object Oriented Databases (OODBs)
2 XML
#® Other data types
& Database internals (Briefly)

From E/R Diagrams
‘to Relational Schema

@ Entity set > relation
@ Relationship - relation

_Entity Set to Relation

Product(name, category, price)

name category price

gizmo gadgets $19.99

_Relationships to Relations

Makes(product-name, product-category, company-name, year)
Product-name | Product-Category | Company-name | Starting-year

gizmo gadgets gizmoWorks 1963

(watch out for attribute name conflicts)

Multi-way Relationships to
Relations

’/ i ‘ Purchase(s s) ‘

Overview of the next two classes

Entity Relationship (ER) diagrams
Relational databases

& How did we get here?

& What's in a relational schema?

& From ER to relational

& Query Languages

@ Object Oriented Databases (OODBs)
= XML

Other data types

Database internals (Briefly)

Relational Query Languages

= A major strength of the relational model:
simple, powerful querying of data.

@ Queries can be written intuitively; DBMS is
responsible for efficient evaluation.

& Precise semantics for relational queries.

@ Allows the optimizer to extensively re-order
operations, and still ensure that the answer
does not change.

@ We'll look at 3: relational algebra, SQL,
and datalog

‘Querying — Relational Algebra

@ Select (c)- chose tuples from a relation

@ Project (n)- chose attributes from relation

& Join () - allows combining of 2 relations

@ Set-difference (—) Tuples in relation 1,
but not in relation 2.

@ Union (V)

@ Cartesian Product (x) Each tuple of R1
with each tuple in R2

Find products where the manufacturer
is GizmoWorks

Product Name Price Category | Manufacturer
Gizmo $19.99 Gadgets GizmoWorks
Powergizmo $29.99 Gadgets GizmoWorks

SingleTouch $149.99 Photography Canon
MultiTouch $203.99 Household Hitachi

Selection:
OManufacturer = GizmoworksP TOAUCH @
Name Price Category Manufacturer
Gizmo $19.99 Gadgets GizmoWorks
Powergizmo $29.99 Gadgets GizmoWorks

Find the Name, Price, and Manufacturers of products
whose price is greater than 100

Product Name Price Category Manufacturer
Gizmo $19.99 Gadgets GizmoWorks
Powergizmo $29.99 Gadgets GizmoWorks
SingleTouch $149.99 Photography Canon
MultiTouch $203.99 Household Hitachi
Selection + Projection: @
Toname, Price, Manufacturer (Oprice > 100PTOduct)
Name Price Manufacturer
SingleTouch $149.99 Canon
MultiTouch $203.99 Hitachi

Find the product names and price of products that cost less than
$200 and have manufacturers where there is a Company that has
a CName that matches the manufacturer, and its country is Japan

Product Company
Name Price | Category | Manufacturer P p— County
Gizmo 51999Y Gadgels | GizmoWorks
LGizmaliods, 25 P -
Powergizmo | 52099] Gadgets Glzmow} Canor o 7 i\
Smg\‘eTouch 149.99/)] Photography | ¢anon | T s)
MultiTouch | $20509 | Household Fitacnt ~—

7-l:Nzlme, Price((GPrice < ZOOPI‘OdUCt)l><1 Manufacturer =
Cname (GCoumry = ‘Japan’company))

SingleTouch | $149.99 |

When are two relations related?

You guess they are
| tell you so

Constraints say so

2 A key is a set of attributes whose values are unique;
we underline a key
Product(Name, Price, Category, Manfacturer)

& Foreign keys are a method for schema designers to
tell you so

@ A foreign key states that an attribute is a reference to the key
of another relation
ex: Product.Manufacturer is foreign key of Company

@ Gives information and enforces constraint

The SQL Query Language

= Developed by IBM (System R) in the
1970s

@ Standards:
® SQL-86
2 SQL-89 (minor revision)
@® SQL-92 (major revision, current standard)
® SQL-99 (major extensions)

SQL
@ Data Manipulation Language (DML)
@ Query one or more tables
@ Insert/delete/modify tuples in tables
@ Data Definition Language (DDL)
@ Create/alter/delete tables and their attributes
@ Transact-SQL

