
1

Birch: An efficient data clustering
method for very large databases

Tian Zhang, Raghu Ramakrishnan,
Miron Livny

CPSC 504

Presenter: Ashique

Discussion: April

Outline

� What is data clustering

� Data clustering applications

� Previous Approaches

� Birch’s Goal

� Clustering Feature

� Birch clustering algorithm

� Clustering example

What is Data Clustering?

A cluster is a closely-packed group.

A collection of data objects that are
similar to one another and treated
collectively as a group.

Data Clustering is the partitioning of a
dataset into clusters

Why Clustering?

� Helps understand the natural grouping or
structure in a dataset

� Large set of multidimensional data

� Data space is usually not uniformly
occupied

� Identify the sparse and crowded places

� Helps visualization

Example Data Clustering – previous approaches

� Probability based (Machine learning):
make wrong assumption that
distributions on attributes are
independent on each other

� Probability representations of clusters is
expensive

� Distance based approach assumes DB
scanning is not costly

2

Requirements for large datasets

� Not more than one scan of the database

� Should be online

� Should be suspendable, stoppable,
resumable

� Can work with limited memory

Birch’s goals:

� Minimize running time and data scans,
thus formulating the problem for large
databases

� Clustering decisions made without
scanning the whole data

� Exploit the non uniformity of data –
treat dense areas as one, and remove
outliers (noise)

Discussion #1

� In what applications could you see data clustering being
useful? In which of these applications can you imagine
that it would be important that a clustering be found in
a certain # of seconds? Minutes? Hours?

� Do you think the authors made the right choice in
focusing their design on minimizing I/O? Why or why
not? If not, do you think that some either criteria,
such as efficiency, stability or immunity to abnormal
data, might be a more appropriate criteria for
determining if a data mining algorithm (such as BIRCH
or APRIORI) is “good?”

Clustering Feature (CF)

� CF is a compact storage for data on
points in a cluster

� Has enough information to calculate the
intra-cluster distances

� Additivity theorem allows us to merge
sub-clusters

Clustering Feature (CF)

Given N d-dimensional data points in a
cluster: {Xi} where i = 1, 2, …, N,

CF = (N, LS, SS)

N is the number of data points in the
cluster,

LS is the linear sum of the N data points,

SS is the square sum of the N data points.

CF1

child1

CF3

child3

CF2

child2

CFb

childb

CF1

child1

CF3

child3

CF2

child2

CFb

childb

CF1 CF2 CFLprev next CF1 CF2 CFLprev next

Root

Non-leaf node

Leaf node Leaf node

T= Max. radius of a sub-cluster

CF Tree
B = Max. no. of CF in a non-leaf node

L = Max. no. of CF in a leaf node

3

CF TREE

� T is the threshold for the diameter or
radius of the leaf nodes

� The tree size is a function of T. The
bigger T is, the smaller the tree will be.

� The CF tree is built dynamically as data
is scanned.

CF Tree Insertion

� Identifying the appropriate leaf: recursively
descending the CF tree and choosing the
closest child node according to a chosen
distance metric

� Modifying the leaf: test whether the leaf can
absorb the node without violating the
threshold. If there is no room, split the node

� Modifying the path: update CF information up
the path.

Birch Clustering Algorithm

� Phase 1: Scan all data and build an initial
in-memory CF tree.

� Phase 2: condense into desirable length
by building a smaller CF tree.

� Phase 3: Global clustering

� Phase 4: Cluster refining – this is
optional, and requires more passes over
the data to refine the results

Birch – Phase 1

� Start with initial threshold and insert points
into the tree

� If run out of memory, increase threshold value,
and rebuild a smaller tree by reinserting values
from older tree and then other values

� Good initial threshold is important but hard to
figure out

� Outlier removal – when rebuilding tree remove
outliers

Birch - Phase 2

� Optional

� Phase 3 sometime have minimum size
which performs well, so phase 2 prepares
the tree for phase 3.

� Removes outliers, and grouping clusters.

Birch – Phase 3

� Problems after phase 1:
� Input order affects results

� Splitting triggered by node size

� Phase 3:
� cluster all leaf nodes on the CF values

according to an existing algorithm

� Algorithm used here: agglomerative
hierarchical clustering

4

Birch – Phase 4

� Optional

� Additional scan/s of the dataset,
attaching each item to the centroids
found.

� Recalculating the centroids and
redistributing the items.

� Always converges

Pixel classification in images

From top to bottom:

�BIRCH classification
�Visible wavelength band

�Near-infrared band

Clustering example

Conclusions

� Birch performs faster than then existing
algorithms on large datasets

� Scans whole data only once

� Handles outliers

So far so good

� The CF tree has to reside in the memory

� Performs poorly when clusters don’t take
shape of a circle

� Can handle only numeric data

� Sensitive to the order of data records

Discussion #2

� The BIRCH algorithm requires the user to
specify a number of parameters (e.g., the page
size, the initial threshold for cluster radius, a
definition of outliers, etc).
� Is it reasonable to expect users to specify and tune

these parameters?

� Is it possible for these decisions to be incorporated
into the algorithm itself (i.e., automate parameter
specification and tuning)?

� And, would this be desirable?

Discussion #3 (time permitting)

� Both the BIRCH and APRIORI papers used
synthetic data, instead of actual data, to
evaluate their algorithms. Many members
of the class expressed concern over this
choice.
� Why do you think the authors chose to use synthetic

data?

� Do you think that the results of their analysis would

change if actual data was used instead?

