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Abstract 

As XML usage grows for both data-centric and 
document-centric applications, introducing 
native support for XML data in relational 
databases brings significant benefits. It provides 
a more mature platform for the XML data model 
and serves as the basis for interoperability 
between relational and XML data. Whereas 
query processing on XML data shredded into one 
or more relational tables is well understood, it 
provides limited support for the XML data 
model. XML data can be persisted as a byte 
sequence (BLOB) in columns of tables to 
support the XML model more faithfully. This 
introduces new challenges for query processing 
such as the ability to index the XML blob for 
good query performance. This paper reports 
novel techniques for indexing XML data in the 
upcoming version of Microsoft® SQL Server™, 
and how it ties into the relational framework for 
query processing. 

1. Introduction 
Introducing XML [3] support in relational databases has 
been of keen interest in the industry in the past few years. 
One solution is to generate XML from a set of tables 
based on an XML schema definition and to decompose 
XML instances into such tables [2][5][11] [16][20]. Once 
shredded into tables, the full power of the relational 
engine, such as indexing using B+trees and query 
capabilities, can be used to manage and query the data.  

The shredding approach is suitable for XML data with 
a well-defined structure. It depends on the existence of a 
schema describing the XML data and a mapping of XML 
data between the relational and XML forms.  

The XML data model, however, has characteristics 
that make it very hard if not practically impossible to map 
to the relational data model in the general case. XML data 
is hierarchical and may have a recursive structure; 
relational databases provide weak support for hierarchical 
data (modeled as foreign key relationships). Document 
order is an inherent property of XML instances and must 
be preserved in query results. This is in contrast with 
relational data, which is unordered, and order must be 
enforced with additional ordering columns. On the query 
front, a large number of joins are required to re-assemble 
the result for realistic schemas. Even with co-located 
indexes, the reassembly cost of an XML subtree can be 
prohibitively expensive. 

XML is being increasingly used in enterprise 
applications for modeling semi-structured and 
unstructured data, and for data whose structure is highly 
variable or not known a priori. This has motivated the 
need for native XML support within relational databases.  

Microsoft SQL Server 2005 introduces a native data 
type called XML [12]. A user can create a table T with 
one or more columns of type XML besides relational 
columns. XML values are stored in the XML column as 
large binary objects (BLOB). This preserves the XML 
data model faithfully, and the query processor enforces 
XML semantics during query execution. The underlying 
relational infrastructure is used extensively for this 
purpose. This approach supports interoperability between 
relational and XML data within the same database making 
way for more widespread adoption of the XML features. 

XQuery expressions [19] embedded within SQL 
statements are used to query into XML data type values. 
Query execution processes each XML instance at runtime; 
this becomes expensive whenever the instance is large in 
size or the query is evaluated on a large number of rows 
in the table. Consequently, an indexing mechanism is 
required to speed up queries on XML blobs. 
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B+tree index has been used extensively in relational 
databases and is a natural choice for indexing XML blobs 
as well. The B+tree index must provide efficient 
evaluation of queries on XML blobs. Query execution 
may need to reassemble the XML result from the B+tree 
index (XML serialization) while preserving document 
order and document structure. Some operators in XPath 
2.0 [18] — most notably the descendant-or-self axis // — 
navigate down an XML tree recursively. Thus, B+tree 
lookups can be recursive.  

In this paper, we discuss the techniques used in 
Microsoft SQL Server 2005 for indexing XML blobs. A 
shredded representation conforming to Infoset items [4] of 
nodes is stored in a B+tree. This is referred to as the 
primary XML index. A novel node labeling scheme called 
ORDPATH [13] allows us to capture document order and 
document hierarchy within a single column of the primary 
XML index. This index is clustered on the ORDPATH 
value for each XML instance and provides very efficient 
access to subtrees using a simple range scan. The 
ORDPATH column is used extensively to determine 
relative order of nodes within a document and the parent-
child and ancestor-descendant relationships between two 
nodes. The ancestor-descendant relationship check 
eliminates the need for recursive traversal down the XML 
tree and is a significant optimization.  

Materialization of the Infoset speeds up query 
processing on XML columns by eliminating runtime 
shredding costs. Further performance gains can be 
obtained by creating secondary indexes on the primary 
XML index for different classes of queries. We identify 
three important classes of queries (path-based queries, 
property bag scenarios and value-based queries) that 
commonly occur in practice and investigate three 
secondary indexes — PATH, PROPERTY and VALUE 
— to optimize those classes of queries. Content indexing 
of XML instances based on the structural information 
stored in primary XML index is also discussed. 