@ |dea: package a sequence of SQL statements
-> server

‘Querying — SQL

Standard language for querying and manipulating data

Structured Query Language

Many standards out there:

* ANSISQL

* SQLI2 (ak.a. SQL2)

* SQL99 (a.k.a. SQL3)

* Vendors support various subsets of these

» What we discuss is common to all of them

SQL basics

= Basic form: (many many more bells and
whistles in addition)

Select attributes
From relations (possibly multiple, joined)
Where conditions (selections)

_ SQL — Selections

SELECT *
FROM Company
WHERE country="“Canada” AND stockPrice > 50

Some things allowed in the WHERE clause:
attribute names of the relation(s) used in the FROM.
comparison operators: =, <>, <, >, <=, >=
apply arithmetic operations: stockPrice*2
operations on strings (e.g., “||” for concatenation).
Lexicographic order on strings.
Pattern matching: s LIKE p
Special stuff for comparing dates and times.

‘SQL — Projections

Select only a subset of the attributes

SELECT name, stock price
FROM Company
WHERE country="Canada” AND stockPrice > 50

Rename the attributes in the resulting table
SELECT name AS company, stockPrice AS price

FROM Company
WHERE country="“Canada” AND stockPrice > 50

‘SQL — Joins

SELECT name, store

FROM Person, Purchase

WHERE name=buyer AND city="Vancouver”
AND product="“gizmo”

Product (name, price, category, maker)
Purchase (buyer, seller, store, product)
Company (name, stock price, country)
Person(name, phone number, city)

Selection:
Mcturer = GizmoWorks(PrOdUCt)

Product Name Price Category | Manufacturer
Gizmo $19.99 Gadgets GizmoWorks
Powergizmo $29.99 Gadgets GizmoWorks

SingleTouch $149.99 Photography Canon

MultiTouch $203.99 Household Hitachi

What’s the SQL? @

Name Price Category Manufacturer

Gizmo $19.99 Gadgets GizmoWorks

Powergizmo $29.99 Gadgets GizmoWorks

Selection + Projection:
TName, Price, Manufacturer (GPrice > 100PrOdUCt)

Product Name Price Category Manufacturer
Gizmo $19.99 Gadgets GizmoWorks
Powergizmo $29.99 Gadgets GizmoWorks
SingleTouch $149.99 Photography Canon
MultiTouch $203.99 Household Hitachi
What’s the SQL? @
Name Price Manufacturer
SingleTouch $149.99 Canon
MultiTouch $203.99 Hitachi

T Name, Price((GPrice <= 200Pr0dUCt)><] Manufacturer
= Cname (GCountrv = ‘Japan’Compa nY))

Product Company

Name Prce Category | Manufacturer e SoorPrioe Country

Gizmo $19.99 Gadgets | GizmoWorks } S P s
Powergizmo | $20.99 Gadgets G:m(ow& Cano P [s\
SingleTouch |\g149.99/| Photography Ton | Z’Qimm) \ eon /

~—~

S—t
MultTouch | $203.99 | Household Hitacht

What’s the SQL? @

SingleTouch $149.99

Querying — Datalog
(Our final query language)

Enables expressing recursive queries
More convenient for analysis
@ Some people find it easier to understand

2 Without recursion but with negation it is
equivalent in power to relational algebra
and SQL

@ Limited version of Prolog (no functions)

Datalog Rules and Queries

A datalog rule has the following form:

Arithmetic
head :- atoml, atom2, ..., atom,... comparison or
You can read this as interpreted
then :- if... predicate

ExpensiveProduct(N) :- Product(N,M,P) & P > $100
CanadianProduct(N) :- Product(N,M,P) & Company(M, “Canada”, SP)

IntlProd(N) :- Product(N,M,P) & NOT Company(M, “Canada”, SP)

Negated subgoal - also
denoted by —

Conjunctive Queries

A subset of Datalog

Only relations appear in the right hand
side of rules

No negation

Functionally equivalent to Select, Project,
Join queries

@ Very popular in modeling relationships
between databases

o |

Selection:
Mcturer = GizmoWorks(PI’OdUCt)

