
1

Indexing XML Data Stored

in a Relational Database

Shankar Pal, Istvan Cseri, Oliver Seeliger, Gideon

Schaller, Leo Giakoumakis, Vasili Zolotov

VLDB, 2004

Presented by: Meeta Mistry

Discussion: Haoran

XML: Extensible Mark-up

Language

� A way of describing data, but can contain the data too

� The extra information, about the text's structure or
presentation, is expressed using markup, which is
intermingled with the primary text.

� XML is increasingly
being used in enterprise
applications and has
motivated the need for
native XML support within
relational databases

XML Support in Relational

Databases

� Existing solutions convert XML into a relational format:

‘shredding approach’

� Based on an XML schema definition

� decompose XML instances; discards the XML tags, and

stores the element and attribute values in regular relational

tables

� relative order of elements in the document are lost

� A single XML insert can result in a substantial number of

relational inserts into a potentially large number of tables

� During tuple oriented query processing this would require a

large number of joins – very very expensive!

XML as a Native Datatype

� XML documents can be stored in the XML
column as large binary objects (BLOB)

� XML documents are stored and manipulated
in a parsed format, such as the XML Infoset
or the XQuery/XPath Data Model

� requires XML parsing but no mapping from the
XML data model to a different data model.

� Parsed format serves as an indexing
mechanism which can speed up query
execution on XML BLOBs

Node Labeling using

ORDPATH

•An internal representation is used for

processing and storage on disk, which

reflects the hierarchical structure of the

XML data

•A mechanism for labeling nodes in an

XML tree, which preserves structural

fidelity

•Encodes a parent-child relationship

Discussion
� The authors leave all negative and even integers out

from their numbering on the ORDPATH. Does this seem

like enough? Too much?

2

Discussion (cont…)
� Read the second paragraph after Figure 2.

� How does insertion work?

BOOK

1

ISBN

1.1

SECTION

1.3

SECTION

1.5

SECTION

1.4

SECTION

1.x

Primary XML Index

� For each XML instance in base table, the

index creates several rows of data

� The number of rows in the index is approximately

equal to the number of nodes in the XML binary

large object.

� Generate a subset of fields

� Primary key = (primary key ID, ORDPATH)

Primary XML

Index

#10#3#1‘tree frogs’410(TEXT)1.5.7

#7#3#1‘love’17(BOLD)1.5.5

#10#3#1‘All right-thinking people’410(TEXT)1.5.3

#4#3#1‘Tree frogs’14(TITLE)1.5.1

#3#1Null13(SECTION)1.5

#6#3#1‘Sample bug’26(CAPTION)1.3.5.1

#5#3#1Null15(FIGURE)1.3.5

#10#3#1‘Nobody loves Bad bugs.’4(Value)10(TEXT)1.3.3

#4#3#1‘Bad Bugs’14(TITLE)1.3.1

#3#1Null13(SECTION)1.3

#2#1‘1-55860-438-3’2(Attribute)2(ISBN)1.1

#1Null1(Element)1(BOOK)1

PATH_IDVALUENODE_TYPETAGORDPATHID

1

Infoset Table

Query Compilation and

Execution

� An XQuery expression is translated into relational operations on the
Infoset table

� Consider the evaluation of the path expression

‘Retrieve section titles in the book with the specified ISBN’:

/BOOK[@ISBN=‘1-55860-438-3”]/SECTION

SELECT SerializeXML (N2.ID, N2.ORDPATH)

FROM infosettab N1 JOIN infosettab N2 ON (N1.ID = N2.ID)

WHERE N1.PATH_ID = PATH_ID(/BOOK/@ISBN)

AND N1.VALUE = '1-55860-438-3'

AND N2.PATH_ID = PATH_ID(BOOK/SECTION)

AND Parent (N1.ORDPATH) = Parent (N2.ORDPATH)

•Note that the primary XML index is not used when retrieving a full XML

instance.

• increased I/O cost + serialization cost of converting back to XML

makes it cheaper to retrieve XML BLOB from base table

Secondary XML Indexes

� Primary index may not provide the best performance

for queries based on path expressions

� Performance slows down for large XML values.

� all rows in the primary XML index corresponding to an

XML BLOB are searched sequentially for large XML

instances – slow!

� Having a secondary index built on the path values and

node values in the primary index can significantly

speed up the index search

� PATH(PATH_VALUE), PROPERTY, VALUE, Content indexing

Secondary XML Indexes

� Secondary XML indexes help with bottom-up

evaluation

� After the qualifying XML nodes have been found in the

secondary XML indexes, a back join with the primary

XML index enables continuation of query execution

with those nodes.

� This yields significant performance gains.

3

XMark: An XML Benchmark

Project

� An XML query benchmark that models an auction
scenario

� Used to measure performance improvements found
with different XML indexes compared with the BLOB
case
� Note disk space consumption: 345MB for primary index
tables 101MB for secondary indexes – cost efficient?

� Results:

� Table displays the factor by which the choice of an
XML index speeds up queries relative to the BLOB
case

� Overall performance gains; thus XML indexes benefit
the workload significantly

Conclusions

� Introducing an approach that supports

interoperability between relational and XML data

within the same database

� Primary XML index

� Encodes Infoset items of XML nodes

� Avoided the approach of decomposition

� Secondary XML indexes yields significant performance
gains

� Performance measurements show that indexing is

highly effective for a wide class of queries

Discussion

� Assume you had a OO-Database, what about

mapping XML to OO-Database?