The performance gains using the XML indexes for the 
well-known XMark benchmark [15] are presented in the 
paper.  

The reminder of the paper is organized as follows. 
Section 2 gives a background of native XML support in 
Microsoft SQL Server 2005 and describes the concept of 
ORDPATH. Section 3 introduces the techniques for 
indexing XML data, Section 4 provides experimental 
results, and Section 5 discusses related work. The paper 
concludes with a summary in Section 6. 

2. XML Support in Microsoft SQL Server 
2005 

This section provides a brief overview of XML support in 
Microsoft SQL Server 2005. 

2.1   XML Data Type 

Native support for the XML data model is introduced 
using a new, first-class data type called “xml”. It can be 
used as the type of a column in a table or view, a variable 
and a parameter in a function or stored procedure. Thus, a 
table can be created with an integer column and an XML 
column as follows: 

 
Create  table DOCS (ID int primary key, XDOC xml) 
 
XML values saved in the XDOC column can be trees 

(“XML document”) or fragments (“XML content”). They 
are stored in an internal, binary representation that is 
streamable and optimized for query processing. Some 
compaction occurs, which is incidental rather than the 
goal of the binary representation. 

The supplied XML values are checked for well-
formedness and conformity to the XML data model (e.g. 
end tags match start tags) for storage in the XML column.  

The XML column can optionally be typed by a 
collection of XML schemas that may be related (e.g. by 
<xs:import>) or unrelated to one another. Each XML 
instance specifies the XML namespace from the schema 
collection it conforms to. The database engine validates 
the instance according to the XML schema before storing 
it in the XML column. 

XML type information is stored in the database’s 
meta-data. It contains the XML schema collections (and 
their contained XML schemas) and mapping between the 
primitive XSD and relational type systems. Typed XML 
instances contain XSD type information in the internal, 
binary representation. This enables efficient processing 
for typed XML and allows building domain based value 
indexes for efficient lookups. 

2.2   Node Labeling Using OrdPath 

ORDPATH [13] is a mechanism for labelling nodes in an 
XML tree, which preserves structural fidelity. It allows 
insertion of nodes anywhere in the XML tree without the 
need for re-labelling existing nodes. It is independent of 
XML schemas typing XML instances. 

ORDPATH encodes the parent-child relationship by 
extending the parent’s ORDPATH with a labelling 
component for the child. In the following, we use a string 
representation for the ORDPATH to illustrate the idea 
while the internal representation is based a compressed 
binary form. For example, children of a parent node 
labelled with the ORDPATH "1.5.3.9" may have the 
labels "1.5.3.9.1" and "1.5.3.9.7", where the ending 
"1"and "7" are labelling components for the children. A 
byte  comparison of two ORDPATH labels yields the 
relative order of the nodes in the XML tree. Thus, the 
child "1.5.3.9.1" precedes "1.5.3.9.7" in document order.  

For the XML instance shown in Figure 1, sample 
ORDPATH labels are shown for the corresponding XML 
tree in Figure 2. 
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<BOOK ISBN=“1-55860-438-3”> 
       <SECTION> 
          <TITLE>Bad Bugs</TITLE> 
          Nobody loves bad bugs. 
          <FIGURE CAPTION=“Sample bug”/> 
       </SECTION> 
      <SECTION> 
         <TITLE>Tree Frogs</TITLE> 
         All right-thinking people 
         <BOLD> love </BOLD> tree frogs. 
 </SECTION> 
</BOOK> 

Figure 1. Sample XML data 
 

 

 

 

 

 
Figure 2. ORDPATH Node Label 

 
In the ORDPATH values shown in Figure 2 (such as 

"1.3.5.1"), each dot separated component value ("1", "3", 
"5", "1") reflects a numbered tree edge at successive 
levels on the path from the root to the labelled node. Only 
positive odd integers are assigned during an initial load; 
even-numbered and negative integer component values 
are reserved for later insertions into an existing tree.  

A new node N (possibly the root node of a subtree) 
can be inserted under any node in an existing tree. It is 
assigned a label component in between those of its left 
and right siblings using an even numbered auxiliary 
position that introduces a new level for N. This preserves 
the relative order between the siblings and avoids re-
labelling the left or right siblings of N. Leftmost and 
rightmost insertion is supported equally efficiently by 
extending the range of label components on both ends. 
Leftmost insertions may generate label components that 
are negative numbers. 