Product Name Price Category | Manufacturer
Gizmo $19.99 Gadgets GizmoWorks
Powergizmo $29.99 Gadgets GizmoWorks

SingleTouch $149.99 Photography Canon
MultiTouch $203.99 Household Hitachi

What’s the Datalog? @
Name Price Category Manufacturer
Gizmo $19.99 Gadgets GizmoWorks
Powergizmo $29.99 Gadgets GizmoWorks

Selection + Projection:
TName, Price, Manufacturer (GPrice > 100Pr0dUCt)

Product Name Price Category Manufacturer
Gizmo $19.99 Gadgets GizmoWorks
Powergizmo $29.99 Gadgets GizmoWorks
SingleTouch $149.99 Photography Canon
MultiTouch $203.99 Household Hitachi
What's the Datalog? @
Name Price Manufacturer
SingleTouch $149.99 Canon
MultiTouch $203.99 Hitachi

nName,Price((GPrice <= 200Pr0dUCt)[><] Manufacturer =
cname (Ocountry = 1apanCOMPANY)) | Bonus Relational Goodness: Views
Views are stored queries treated as relations, Virtual views
Product Company are not physically stored. Materialized views are stored
Name Rige | Category | Manufacturer Crame StockPrice Country They are used (1) to define conceptually different views of
G":" :“"gg za“zm oot | peoamaiia | /A\ the database and (2) to write complex queries simply.
Powergizmo 29.99 adgets izmoW g Canor 65 Japan
SingleTouch |N\149.99/| Photography (ﬁn&—,ﬁzm’ﬁ/ 5 \ Ja:an l
MultiTouch $203.99 Household Hitachi S V|eW purchases Of telephony pI’OduCtS
CREATE VIEW telephony-purchases AS
What’s the Datalog? SELECT product, buyer, seller, store
FROM Purchase, Product
WHERE Purchase.product = Product.name
AND Product.category = “telephony”
Summarizing Relational DBs Outline
= Relational perspective: Data is stored in relations. é i i i i
Relations have attributes. Data instances are Entlt¥ Relationship (ER) diagrams
tuples. = Relational databases
@ SQL perspective: Data is stored in tables. Tables ; :
have columns. Data instances are rows. @ Object Oriented Databases (OODBs)
@ Query languages & XML
£ Relational algebra — mathematical base for % Other data t
understanding query languages = €r data types
 SQL - very widely used , = Database internals (Briefly)
@& Datalog — based on Prolog, very popular with
theoreticians
= Views allow complex queries to be written simply
Object-Oriented DBMS's The OO Plan
@ Started late 80’s ODMG imagines OO-DBMS vendors
@ Main idea: implementing an OO language like C++

with extensions (OQL) that allow the
programmer to transfer data between the
database and “host language” seamlessly.

@ Toss the relational model!
@ Use the OO model — e.g. C++ classes

@ Standards group: ODMG = Object Data
Management Group.

@ OQL = Object Query Language, tries to
imitate SQL in an OO framework. A brief diversion: the impedance mismatch

‘00 Implementation Options

= Build a new database from scratch (O,)
Elegant extension of SQL
& Later adopted by ODMG in the OQL language
& Used to help build XML query languages

= Make a programming language persistent
(ObjectStore)
& No query language
Niche market

& ObjectStore is still around, renamed to Exelon, stores
XML objects now

oDL

= ODL is used to define persistent classes,
those whose objects may be stored
permanently in the database.
& ODL classes look like Entity sets with binary
relationships, plus methods.

2 ODL class definitions are part of the
extended, OO host language.

‘ODL — remind you of anything?

‘Why did OO Fail?

interface Person interface Course
(extent People key sin) (extent Crs key cid)
{ attribute string sin; { attribute string cid;

attribute string dept; attribute string cname;

attribute string name;} relationship Person instructor;

relationship Set<Student> stds
inverse takes;}

interface Student extends Person
(extent Students)
{ attribute string major;
relationship Set<Course> takes inverse stds;}

= Why are relational databases so popular?

