Answering Queries Using Views: A
Survey

Paper by Alon Halevy
Presentation by Rachel Pottinger
Discussion by Meeta Mistry

Reminders

= A view is a stored query

& A datalog query example:
g(code):- Airport(code, city),
Feature(city, “Beach”)
Find all airport codes of cities that have
beaches

Answering Queries Using Views — basic
definition

‘Two distinct problems:

£ Answer a query using a view rather than using
the underlying base table

@ Query: g(code):- Airport(code, city),

Feature(city, POI)

@ View:

feature-code(code,POl):- Airport(code, city),
Feature(city,POI)

@ Rewriting using view:

g(code):-feature-code(code,POl)

& Query optimization
= Data integration
Physical Data Independence

‘AQUV in Query Optimization Goals

AQUV in Query Optimization:

@ Speed Query Processing
@ Still need exact answers

‘Closed World Assumption

® Closed World Assumption
® Views are complete
@ Think of as “If and only if’
® feature-code(code, POI):- Airport(code, city),
Feature(city, POI)
retrieves all airport codes for cities with
beaches
@ How do we know this holds? Given from
problem — can'’t tell from view definition

L

L]

AQUV in Query Optimization:
Looking for Equivalent Rewritings

Rewritings must be equivalent
@ Think of as “rewritten query must retrieve exactly the same answers
as the original query”
Equivalent ex:
Query: g(code):- Airport(code, city),
Feature(city,POI)
View: feature-code(code,POl):- Airport(code, city),
Feature(city, POI)
Equivalent Rewriting: q(code):-feature-code(code, POI)
Non-equivalent ex:
Same Query
View: Beach-code(code):- Airport(code,city),
Feature(city, “Beach”)
Non-equivalent rewriting: q(code):-beach-code(code)

AQUV in Query Optimization:
‘Can still access base relations

= Can access views and base relations
® Ex:
£ Query:
g(code, URL):- Airport(code, city),
Feature(city,POI), Webinfo(POI, URL)

#® View:
feature-code(code,POl):- Airport(code, city),
Feature(city, POI)
& Rewriting:
q(code,URL):-feature-code(code,POl),
Webinfo(POI, URL)

AQUV in Query Optimization:
‘General Algorithm

Fold into System-R style optimizer
It's just another access path

AQUV in Query Optimization:
Discussion

Imagine that you're building a query
optimizer. Would you consider it
worthwhile to use views when answering
queries? Why or why not? Would you try
it only for certain kinds of queries? Which
ones?

o |

AQUYV in Data Integration:
'Example: Planning a Beach Vacation

Orhitz

Potential Data Integration Architecture:
'Local-As-View (LAV)

« User Query ,

Local Schema 1 ocal Schema N

Orbitz Expedia

Local sources are views on mediated schema

Local As View (LAV)

LAV: local source is materialized view over mediated schema

Mediated Schema:
Airport(code, city)
Feature(city, attraction)

Local Sources/Views:
CAA-Air(code, city) :- Airport(code, c1ty)
Beaches(code) :- Airport(code, city), Feature(city, “Beach”)

Local As View (LAV)

LAV: local source is materialized view over mediated schema

Mediated
Schema
Local Sources/Views:

CAA-Air(code, city) :- Airport(code, c1ty)
Beaches(code) :- Airport(code, city), Feature(city, “Beach”)

Mediated Schema:
Airport(code, city)
Feature(city, attraction)

& Adding new sources is easy
¢ Rewriting queries is NP-complete

AQUV in Data Integration:
Assumptions

Open World Assumption

@ Each source only has some of the tuples

® Read as “if > then”

£ Fodors(city, POI) :- Feature(city, POI)
Fodors has some Features

£ This is an assumption — you can’t tell from
view definition

Can’t access base relations

@ May not be able to find an equivalent
rewriting

AQUYV in Data Integration:
Maximally Contained Rewritings

‘ Query:

Dest(code) :- Airport(code, city), Feature(city, “Beach”)
Sources/Views:

CAA-Air(code, city) :- Airport(code, city) @'

Fodors(city, POI) :- Feature(city, POI)

Rewriting: ‘) @

Dest(code):-CAA-Air(code, city), Fodors(city, “Beach”)

Maximally Contained Rewriting: all answers to Query are a
subset of those of Rewriting, and Rewriting contains all
possible answers given local sources

Answering Queries Using Views

Query:
Dest(code) :- Airport(code, city), Feature(city, “Beach”)

Sources/Views:
CAA-Air(code, city) :- Airport(code, city) -
Fodors(city, POI) :- Feature(city, POI)
Sun-Surf(city) :- Feature(city, * Beach”)

Rewriting:

Dest%code) -CAA-. Alrgcode mtyg , Fodors(city, “Beach”) U
Dest(code):-CAA-Air(code, city), Sun-Surf(city)

Maximally Contained Rewriting: all answers to Query are a
subset of those of Rewriting, and Rewriting contains all
possible answers given local sources

How do we find the Maximally Contained Rewriting?

AQUYV in Data Integration:

Discussion

@ Consider the use of equivalent rewritings
in database integration. What problems
might this pose? What are the possible
benefits?

#® Can you think of other contexts than data
integration where a maximally-contained
rewriting would make sense?

‘Naive Solution: Bucket Algorithm

Created as part of Information Manifold, Levy
etal

Algorithm:

1. Create a bucket for each query subgoal,
place all relevant views into the bucket:

X X

Q(X):' g1(X1)1 EEEN] gn(xn)
2. For each element in cross product of the
buckets, check containment

‘Subgoal Interaction

The Bucket Algorithm does not recognize interactions:
Query:

Dest(code) :- Airport(code, city), Feature(city, “Beach”)
Sources/Views:

Orbitz(code):- Airport(code, city)
Beaches(code) :- Airport(code, city),

Feature(city, “Beach”)

Frommers(city, POI):-Feature(city,POI)

Bucket would check:
Dest'(code):-Orbitz(code),Frommers(city,“Beach”)

Expanding this gets:
Dest'(code):-Airport(code,_),Feature(city, “Beach”)

All answers to Dest' are not answers Dest (containment)

The MiniCon Algorithm: Phase One
‘[Pottinger & (Ha)Levy: VLDB]

Query:
Dest(code) :- Airport(code, city), Feature(city, “Beach”)

Sources/Views:
Orbitz(code) :- Airport(code, city)
Beaches(code) :- Airport(code, city),Feature(city, “Beach”)

Rewriting:
Dest(code) :- Beaches(code)

Create MiniConDescriptions (MCDs): View subgoals linked by

existential variables must be mapped together

MiniCon Algorithm Phase Two: Combine
MCDs with non-overlapping subgoals

Combine MCDs with non-overlapping subgoals

Query:

Dest(code) :- Airport(code, city), Feature(city, “Beach”),
Flight(“YVR”, code, airline, number)

Sources/Views:
Orbitz(code) :- Airport(code, city)
Beaches(code) :- Airport(code, city),Feature(city, “Beach”)
Expedia(orig, dest) :- Flight(orig, dest, airline, number)

Rewriting:
Dest(code) :- Beaches(code), Expedia(“YVR”, code)

Fewer Combinations
No Explicit Containment Check

AQUV Algorithms:
| Discussion

@ Does the computational complexity of
these problems surprise you? Do they
seem harder or easier than expected?

@ How would you scale the complexity of
each of the algorithms presented in terms
of the completeness of the algorithms?

