
10/02/06

Hoyt Koepke

1

Query Evaluation

Doing what we're told to do.

10/02/06 Hoyt Koepke 2

Purpose of the Paper
Survey efficient algorithms and software
architectures for database query execution.

How database systems handle complex queries.
“Complex” means that it requires a number of
algorithms to work together.

How database systems handle queries into large amounts
of data.

Large can be arbitrarily large.
Practically, it means that some or most of the data
retrieved cannot fit into main memory.

Limited to read-only queries
Had to keep the paper to a reasonable length.

10/02/06 Hoyt Koepke 3

Outline
Structure of the query evaluation engine.

Takes logical operators from the query optimizer and
translates them into efficient physical operations.

Discussion Time.
The internals of the engine.

The primary operations (at least those in our reading).
Sorting, hashing, disk access, joins.

More Discussion Time.
Class over.
Lunch on your own.

10/02/06 Hoyt Koepke 4

Outline
Structure of the query evaluation engine.

Takes logical operators from the query optimizer and
translates them into efficient physical operations.

Discussion Time.
The internals of the engine.

The primary operations (at least those in our reading).
Sorting, hashing, disk access, joins.

More Discussion Time.
Class over.
Lunch on your own.

10/02/06

Hoyt Koepke

5

Structure of a Query
Evaluation Engine

Picks up where the Query Optimizer leaves off.

10/02/06 Hoyt Koepke 6

Input From Query Optimizer
Query optimizer produces plans of execution (which
works with logical operators).

Logical operators provide higher level description of the
logical flow of execution.

E.g. what to join to what, ordering, predicates, etc.
Do not provide the exact details of how to implement
these operations.

These are optimized at a high level given available
information.

As we've discussed in class, of course.
Plus: The search space is bounded in part by the
capabilities of the query execution engine.

The Execution Engine Turns these Logical
Operators into Physical Operations.

10/02/06 Hoyt Koepke 7

Physical Operations
Implementation of the Logical Operators.

There's more than one way to skin a set of cats.

Goal: Find the most efficient way of implementing
the lower-level operations.

Execution engine closely takes into account the available
resources (like available memory).
For any given task, it chooses from variety of different
algorithms – all ending up with the same result but each
better under certain conditions.

10/02/06 Hoyt Koepke 8

Physical Algebra
Query processing algorithms form an algebra called
the physical algebra of a database system.

Take zero or more sets or sequences as inputs
Output one or more sets or sequences as an output.
Why call it a type of algebra?

Allows for precise definition and logical equivalence.
Because it really is just math...

The logical algebra used by the query optimizer
does not translate exactly into the physical algebra.

Several physical operators for one logical operator.
Varying representations of the data.

10/02/06

Hoyt Koepke

9

Discussion

10/02/06 Hoyt Koepke 10

Outline
Structure of the query evaluation engine.

Takes logical operators from the query optimizer and
translates them into efficient physical operations.

Discussion Time.
The internals of the engine.

The primary operations (at least those in our reading).
Sorting, hashing, disk access, joins.

More Discussion Time.
Class over.
Lunch on your own.

10/02/06

Hoyt Koepke

11

The Operations

All the fun stuff.
At least for some people.

10/02/06 Hoyt Koepke 12

The Operations
Sorting

Usually use variants of divide-and-conquer algorithms such
as mergesort or quicksort.

Hashing
Used to reduce IO requirements in matching operations.

Disk Access
Physically reading in the data; takes into account cluster
size of the disk,

Joins
Techniques include nested-loops, merge-joins, hash-joins,
etc.

10/02/06 Hoyt Koepke 13

Iterators
The algorithms are implemented as iterators.

Essentially a way to work with individual elements while
needing to use tables and sets.
Each iterator calls another iterator to get the input that it
needs.

In this way, they “schedule” each other.
These iterators store use “granules” to store the
intermediate results.

These are structures that allow iterators to return
outputs that are part of the result of an operation done
over the entire table,
E.g. returning a table in sorted order.

