
1

Answering Queries Using Views: A
Survey

Paper by Alon Halevy

Presentation by Rachel Pottinger

Discussion by Meeta Mistry

Reminders

A view is a stored query

A datalog query example:

q(code):- Airport(code, city),

Feature(city, “Beach”)

Find all airport codes of cities that have

beaches

Answering Queries Using Views – basic
definition

Answer a query using a view rather than using

the underlying base table

Query: q(code):- Airport(code, city),

Feature(city, POI)

View:

feature-code(code,POI):- Airport(code, city),

Feature(city,POI)

Rewriting using view:

q(code):-feature-code(code,POI)

Two distinct problems:

Query optimization

Data integration

Physical Data Independence

AQUV in Query Optimization Goals

Speed Query Processing

Still need exact answers

AQUV in Query Optimization:
Closed World Assumption

Closed World Assumption

Views are complete

Think of as “If and only if”

feature-code(code, POI):- Airport(code, city),

Feature(city, POI)

retrieves all airport codes for cities with

beaches

How do we know this holds? Given from

problem – can’t tell from view definition

2

AQUV in Query Optimization:
Looking for Equivalent Rewritings
Rewritings must be equivalent

Think of as “rewritten query must retrieve exactly the same answers
as the original query”

Equivalent ex:
Query: q(code):- Airport(code, city),

Feature(city,POI)
View: feature-code(code,POI):- Airport(code, city),

Feature(city, POI)
Equivalent Rewriting: q(code):-feature-code(code, POI)

Non-equivalent ex:
Same Query
View: Beach-code(code):- Airport(code,city),

Feature(city, “Beach”)

Non-equivalent rewriting: q(code):-beach-code(code)

AQUV in Query Optimization:
Can still access base relations

Can access views and base relations

Ex:
Query:
q(code, URL):- Airport(code, city),

Feature(city,POI), Webinfo(POI, URL)

View:
feature-code(code,POI):- Airport(code, city),

Feature(city, POI)

Rewriting:
q(code,URL):-feature-code(code,POI),

Webinfo(POI, URL)

AQUV in Query Optimization:
General Algorithm

Fold into System-R style optimizer

It’s just another access path

AQUV in Query Optimization:
Discussion

Imagine that you're building a query

optimizer. Would you consider it

worthwhile to use views when answering

queries? Why or why not? Would you try

it only for certain kinds of queries? Which

ones?

AQUV in Data Integration:
Example: Planning a Beach Vacation

Potential Data Integration Architecture:
Local-As-View (LAV)

Local

Database 1

Local

Database N

Mediated

Schema

Local Schema 1 Local Schema N

Orbitz Expedia

User Query

Local sources are views on mediated schema

3

Local As View (LAV)
LAV: local source is materialized view over mediated schema

Mediated Schema:
Airport(code, city)
Feature(city, attraction)

Local Sources/Views:
CAA-Air(code, city) :- Airport(code, city)
Beaches(code) :- Airport(code, city), Feature(city, “Beach”)

Mediated
Schema

Beaches…CAA-Air

Local As View (LAV)
LAV: local source is materialized view over mediated schema

Mediated Schema:
Airport(code, city)
Feature(city, attraction)

Local Sources/Views:
CAA-Air(code, city) :- Airport(code, city)
Beaches(code) :- Airport(code, city), Feature(city, “Beach”)

� Adding new sources is easy

� Rewriting queries is NP-complete

Mediated
Schema

Beaches…CAA-Air

AQUV in Data Integration:
Assumptions

Open World Assumption

Each source only has some of the tuples

Read as “if � then”

Fodors(city, POI) :- Feature(city, POI)
Fodors has some Features

This is an assumption – you can’t tell from
view definition

Can’t access base relations

May not be able to find an equivalent
rewriting

AQUV in Data Integration:
Maximally Contained Rewritings

Query:

Dest(code) :- Airport(code, city), Feature(city, “Beach”)
Sources/Views:

CAA-Air(code, city) :- Airport(code, city)
Fodors(city, POI) :- Feature(city, POI)

Rewriting:
Dest(code):-CAA-Air(code, city), Fodors(city, “Beach”)

Maximally Contained Rewriting: all answers to Query are a
subset of those of Rewriting, and Rewriting contains all
possible answers given local sources

Q

MS

CAA Fodors…

Answering Queries Using Views
Query:

Dest(code) :- Airport(code, city), Feature(city, “Beach”)
Sources/Views:

CAA-Air(code, city) :- Airport(code, city)
Fodors(city, POI) :- Feature(city, POI)
Sun-Surf(city) :- Feature(city, “Beach”)

Rewriting:
Dest(code):-CAA-Air(code, city), Fodors(city, “Beach”) ∪
Dest(code):-CAA-Air(code, city), Sun-Surf(city)

Maximally Contained Rewriting: all answers to Query are a
subset of those of Rewriting, and Rewriting contains all
possible answers given local sources

Q

MS

CAA Fodors…

How do we find the Maximally Contained Rewriting?

AQUV in Data Integration:
Discussion

Consider the use of equivalent rewritings

in database integration. What problems

might this pose? What are the possible

benefits?

Can you think of other contexts than data

integration where a maximally-contained

rewriting would make sense?

4

Naïve Solution: Bucket Algorithm

Created as part of Information Manifold, Levy

et al.

Algorithm:

1. Create a bucket for each query subgoal,

place all relevant views into the bucket:

Q(X):- g1(x1), …, gn(xn)

2. For each element in cross product of the

buckets, check containment

X X

Subgoal Interaction
The Bucket Algorithm does not recognize interactions:

Query:
Dest(code) :- Airport(code, city), Feature(city, “Beach”)

Sources/Views:
Orbitz(code):- Airport(code, city)

Beaches(code) :- Airport(code, city),
Feature(city, “Beach”)

Frommers(city, POI):-Feature(city,POI)

Bucket would check:
Dest'(code):-Orbitz(code),Frommers(city,“Beach”)

Expanding this gets:
Dest'(code):-Airport(code,_),Feature(city, “Beach”)

All answers to Dest' are not answers Dest (containment)

The MiniCon Algorithm: Phase One
[Pottinger & (Ha)Levy: VLDB]

Query:
Dest(code) :- Airport(code, city), Feature(city, “Beach”)

Sources/Views:
Orbitz(code) :- Airport(code, city)
Beaches(code) :- Airport(code, city),Feature(city, “Beach”)

Rewriting:
Dest(code) :- Beaches(code)

Create MiniConDescriptions (MCDs): View subgoals linked by
existential variables must be mapped together

MiniCon Algorithm Phase Two: Combine
MCDs with non-overlapping subgoals
Combine MCDs with non-overlapping subgoals

Query:
Dest(code) :- Airport(code, city), Feature(city, “Beach”),

Flight(“YVR”, code, airline, number)

Sources/Views:
Orbitz(code) :- Airport(code, city)
Beaches(code) :- Airport(code, city),Feature(city, “Beach”)
Expedia(orig, dest) :- Flight(orig, dest, airline, number)

Rewriting:
Dest(code) :- Beaches(code), Expedia(“YVR”, code)

Fewer Combinations
No Explicit Containment Check

AQUV Algorithms:
Discussion

Does the computational complexity of

these problems surprise you? Do they

seem harder or easier than expected?

How would you scale the complexity of

each of the algorithms presented in terms

of the completeness of the algorithms?