2 Very simple abstraction; don’t have to think
about programming when storing data.

= Very well optimized

Relational db are very well entrenched —
not enough advantages, and no good exit
strategy (we’ll see more about this)

‘Merging Relational and OODBs

@ Object-oriented models support
interesting data types — not just flat files.
@ Maps, multimedia, etc.

@ The relational model supports very-high-
level queries.

@ Object-relational databases are an
attempt to get the best of both.

@ All major commercial DBs today have OR
versions — full spec in SQL99, but your
mileage may vary.

‘Outline

@ Entity Relationship (ER) diagrams

@ Relational databases

Object Oriented Databases (OODBs)
@ XML

@ Other data types

@ Database internals (Briefly)

XML

2 eXtensible Markup Language

& XML 1.0 — a recommendation from W3C,
1998

£ Roots: SGML (from document community -

works great for them; from db perspective,

very nasty).

After the roots: a format for sharing data

‘Why XML is of Interest to Us

= XML is just syntax for data
@ Note: we have no syntax for relational data
& But XML is not relational: semistructured
= This is exciting because:
@ Can translate any data to XML
2 Can ship XML over the Web (HTTP)
® Can input XML into any application
@ Thus: data sharing and exchange on the Web

object-relational

.F

XML D

Transform

relational data|

‘From HTML to XML

3 Netscape =

Fle Edit Yiew Go Communicator Help

EEi i
Bibliography
Foundations af Databases | Abitebeul, Hull, Vianu

Addison Wesley, 1985

Data on the Web | Abiteboul, Buneman, Suciu
Morgan Eavfinann, 1959

] e

B 2| 4

HTML describes the presentation

HTML

<h1> Bibliography </h1>

<p> <i> Foundations of Databases </i>
Abiteboul, Hull, Vianu

 Addison Wesley, 1995

<p> <i> Data on the Web </i>
Abiteoul, Buneman, Suciu

 Morgan Kaufmann, 1999

XML

<bibliography>

<book> <title> Foundations... </title>
<author> Abiteboul </author>
<author> Hull </author>
<author> Vianu </author>
<publisher> Addison Wesley </publisher>
<year> 1995 </year>

</book>

</bibliography>

XML describes the content

11

‘XML Document

attributes

<data>

<address>
<street> Maple </stree
<no> 345 </no>
<city> Seattle </cif
</address>
person>
person> P
<name> Jokin </name>
<address> Thailand </addressy
<phone> 23456 </phone>
<married/>
erson>

name elements

person elements

</data>
——————————————————

XML Terminology

Elements
@& enclosed within tags:

@ <person> ... </person>
@ nested within other elements:

@ <person> <address> ... </address> </person>
can be empty

® <married></married> abbreviated as <married/>
@ can have Attributes

@ <person id="0005"> ... </person>

[0

& XML document has as single ROOT element

Buzzwords

What is XML?

2 W3C data exchange format
® Hierarchical data model

& Self-describing

@ Semi-structured

‘XML as a Tree ll

<data>
<person id="0555" >
<name> Mary </name>
<address>
<street> Maple </street>
<no> 345 </no>
<city> Seattle </city>
<faddress>
</person>
<person>
<name> John </name>
<address> Thailand </address>
<phone> 23456 </phone>
</person>
</data>

Minor Detail: Order matters !!!

XML is self-describing

@ Schema elements become part of the data

@ In XML <persons>, <name>, <phone> are
part of the data, and are repeated many times

@ Relational schema: persons(name,phone)
defined separately for the data and is fixed

@ Consequence: XML is much more flexible

Relational Data as XML

persons

person XML: 7 T
person person person

name | phone /N \

name phone name phone name
v + '] ‘
“John” 3634 “Sue” 6343 “Dick’ 6363

phone

John 3634

<persons>
<person> <name>John</name>
6343 <phone> 3634</phone>
</person>
<person> <name>Sue</name>

. <phone> 6343</phone>
Dick | 6363 </person>
<person> <name>Dick</name>
<phone> 6363</phone>
</person>

</persons>
——————————————

Sue

12

‘XML is semi-structured

Missing elements:

<person> <name> John</name>
<phone>1234</phone>
</person>

<person> <name>Joe</name>
<Jperson> < no phone !