2.3   XML Query Processing 

XQuery [19] embedded in SQL is the language supported 
for querying XML data type. XQuery is a W3C standards-
based language in development. It is a very powerful 
functional language for querying XML data. In particular, 
it includes XPath 2.0 [18]. 

Methods are provided on XML data type for querying 
into XML values. These methods accept XQuery 
expressions as arguments. The methods are: 
  

• query(): returns XML data type 

• value(): extracts scalar values 
• exist(): checks conditions on XML nodes 
• nodes(): returns a rowset of XML nodes that the 

XQuery expression evaluates to 
 
As an example, consider the following query that retrieves 
section titles in the book with a specified ISBN: 

SELECT ID, XDOC.query(' 
    for $s in  
      /BOOK[@ISBN= “1-55860-438-3”]//SECTION 
    return <topic>{data($s/TITLE)} </topic>')    
FROM DOCS 
 
Query execution is tuple-oriented as in the rest of the 

relational framework. The SELECT list is evaluated on 
each row of table DOCS and produces a two-column 
result. Query compilation proceeds by producing a single 
query plan for both the relational and the XML parts of 
the query, and the overall query tree is optimized by the 
cost-based query optimizer. 

The XML data type methods process the XML 
instances on which they are invoked. Each XML instance 
can be up to 2GB in storage, so that the runtime shredding 
cost can be significant for large XML instances.  

In the next section, we consider techniques for 
indexing XML instances to speed up queries. 

3. Indexing XML Data 
For an XPath expression such as /BOOK[@ISBN = “1-
55860-438-3”]//SECTION shown in Section 2.3 and 
executed on the XDOC column of DOCS table, the XPath 
expression is evaluated on all rows in the table. This is 
costly for the following reasons: 

• The XDOC column value in each row must be 
shredded at runtime to evaluate the query. 

• We cannot determine which of the XML 
instances satisfies @ISBN = “1-55860-438-3” 
without processing the XDOC values in all rows. 

 
We can speed up query processing by saving the 

parsing cost at runtime. This is achieved by materializing 
the shredded form of the XML instances in a B+tree that 
retains structural fidelity of the XML instances in the 
XDOC column. The query processor decides whether to 
process rows of the base table before those in the XML 
index (top-down execution) or use targeted seeks or scans 
on the XML index first followed by a back join with the 
base table (bottom-up execution). (The table in which an 
XML column is defined is referred to as the base table.) 
Additional secondary XML indexes provide another 
degree of freedom for the optimizer to choose the 
execution plan. 

This section introduces the notion of a primary XML 
index on an XML column. It is a B+tree that materializes 
the Infoset content of each XML instance in the XML 

1.1  

    FIGURE TITLE   BOLD 

1 
    BOOK 

 TITLE 

  CAPTION 

     All right…   tree frogs 

1.5 

1.3.1 1.3.5 

1.3.5.1 

1.5.1 1.5.3 1.5.5 1.5.7 

    Nobody … 

1.3.3 

 SECTION SECTION 

1.3 

ISBN 
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column. Indexing the Infoset content in additional ways is 
discussed as secondary XML indexes. 

In the following discussions, we use table DOCS of 
Section 2.1 for illustrative purposes.  

3.1 Primary XML Indexes 

This subsection describes the structure of the primary 
XML index and discusses query execution using it.  

3.1.1 Structure of Primary XML Index 

The B+tree containing the shredded form of the XML 
instances in a column is called the primary XML index or 
the “Infoset” table. 

We generate a subset of the fields in the Infoset items 
of the XML nodes by shredding an XML instance. This is 
stored in a B+tree in the system. The Infoset contains 
information such as the tag, value and parent of each 
node; we add the path from the root of the tree to the node 
to allow path-based lookups. The B+tree has the following 
columns amongst others: 

 
ORDPATH TAG NODE_ 

TYPE 
VALUE  PATH_ 

ID 
1 1 (BOOK) 1 (Element) Null #1 
1.1 2 (ISBN ) 2 (Attribute) '1-55860-438-3' #2#1 
1.3 3 

(SECTION) 
1 (Element) Null #3#1 

1.3.1 4 (TITLE) 1 (Element) 'Bad Bugs' #4#3#1 
1.3.3 10 (TEXT) 4 (Value) 'Nobody loves  

Bad bugs.' 
#10#3#1

1.3.5 5 
(FIGURE) 

1 (Element) Null #5#3#1 

1.3.5.1 6 
(CAPTION) 

2 (Attribute) 'Sample bug' #6#3#1 

1.5 3 
(SECTION) 