Handy way to organize the algorithms efficiently.

10/02/06 Hoyt Koepke 14

Sorting
For sorting large data sets there are two algorithmic
variations, both based on divide and conquer:

Mergesort, which manages subsets of the data on the disk.
Quicksort, which sorts logically in memory then combines
the results physically on disk.
Each of these is implemented as an iterator.

The deciding issue is how much of the data can fit
into main memory.
When it doesn't, it's complicated. There's lots of
parameters to be adjusted.

A point of practical importance is the fan-in (how many
sub-runs or elements each run combines).

10/02/06 Hoyt Koepke 15

Hashing
Idea: Create a low-memory hash of the data, then
work with that instead of the actual data.

Why? It's much more efficient at utilizing memory.
Sufficient for all matching operations (as long as the hash
function is non-intersecting).

Still may have to deal with memory management.
Solution: Hybrid-hashing, which pages sections of the hash
data to disk when the memory is full.

Still utilizes all available memory.

Hash Key: For some operations, a unique key on the
data will work if it's involved in the matching.

10/02/06 Hoyt Koepke 16

Disk Access
Most of the issues here are inherent to all disk
management issues, so I won't go into detail.
Main database-specific issue is the use of indexes.

Not only does this provide excellent lookup speed, it also
reduces greatly the amount and spread of disk accessing.
Forms of indexes:

The most popular form (at time of writing) was a B-tree
or variations of it (such as B+ or B*).
One database system (Postgres) uses R-trees for
multidimensional indexing.

Databases can also use a custom IO buffer to
localize IO operations on the disk.

10/02/06 Hoyt Koepke 17

Joining
Essentially three methods: Nested-loop Joins,
Merge-based, & hash-based join algorithms.
Performance of each varies depending on the
number of inputs.

10/02/06 Hoyt Koepke 18

Types of Join
Inner Join on Tables A and B

Returns a table with attributes from both A and B, where
the values of an attribute of A equal those in one of B.

Left Outer Join on Tables A and B
Same as Inner Join, except that all entries of A are
included in the resulting table and the corresponding
attributes of B are null if no match exists.

Right Outer Join on Tables A and B
Same as left outer join, except that all the entries of B are
included and the unmatched entries of A are excluded.

Left Semi-Join on Tables A and B
Same as Inner Join except that only the attributes of A are
included in the returned table.

10/02/06 Hoyt Koepke 19

Executing a Join: Nested Loop
Nested Loop Join:

Simple – for each new tuple in the outer table, scan all the
inner tables looking for a match.
Works fine for small queries.
Quickly becomes inefficient (O(n²)). Reason is that the
tuples included at each stage are scanned again by all
subsequent stages.
But it's not as clear cut as this – IO and memory use can
be as much a performance measure as algorithmic speed.

This method requires relatively little memory use.
Some techniques speed this up.

Block Nested Loops scan the inner table once per block
of tuples in the outer loop by using small mappings.

10/02/06 Hoyt Koepke 20

Executing a Join: Merge Join
Faster than Nested Loop - O(n log n)
Similar idea to merge-sort.

Requires that both input tables be sorted on the joining
attribute.
The conditions of the join are implemented as the sorted
tables are merged into one table.

Advantages:
Much Faster.

Disadvantages:
Requires tables to be sorted.
Much higher demands on memory.
Complicated to implement.

10/02/06 Hoyt Koepke 21

Executing a Join: Hash-Join
Tries to use memory efficiently.
Forms an in-memory hash table of the “build” input
and then probes the existence of items in the “probe”
input using the item's hash.
Optimal performance means balancing the size of
the build input and probe input.

Can be very efficient if the build input fits into memory.
Uses recursive partitioning to break the problem down into
smaller parts in order ensure the build input fits in memory.

Along with nested-loop and merge-join, form the join
operation toolkit in most modern query engines.

10/02/06

Hoyt Koepke

22

More Discussion