Could represent in a table with nulls

name | phone
John 1234
Joe

XML is semi-structured

Repeated elements

<person> <name> Mary</name>
<phone>2345</phone>
<phone>3456</phone> € two phones !
</person>

Impossible in tables:

name | phone
Mary 2345 3456 7?

XML is semi-structured

Elements with different types in different objects

<person> <name> <first> John </first>
<last> Smith </last>
</name>
<phone>1234</phone>
</person>

Heterogeneous collections:

& <persons> can contain both <person>s and
<customer>s

So how would you store XML in a relational db?

‘Summarizing XML

< structured name !

= XML has first class elements and second
class attributes

& XML is semi-structured
@ XML is nested

XML is a tree

@ XML is a huge buzzword

Will XML replace relational databases?

Outline

@ Entity Relationship (ER) diagrams

@ Relational databases

@ Object Oriented Databases (OODBs)
@ XML

@ Other data types

@ Database internals (Briefly)

‘Other data formats

® Makefiles
® Forms
Application code

What format is your data in?

13

Outline

= Entity Relationship (ER) diagrams

@ Relational databases

& Object Oriented Databases (OODBs)
& XML

= Other data types

& Database internals (Briefly)

® Query Optimization & Execution
& Transaction Processing

How SQL Gets Executed:

‘Query Execution Plans

Select Name, Price
From Product, Company TName, Price

Where Manufacturer = Cname
AND Price <= 200
AND Country = ‘Japan’

Oprice <200 Country = *Japan’

>

Manufacturer = Cname
Product Company

Query optimization also specifies the algorithms for each
operator; then queries can be executed

Overview of Query Optimization

@ Plan: Tree of ordered Relational Algebra operators
and choice of algorithm for each operator
® Two main issues:
= For a given query, what plans are considered?
@ Algorithm to search plan space for cheapest (estimated) plan.
= How is the cost of a plan estimated?
@ |deally: Want to find best plan.
Practically: Avoid worst plans.
® Some tactics
& Do selections early
@ Use materialized views
Use Indexes

Tree-Based Indexes

“*Find all students with gpa > 3.0”

If data is in sorted file, do binary search to find first
such student, then scan to find others.

Cost of binary search can be quite high.
Simple idea: Create an “index file.

EEOC] [

N \

“ Page 1 H Page 2 H Page 3 ‘

‘ Page N ” Data File

P4 Can do binary search on (smaller) index file!

Tree-Based Indexes (2)

B+ Tree: The Most Widely Used Index

index entry
f
Po | Kq|Py| K2|P, o o o Km|Pm
| | | |
=

oL] Roo
I~

33~‘37~‘ ‘40"46“‘ ‘51"55" ‘33"97"

@ Insert/delete at log ¢ N cost; keep tree height-
balanced. (F = fanout, N = # leaf pages)

@ Minimum 50% occupancy (except for root). Each
node contains d <= m <= 2d entries. The
parameter d is called the order of the tree.

Root
Index Entries

Data Entries

Example B+ Tree

Query Execution

Search begins at root, and key
comparisons direct it to a leaf.

@ Search for 5*, 15%, all data entries >= 24*

P N B N
‘ ‘19*‘ 207 22*‘ ‘ ‘24*‘27*‘29" ‘ ‘33*‘34*‘35"39*‘

TN
‘2*‘3"5*‘7" ‘14“‘16"

Now that we have the plan, what do we do
with it?

& How do joins work?

How do deal with paging in data, etc.

