Monitoring Streams
A New Class of Data management Applications

Don Carney
Uğur Çetintemel
Mitch Cherniack
Christian Convey
Sangdon Lee
Greg Seidman
Michael Stonebraker
Nesime Tatbul
Stan Zdonik

Original slides by: Kenji Okuma
Presentation: Jiemin Zhang
Discussion: Mohammed Alam

Outline
- Introduction
- Aurora System Model
- Aurora Optimization
- Run-Time Operation
- Conclusion

Traditional DBMSs

5 Assumptions
- Human-Active, DBMS-Passive (HADP) Model
- Current state is important: Previous data needs to be extracted from the log
- Triggers and alerters are second-class citizens
- Perfect synchronization of data elements and exact query answers
- Require no real-time services

Monitoring Applications

- Applications that monitor continuous streams of data
- Where all five assumptions are wrong

Ex: military apps
 financial analysis apps
 tracking apps

Monitoring Application Example:
Car Navigation System

- DBMS-Active, Human-Passive (DAHP) model
- History of data is important: Not only the current state but also the previous history
- Triggers and alerters are first-class citizens
- Missing or imprecise data, and approximate query answers
- Require real-time services

- Data (e.g., the location of the car) comes from external sources
- History of the data is required (e.g., display a trajectory of your car in the past 20 minutes)
- Trigger and alerters oriented: an alert for the driver when the car is approaching to an intersection
- The location of the car is not always perfectly transmitted due to interferences etc.
- Real-time services (e.g., the current location of the car)
RAP1 I cut the second slide (which was the same slide as this one, only without the introduction highlighted), to save time
Rachel Pottinger, 07/11/2006

Slide 5

RAP3 I removed two "the"s here. The first one was just for space. The second one was a quibble (and don't worry, I don't think it was a quibble with what you had - I think it was in the original slides and I didn't catch it the first time)
Rachel Pottinger, 07/11/2006

Slide 6

RAP2 I changed the title on this slide to make it clearer that it was an example
Rachel Pottinger, 07/11/2006
Outline

- Introduction
- Aurora System Model
- Aurora Optimization
- Run-Time Operation
- Conclusion

Aurora System Model

Operators

- Windowed operators: Operate on sets of consecutive tuples from a stream
 - Slide
 - Tumble
 - Latch
 - Resample
- Operators for single tuple
 - Filter
 - Map
 - GroupBy
 - Join

Aurora Query Model

Discussion #1

- Why did we have to wait so long for monitoring applications? Can it be related to other concepts (from or outside db)?
- Given that extensions can only happen at checkpoints, do you think it is enough?
Reasons

- Traditional optimization
 To minimize the number of iterations over large data set
- Aurora network
 A large number of boxes
 High data rates
 Lots of changes over time

Aurora Optimization

- Dynamic Continuous Query Optimization
 Insert projections
 Combining Boxes
 Reordering Boxes
- Ad-Hoc Query Optimization

Outline

- Introduction
- Aurora System Model
- Aurora Optimization
- Run-Time Operation
- Conclusion

Aurora Run-Time Architecture

Quality of Service (QoS) Data Structure

- Quality of Service, a multidimensional function of several attributes
 - Response times
 - Tuple drops
 - Values produced
Real-Time Scheduling

- Train Scheduling
 - Two basic non-linearities: Inter-box & Intra-box
 - Have boxes queue as many tuples as possible without processing
 - Process complete trains at once
 - Pass them to subsequent boxes without having to go to disk
 - Priority Assignment
 - State-based approach
 - Feedback-based approach

Outline

- Introduction
- Aurora System Model
- Aurora Optimization
- Run-Time Operation
- Conclusion

Conclusion

- Monitoring applications are those where streams of information, triggers, real-time requirement, and imprecise data are prevalent
- Aurora is a DAHP system oriented towards monitoring applications
- Future directions:
 - Aurora* for distributed processing
 - More efficient data handling algorithm

Discussion #2

- QoS graph
 - Do they help?
 - What can go wrong with user defined “good zones”
- Train scheduling
 - Will it be effective?
- Dynamic optimization of sub-networks
 - Potential problems

Thank You!