=T _ / .
: = 7] > / /j/// < . AN ¥

Purpose of the Paper

» Survey efficient algorithms and software
architectures for database query execution.
®» How database systems handle complex queries.

»“Complex” means that it requires a number of
algorithms to work together.

» How database systems handle queries into large amounts
of data.

® | arge can be arbitrarily large.

#»Practically, it means that some or most of the data
retrieved cannot fit into main-memory.

®» Limited to read-only queries
®» Had to keep the paper to a reasonable length.

10/02/06 Hoyt Koepke 2

Outline

®» Structure of the query evaluation engine.

®» Takes logical operators from the query optimizer and
translates them into efficient physical operations.

® Discussion Time.

®» The Internals of the engine.
® The primary operations (at least those in our reading).
®» Sorting, hashing, disk access, joins.

®» More Discussion Time.
® Class over.
®» Lunch on your own.

10/02/06 Hoyt Koepke

Outline

®» Discussion Time.

» The mternals of the englne
» The prlmary operatlons (at least those in our readlng)
» Sorting, hashing, disk access, Joms

~m More Dlscussmn T|me
® Class over.
% Lunch on your own.

00008 1B o d ‘HoytKoepke | ' .- = LN Y

Structure of a Query
Evaluation Engine

Picks up where the Query Optimizer leaves off.

Hoyt Koepke

10/02/06

Input From Query Optimizer

® Query optimizer produces plans of execution (which
works with logical operators).

% |_ogical operators provide higher level description of the
logical flow of execution.

»E.g. what to join to what, ordering, predicates, etc.

®Do not provide the exact details of how to implement
these operations.

®» These are optimized at a high level given available
iInformation.

»As we've discussed in class, of course.

»Plus: The search space is bounded in part by the
capabilities of the query execution engine.

» The Execution Engine Turns these Logical
@perators into Physical:®@perations. 6

Physical Operations

®» Implementation of the Logical Operators.
®» There's more than one way to skin a set of cats.

» Goal: Find the most efficient way of implementing
the lower-level operations.

% Execution engine closely takes into account the available
resources (like available memory).

= For any given task, it chooses from variety of different
algorithms — all ending up with the same result but each
better under certain conditions.

10/02/06 Hoyt Koepke 7

Physical Algebra

®» Query processing algorithms form an algebra called
the physical algebra of a database system.
®» Take zero or more sets or sequences as Inputs
®» Output one or more sets or sequences as an output.
» Why call it a type of algebra?
B Allows for precise definition and logical equivalence.
®Because it really is just math...

®» The logical algebra used by the query optimizer
does not translate exactly into the physical algebra.
® Several physical operators for one logical operator.
®» Varying representations of the data.

10/02/06 Hoyt Koepke 8

Outline

®» Structure of the query evaluation engine.

®» Takes logical operators from the query optimizer and
translates them into efficient physical operations.

® Discussion Time.

» The Iinternals of the engine.
®» The primary operations (at least those in our reading).
® Sorting, hashing, disk access, joins.

®» More Discussion Time.
® Class over.
®» Lunch on your own.

10/02/06 Hoyt Koepke 10

10/02/06

The Operations

All the fun stuff.
At least for some people.

Hoyt Koepke

11

The Operations

®» Sorting

®» Usually use variants of divide-and-conquer algorithms such
as mergesort or quicksort.

®» Hashing
® Used to reduce |0 requirements in matching operations.

® Disk Access

®» Physically reading in the data; takes into account cluster
size of the disk,

» Joins

® Techniques include nested-loops, merge-joins, hash-joins,
etc.

10/02/06 Hoyt Koepke 12

Iterators

®» The algorithms are implemented as iterators.

®» Essentially a way to work with individual elements while
needing to use tables and sets.

®» Each iterator calls another iterator to get the input that it
needs.

®»In this way, they “schedule” each other.

®» These Iterators store use “granules” to store the
Intermediate results.

®» These are structures that allow iterators to return
outputs that are part of the result of an operation done
over the entire table,

®»E.g. returning a table in sorted order.
» Handy way to organize the algorithms efficiently.

10/02/06 Hoyt Koepke 13

Sorting

®» For sorting large data sets there are two algorithmic
variations, both based on divide and conquer:
» Mergesort, which manages subsets of the data on the disk.