& New research covers new paradigms
where interleaved with optimization

‘Outline

Transactions

£ Entity Relationship (ER) diagrams
Relational databases

@ Object Oriented Databases (OODBs)
& XML

Other data types

& Database internals (Briefly)
@ Query Optimization & Execution
@ Transaction Processing

Address two issues:

® Access by multiple users

@ Remember the “client-server” architecture:
one server with many clients

#® Protection against crashes

Transactions

@ Transaction = group of statements that must be

executed atomically

@ Transaction properties: ACID

& Atomicity: either all or none of the operations are
completed

& Consistency: preserves database integrity

& |solation: concurrent transactions must not interfere
with each other

& Durability: changes from successful transactions
must persist through failures

Transaction States

@ A transaction can be in one of the following states:
@ active:
® makes progress or waits for resources; the initial state
@ failed:
® normal execution cannot continue; it may occur because of

@ system crash
@ cancellation by the user

@ aborted:
@ DBMS cancels it due to problem in execution (e.g., Consistency)
@ committed:
@ after successful completing a “commit” command
@ to undo its effects we need to run a compensating transaction
® Two options for aborted transactions:
@ restart it as a new transaction later (e.g. system failures)
@ kil it (e.g. internal logical errors)

® Failed transactions are eventually aborted

15

Transaction Example

= Consider two transactions: ® Intuitively, the first transaction
transfers $100 to A’s account

TI: READ(A) from B’s account. The second
A:A+(1 0)0 credits both accounts with a
WRITE(A % i
READ(B) 10% interest payment.

B=B-100 = No guarantee that T1 executes
WRITE(B) before T2 or vice-versa.
However, the end effect must be

T2: ZEA;D]%L equivalent to these two
WRITE(A) transactions running serially in
READ(B) some order:

B=1.1*B T1, T2 or T2, T1
WRITE(B)

Transactions: Serializability
Serializability = the technical term for
isolation

£ An execution is serial if it is completely
before or completely after any other
function’s execution

= An execution is serializable if it equivalent
to one that is serial

® DBMS can offer serializability guarantees

Serializability Example

£ Enforced with locks, like in Operating Systems !
@ But this is not enough:

User 1 LOCK A User 2
[write A=1]
UNLOCK A LOCK A
s [write A=3]
UNLOCK A
LOCK B
e [write B=4] time
LOCK B UNLOCK B
[write B=2]
UNLOCK B .
What is wrong ?

Okay, but what if it crashes?

Enforcing Atomicity & Durability

Handling the Buffer Pool

e
==

#® Transactions modify pages in memory buffers

@ Writing to disk is more permanent

@ When should updated pages be written to disk? ™"

® Force every write to disk? No Steal Steal
@ Poor response time.

But provides durability.

@ Steal buffer-pool frames
from uncommitted Xacts? no Force Desired
(resulting in write to disk)
If not, poor throughput.

@ If so, how can we ensure
atomicity?

ki Force| Trivial

= Atomicity:

@ Transactions may abort; Need to rollback changes
& Durability:

What if DBMS stops running? Need to “remember”

committed changes.
crash!|* Desired Behaviour after
T1 | system restarts:
T2 —_— 1 - T1, T2, & T3 should be
T3 _— 1 durable.
T4 1 - T4 & T5 should be
15 1 aborted (effects not seen)
What to do?

® Basic idea: use steal and no-force

@ Keep a log that talks about what's
happened

® Make checkpoints where write down
everything that’s actually happened

#® After a crash: assure Atomicity and
Durability by keeping all committed
transactions and getting rid of actions of
uncommitted transactions

16

Crash Recovery: Big Picture

‘Outline

= Entity Relationship (ER) diagrams

Relational databases

@ Object Oriented Databases (OODBs)
& XML

= Other data types

& Database internals (Briefly)

‘ Oldest LOG
Oldest log :
rec of Xact's i « Start from a checkpoint (Three
active at crash 1
: phases. Need to:
Oldest action - Figure out which Xacts
th:te“‘;i;a E committed since checkpoint,
FAEalysis) which failed (Analysis)
i - REDO all actions
H # (repeat history)
Last chkpt + - UNDO effects of failed Xacts
CRASH *: l
Newest AR U
Now what?

= Time to read papers

= Prepare paper responses — it'll help you
focus on the paper, and allow for the
discussion leader to prepare better
discussion

@ You all have different backgrounds,
interests, and insights. Bring them into
class!

17