1 (Element) Null #3#1 

1.5.1 4 (TITLE) 1 (Element) 'Tree frogs' #4#3#1 
1.5.3 10 (TEXT) 4 (Value) 'All right-thinking 

people' 
#10#3#1

1.5.5 7 (BOLD) 1 (Element) 'love ' #7#3#1 
1.5.7 10 (TEXT) 4 (Value) 'tree frogs' #10#3#1

Figure 3. XML “Shredded” into relational Infoset table 
 

Figure 3 shows the rows corresponding to the XML 
tree in Figure 2. The ORDPATH column preserves 
structural fidelity within a single XML instance; the 
Infoset table also contains the primary key column ID of 
the base table (not shown) for back join. The primary key 
of the Infoset table is the combination of the primary key 
ID of the base table and the ORDPATH column. 

The TAG column shows the markups found in the 
XML instance; it is used here for illustrative purposes 
only. Instead of storing string values, each markup is 
mapped to an integer value and the mapped values are 
used in storage. This mapping is referred to as 
tokenization and yields significant compression. 

The NODE_TYPE column stores the type of the node 
in the Infoset content. For typed XML column, it stores a 

tokenized type value corresponding to the XSD type of 
the node. 

The VALUE column stores the node’s value, if one 
exists, otherwise it is NULL. It stores typed XML values 
as SQL Server’s native type within a generic variant type. 

The PATH_ID column contains a tokenized path 
value from the root to the node. This column represents 
all the paths in the tree similar to the dataguide 
computation [7]. Whereas each node within an XML 
instance has a distinct ORDPATH value, the PATH_ID 
value is the same for multiple nodes with the same path. 
Thus, nodes 1.3.1 and 1.5.1 refer to two different TITLE 
nodes but the paths leading to these nodes are both 
expressed as /BOOK/SECTION/TITLE. As such, they 
have the same PATH_ID value #4#3#1, where #1, #3 and 
#4 are for BOOK, SECTION and TITLE, respectively. 

Nodes of the XML tree are traversed in XML 
document order and ORDPATH labels are generated 
during the population of the primary XML index.  

The primary XML index contains some redundancy 
and is larger in size than the textual form of the XML 
instance; the primary key column of the base table, ID, for 
example is repeated in all rows for an XML instance. The 
increased I/O cost, added to the serialization cost of 
converting shredded rows in the Infoset table to XML 
form, makes retrieval of the XML blob cheaper from the 
base table when the whole XML instance is required. 

Primary XML index stores values using the SQL type 
system. Most of the SQL types are compatible with 
XQuery type system (e.g. integer), and value comparisons 
on XML index columns suffice. A handful of types (e.g. 
xs:datetime) are stored in an internal format and 
processed specially to preserve compatibility with the 
XQuery type system.  

The primary XML index can be optimized in various 
ways, such as by generating a single row for simple-
valued elements (instead of two rows). This in practice 
significantly reduces on-disk size. Prefix compression [1] 
reduces the size of the primary XML index significantly. 
Another optimization is to point back from the VALUE 
column for large-sized values to the XML blob to avoid 
redundancy. A more detailed discussion of these and other 
optimizations are beyond the scope of this paper. 

3.1.2 Query Compilation and Execution 

An XQuery expression is translated into relational 
operations on the Infoset table. The result is a set of rows 
from the Infoset table that must be re-assembled into an 
XML result.  

Consider the evaluation of the path expression 
/BOOK[@ISBN = “1-55860-438-3”]/SECTION on an 
XML instance. The following SQL statement expresses 
the execution logic. PATH_ID (path) yields the tokenized 
path value for the specified path. SerializeXML (ID, 
ORDPATH) assembles the XML subtree rooted at the 
node (ID, ORDPATH) from the Infoset table. Parent (C-
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ORDPATH) returns the parent’s ORDPATH as the prefix 
of C-ORDPATH without the last component for the child.  