®» Quicksort, which sorts logically in memory then combines
the results physically on disk.

®» Each of these is implemented as an iterator.

®» The deciding issue is how much of the data can fit
INto main memory.

®» When it doesn't, it's complicated. There's lots of
parameters to be adjusted.
®» A point of practical importance is the fan-in (how many
sub-runs or elements each run combines).

10/02/06 Hoyt Koepke 14

Hashing

®» |dea: Create a low-memory hash of the data, then
work with that instead of the actual data.

» Why? It's much more efficient at utilizing memory.

» Sufficient for all matching operations (as long as the hash
function is non-intersecting).

®» Still may have to deal with memory management.

®» Solution: Hybrid-hashing, which pages sections of the hash
data to disk when the memory is full.

» Still utilizes all available memory.

» Hash Key: For some operations, a unique key on the
data will work if it's involved in the matching.

10/02/06 Hoyt Koepke 15

Disk Access

®» Most of the issues here are inherent to all disk
management issues, so | won't go into detail.

®» Main database-specific issue is the use of indexes.

® Not only does this provide excellent lookup speed, it also
reduces greatly the amount and spread of disk accessing.

®» Forms of indexes:

» The most popular form (at time of writing) was a B-tree
or variations of it (such as B+ or B¥).

®»One database system (Postgres) uses R-trees for
multidimensional indexing.

®» Databases can also use a custom 10 buffer to
localize 1O operations on the disk.

10/02/06 Hoyt Koepke 16

Joining
®» Essentially three methods: Nested-loop Joins,
Merge-based, & hash-based join algorithms.

®» Performance of each varies depending on the

number of inputs.

125 —
100 — YV Pointerein S-SR,
o Ne Loops _ A
I/O 75 = O Merge4oin with Two Sorts ° 1
Count + Hashir@ not using Hybrid Ha€hing
[x1000] V= A Pointer Join R [

I

10/02/06

I I I [[[
500 700 900 1100 1300 1500

Sizeof R, $=10xR
Hoyt Koepke 17

Types of Join

®» Inner Join on Tables A and B

®» Returns a table with attributes from both A and B, where
the values of an attribute of A equal those in one of B.

» |_eft Outer Join on Tables A and B

®» Same as Inner Join, except that all entries of A are
Included in the resulting table and the corresponding
attributes of B are null if no match exists.

®» Right Outer Join on Tables A and B

®» Same as left outer join, except that all the entries of B are
iIncluded and the unmatched entries of A are excluded.

» [eft Semi-Join on Tables A and B

®» Same as Inner Join except that only the attributes of A are

included in the returned table.
10/02/06 Hoyt Koepke 18

Executing a Join: Nested Loop

» Nested Loop Join:

®» Simple — for each new tuple in the outer table, scan all the
Inner tables looking for a match.

=» Works fine for small queries.

®» Quickly becomes inefficient (O(n?)). Reason is that the
tuples included at each stage are scanned again by all
subsequent stages.

®» But it's not as clear cut as this — |O and memory use can
be as much a performance measure as algorithmic speed.

»This method requires relatively little memory use.
» Some techniques speed this up.

#»Block Nested Loops scan the inner table once per block
of tuples in the outer loop by using small mappings.

10/02/06 Hoyt Koepke 19

Executing a Join: Merge Join

®» Faster than Nested Loop - O(n log n)

®» Similar idea to merge-sort.

®» Requires that both input tables be sorted on the joining
attribute.

®» The conditions of the join are implemented as the sorted
tables are merged into one table.

®» Advantages:
®» Much Faster.

®» Disadvantages:
®» Requires tables to be sorted.
®» Much higher demands on memory.
» Complicated to implement.

10/02/06 Hoyt Koepke 20

Executing a Join: Hash-Join

» Tries to use memory efficiently.

®» Forms an in-memory hash table of the “build” input
and then probes the existence of items in the “probe”
Input using the item's hash.

» Optimal performance means balancing the size of
the build input and probe input.

® Can be very efficient if the build input fits into memory.

®» Uses recursive partitioning to break the problem down into
smaller parts in order ensure the build input fits in memory.

®» Along with nested-loop and merge-join, form the join
operation toolkit in most modern query engines.

10/02/06 Hoyt Koepke o

10/02/06

More Discussion

Hoyt Koepke

22