SELECT SerializeXML (N2.ID, N2.ORDPATH) 
FROM    infosettab N1  

       JOIN infosettab N2 ON (N1.ID = N2.ID) 
WHERE N1.PATH_ID = PATH_ID(/BOOK/@ISBN)  
AND        N1.VALUE = '1-55860-438-3' 
AND       N2.PATH_ID = PATH_ID(  

BOOK/SECTION) 
AND        Parent (N1.ORDPATH) =  
                Parent (N2.ORDPATH) 
 
When the path expression /BOOK[@ISBN = “1-

55860-438-3”]/SECTION is evaluated on the XDOC 
column of a row in DOCS table, the primary key value ID 
is used to seek into the Infoset table (N1). Rows for the 
XML instance in N1 are scanned to locate the ones having 
the values /BOOK@ISBN and “1-55860-438-3” in the 
PATH_ID and the VALUE columns, respectively. Using 
the same primary key value, the execution seeks into the 
Infoset table a second time (N2), finds rows containing 
the PATH_ID value for /BOOK/SECTION and 
determines whether the BOOK elements found in N1 is 
the parent of the SECTION elements found in N2. The 
XML fragments corresponding to the qualifying 
SECTION element are serialized from the Infoset table. 

The cost of reassembly may be non-trivial. For queries 
that retrieve the whole XML instance, it is cheaper to 
retrieve the XML blob. Similarly, a query containing a 
simple path expression that must be evaluated on all rows 
of the base table may be more efficient on the XML blob 
than on the primary XML index if the re-assembly cost 
outweighs the cost of parsing the XML blobs. A cost-
based decision must be made whether to execute the 
query by shredding XML blobs at runtime or to operate 
on XML indexes.  

Insertion, deletion and modification of XML values 
require primary XML index maintenance as is to be 
expected.  

3.2 Secondary XML Indexes 

The primary XML index is clustered in document order 
and each path expression is evaluated by scanning all 
rows in the primary XML index for a given XML 
instance. Performance slows down for large XML values. 

Secondary indexes can be created on the primary 
XML index to speed up different classes of queries. While 
a secondary index can be created on any of the columns in 
the primary XML index, it is interesting to study the 
specific indexes that benefit common classes of queries. 
We introduce four such index types: PATH (and its 
variation PATH_VALUE), PROPERTY, VALUE and 
content indexing in the following subsections. 

Secondary XML indexes help with bottom-up 
evaluation. After the qualifying XML nodes have been 
found in the secondary XML indexes, a back join with the 

primary XML index enables continuation of query 
execution with those nodes. This yields significant 
performance gains. 

3.2.1 PATH and PATH_VALUE Indexes 

Going back to the SQL rewrite in Section 3.1.2, 
evaluation of path expressions over an entire XML 
column benefits from a secondary index built on the 
PATH_ID column. The path expression is compiled into 
the tokenized form (e.g. /BOOK/@ISBN ⇒ #2#1 in the 
example of Figure 3). An index with PATH_ID as the 
leading key column helps such queries. 

The PATH index is built on the columns PATH_ID, 
ID and ORDPATH, where ID is the primary key of the 
base table. During query evaluation, the tokenized path 
value PATH_ID and ID are used to seek into the PATH 
index and find the corresponding ORDPATH values, 
thereby saving the cost of primary XML index scans. The 
index seek is what brings the performance gain, and the 
cost is relatively independent of the path length. A back 
join with the primary XML index on ID and ORDPATH 
pair continues with query execution to check conditions 
such as the specified value of ISBN, and re-assemble the 
resulting XML fragments (e.g. the subtrees rooted at the 
SECTION nodes in our example). 

The PATH_ID column stores a “reversed” 
representation of the path. When a full path such as 
/BOOK/SECTION/TITLE is specified, it is mapped into 
the value #4#3#1 for PATH index lookup; the full 
PATH_ID value is known in this case. However, a 
wildcard or the descendant-or-self (//) or the descendant 
axis requires careful handling. 

For a path expression containing the //-axis, such as 
//SECTION/TITLE, only the last two steps in the path 
expression are known. Storing the forward path in the 
PATH_ID column is not very useful in this case; the 
entire PATH index would have to be scanned. With the 
reverse path, however, prefix match of the PATH_ID 
column for the value #4#3 yields faster execution. The 
situation is similar for path expressions containing a 
wildcard or //-axis in the middle of the path expression, 
such as /BOOK/*/TITLE or /BOOK/SECTION//TITLE. 
In the latter case, the exact match for the PATH_ID value 
for /BOOK/SECTION (i.e. #3#1) and prefix match for 
TITLE (i.e. #4) yield two sets of nodes. The ancestor-
descendant relationship between node pairs from these 
sets is verified using their ORDPATH values. 

For path expressions such as 
/BOOK/SECTION[TITLE =“Tree Frogs”] that fit the 
pattern “path=value”, a variation of the PATH index is 
more useful. If the PATH index is built only on the 
PATH_ID column, this type of query requires a back join 
with the primary XML index to check the node’s value. 
This back join can be avoided by including the VALUE 
column in the index to yield a PATH_VALUE index, 
which is built on the columns (PATH_ID, VALUE, ID 
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and ORDPATH). The path /BOOK/SECTION/TITLE is 
compiled to the tokenized value #4#3#1 and an index seek 
is performed on the PATH_VALUE index with the key 
values (#4#3#1, “Tree Frogs”). For the qualifying TITLE 
nodes, the parent’s key value (ID, Parent (ORDPATH)) is 
then used to seek into the primary XML index to obtain 
and re-assemble the SECTION subtrees in the result. 

3.2.2 PROPERTY Index 

A useful application of XML is to represent an object’s 
properties with the help of XML markup, especially when 
the number and type of the properties are not known a 
priori, or properties are multi-valued or complex. This 
allows properties of different types of objects to be stored 
in the same XML column. The XML schema (if one 
exists) for this scenario is typically non-recursive.  

Common queries have the form “find properties X, Y, 
Z of object P”, where X, Y and Z are path expressions. In 
our model, this means the ID value is known for the 
object and the PATH_ID values are know for X, Y and Z. 
Evaluating this query on the primary XML index requires 
scanning all rows corresponding to the given ID value.  

On the other hand, the rows for each of the paths X, Y 
and Z from all objects are clustered together in the 
PATH_VALUE index. Thus, the execution becomes a 
seek into the PATH_VALUE index for each of the paths, 
scan of all rows with the same PATH_ID value and a 
match for the specified ID value.  

Clustering all properties of each object together into a 
PROPERTY index significantly speeds up property 
lookup for objects. The columns in the PROPERTY index 
are (ID, PATH_ID, VALUE and ORDPATH). This 
organization helps retrieve multi-valued properties for an 
object (same ID and PATH_ID values). Retrieving all 
properties of an object requires scanning the same number 
of rows in the primary XML index and the PROPERTY 
index. However, the higher record density of the 
PROPERTY index yields faster result, especially when no 
back join with the primary XML index is required.  

To illustrate the point with an example, consider the 
extractions of the ISBN (i.e. /BOOK/@ISBN) and the 
title of the first section (i.e. 
(/BOOK/SECTION/TITLE)[1])  from the XDOC column 
of table DOCS.  The execution logic can be expressed in 
the following SQL statement: 

SELECT (SELECT TOP 1 N1.VALUE,  
FROM    infosettab N1 
WHERE DOCS.ID = N1.ID  
AND       N1.PATH_ID =  

      PATH_ID (/BOOK/@ISBN)),  
 (SELECT TOP 1 N2.VALUE,  
 FROM    infosettab N2 
 WHERE DOCS.ID = N2.ID  
 AND       N2.PATH_ID =  

       PATH_ID(/BOOK/ SECTION/TITLE)) 
FROM    DOCS  

 
The primary key ID and the PATH_ID values are 

known, so that seeking into the PROPERTY index 
permits efficient retrieval of the ISBN and TITLE values. 

To retrieve a single property of an object, the 
PROPERTY index is more suitable than the 
PATH_VALUE index, since the latter clusters the same 
path from all objects together. When N properties are to 
be retrieved, the cost-based optimizer must decide 
between N seeks into the PROPERTY index (same ID, N 
different PATH_ID values) or a scan in the PROPERTY 
index for the N property values of the object.  

3.2.3 VALUE Index 

Value-based queries of the type 
/BOOK/SECTION[FIGURE/@* = “Sample Bug”] 
specify a value and have a wildcard for the path. It 
requires scanning the primary XML or PROPERTY index 
for each XML instance while trying to match the specified 
portion of the path. Using the PATH_VALUE index is 
worse and a larger part of the index is usually scanned.  

For efficiency, an index that locates the specified 
value first can induce a bottom-up query plan and perform 
much better. Such an index is the VALUE index built on 
the columns (VALUE, PATH_ID, ID and ORDPATH). 
An index lookup occurs using the value “Sample Bug” 
and, for the qualifying rows, the specified part of the 
PATH_ID is matched. A back join with the primary XML 
index is generally needed to re-assemble the result (the 
ancestor node SECTION in this example). As noted 
above, the ORDPATH of a parent or ancestor can be 
computed as a prefix of a descendant’s ORDPATH. 

If the XML column is typed, then values stored in the 
index receive appropriate typing. If the XML column is 
untyped, then values are indexed as strings. Untyped 
XML is more beneficial for document scenarios than data 
scenarios. 

As an example, consider the evaluation of the path 
expression /BOOK/SECTION[FIGURE/@* = “Sample 
Bug”] on an XML instance. The following SQL statement 
expresses the execution logic: 

SELECT SerializeXML (N1.ID,  
   Parent (N1.ORDPATH)) 

FROM    infosettab N1 JOIN infosettab N2 ON  
      (N1.ID = N2.ID AND  
       N1.ORDPATH = Parent(N2.ORDPATH)) 

WHERE N1.PATH_ID =              
 PATH_ID(/BOOK/SECTION/FIGURE) 

AND       N2.NODE_TYPE = Attribute 
AND       N2.VALUE = ‘Sample Bug’ 
 
An index seek into the VALUE index with the search 

value ‘Sample Bug’ yields (ID, ORDPATH) pairs that are 
joined with the primary XML index. Each such (ID, 
ORDPATH) node is checked for attribute type and child 
relationship to the nodes found for the path 
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/BOOK/SECTION/FIGURE. The resulting SECTION 
elements are serialized in the result. 

3.2.4 Content Indexing 

The origin of the XML standard is in the document 
community where the most important part of an XML 
instance is the text (the “content”) in the document 
marked up by the tag structure. Accordingly there has 
been increasing amount of focus on information retrieval 
(IR) techniques in the XML space. These range from 
simply discarding the markup and using traditional 
inverted word list techniques augmented with tag/path 
information to include the markup in the full text index 
and so leverage the IR search even for element and 
attribute names. 

We support two solutions in this space. We can 
leverage the IR capabilities of the engine by creating a 
full text index over an XML data type column. The filter 
in the text indexer discards the markup and creates an 
inverted word index with full support of our SQL text 
search sublanguage over the XML data type instances. 
The text search expressions now can be combined with 
XQuery expressions in the same SQL statement and the 
optimizer leverages all existing indexes (relational, XML 
and full text) in order to evaluate the query efficiently. 

This solution works well for traditional IR queries but 
it is not optimal if we want to combine searching for a 
certain word within a specific context, for example, in a 
particular XML element. Here we want to take advantage 
of the XML indexes we build over the XML infoset but 
we want to have finer granularity than text nodes since the 
VALUE index does not help us locate individual words 
efficiently. In order to achieve this we can extend the full 
text inverted word index with information from the 
infoset or we can extend our infoset table with word 
information. Here we choose the later solution by building 
what we call the word break index.  

The word break index has the same structure as the 
infoset table except that we break up the text nodes into 
words according to XML whitespace. Now we can take 
advantage of all the information present in this table and 
we can do efficient fine granularity searches on XML 
whitespace boundaries and tag boundaries. This does not 
replace a fully annotated full text index since it does not 
have weighting, ranking and relevance-oriented 
information [9] but it provides a very efficient index 
structure for most of the full text like searches.  

3.3 Evaluating Complex Path Expressions 

A complex path expression may require multiple lookups 
of one or more XML indexes. Rows found in different 
lookups are joined (on the primary key ID and 
ORDPATH in the most common cases) as required for 
evaluating the path expression. (Section 4 discusses 
several examples.) This is executed using the proper JOIN 
type (nested loop join, merge join or hash join [17]). 

Thus, the overall execution consists of relational 
operations with special optimizations for ORDPATH 
properties (order and hierarchy). 

A complex path expression is rewritten to use the 
primary XML index as shown in the previous sections. 
The choice of PATH, PROPERTY and VALUE indexes 
are done by the cost-based optimizer using such 
information as the distributions of PATH_ID, VALUE, 
primary key and ORDPATH. The query rewrites in the 
above sections also indicate that the query optimizer may 
choose to use multiple XML indexes, and evaluate parts 
of the XPath expression using a post-filter on the output 
of the index lookups. 

The next section presents experimental data on the 
gain in query performance using various XML indexes. 

4. Experimental Results using XMark 
Benchmark  

XMark [15] is an XML query benchmark that models an 
auction scenario. It specifies 20 queries for exact match, 
ordered access, regular path expressions, following 
references, construction of complex results, join on 
values, search for missing elements, and so on.  

This section reports the performance improvements 
we found with different XML indexes. We explain the 
reasons for the performance gain for several queries. 

4.1 Workload 
Sample XML data conforming to the XMark schema was 
produced using the document generator XMLGEN 
provided by the authors of XMark. Instead of storing the 
entire data as a single, large XML instance, it is more 
natural in a relational database to store the data in tables 
representing the different entities in the data model. This 
yields five tables for people, open auctions, closed 
auctions, items and categories.  

Information about bidders is stored in the table 
PEOPLE, while those about ongoing and closed auctions 
are stored in the tables OPEN_AUCTIONS and 
CLOSED_AUCTIONS, respectively. The table ITEMS 
contains data about the auction items. Lastly, the 
CATEGORIES table contains information on the 
classification scheme of items. 

Each of these tables contains two columns: an integer 
id column and an untyped XML column containing the 
data. The table schema is shown in the appendix. XML 
indexes of the same type are created on all the XML 
columns to measure the usefulness of that index type.  

Cross references among XML instances is maintained 
as ordinary attributes instead of IDREF since the 
reference is across XML instances with our five tables. 
For example, the bidder of an open auction is stored as a 
“person” attribute with the person’s id as the value in the 
open auction XML instance.  
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We manually rewrote the original XMark queries to 
use joins among our five tables.   Some of the query 
rewrites are shown in the appendix. 

We generated data only for the North America region 
and changed Q9 accordingly to avoid returning an empty 
result for Europe. Q13 (reconstruction query) does not 
have an auction item that satisfies the path 
/site/regions/australia/item used in the query. An 
optimization in the relational engine knows upfront that 
no rows will be returned and the path expression is not 
executed in the indexed case. We changed the query 
slightly to use “africa” instead of “australia” to return a 
non-null result. 

4.2 Experimental Setup and Results 
The XMark database is created for scale factors 0.5 and 
30, the latter having sixty times as many rows in each 
table as the former. The size of the XML data type 
instances are the same in both cases.  

XMLGEN generates a single XML instance whose 
size is 60 MB for scale 0.5 and 3.35 GB for scale 30. The 
number of rows in the PEOPLE, OPEN_AUCTIONS, 
CLOSED_AUCTIONS, ITEMS and CATEGORIES 
tables are 12750, 6000, 4875, 10875 and 500, 
respectively, for scale 0.5, and 765000, 360000, 292500, 
652500 and 30000, respectively, for scale 30.  

The disk space consumption for scale factor 0.5 is 142 
MB for the five tables and 345 MB for the primary XML 
indexes. The secondary XML indexes of each type 
(PATH, PROPERTY and VALUE) took up another 101 
MB. The corresponding sizes for scale factor 30 are 
8.3GB, 20GB and 5.9GB, respectively. 

The workload is run in single user mode on a 4-way 
700 MHz Pentium III machine running Windows Server 
2003. It has 2GB RAM and a 3-disk array of 36GB each.  
The database is a pre-release build of Microsoft SQL 
Server 2005. The query execution time is measured at the 
client.  

 
QUERY PRIMARY PATH_ 

VALUE 
PROPERTY VALUE 

Q1 5.8 28.8 6.7 28.8 
Q2 2.8 2.6 3.5 2.0 
Q3 2.2 1.8 2.3 2.4 
Q4 8.3 8.0 7.8 7.7 
Q5 2.9 2.9 2.7 2.9 
Q6 1.0 1.1 1.2 1.1 
Q7 7.9 43.6 14.7 12.8 
Q8 1.7 1.8 1.7 1.7 
Q9 0.6 0.6 0.6 0.6 
Q10 6.3 6.3 19.7 5.9 
Q11 3.7 3.8 3.8 3.7 
Q12 2.9 3.0 3.0 1.5 
Q13 2.8 3.4 5.4 2.6 
Q14 7.0 8.3 7.6 7.3 
Q15 7.7 7.5 7.5 6.4 
Q16 7.4 19.1 9.6 10.2 

Q17 3.0 2.0 1.9 2.0 
Q18 6.0 1.0 2.5 0.8 
Q19 2.3 5.7 5.5 2.4 
Q20 0.8 1.0 0.8 0.8 
Table 1 Gain in using XML index for XMark queries (i.e. 
execution time using XML blob/execution time using 
XML index) for scale factor 0.5.  

 
We compare the benefits of using the various XML 

indexes with the blob case. Table 1 shows the “gain” in 
using XML indexes as measured by the ratio of the 
execution times using XML blobs (i.e. without any XML 
indexes) and the execution times with different XML 
index configurations for scale factor 0.5. For example, the 
PROPERTY configuration creates the primary and 
PROPERTY XML indexes on each XML column since a 
secondary XML index is created on the Infoset table. 
These measurements are taken with no parallelism in 
query execution. Parallel plans make the gain higher in 
some cases. Owing to space limitations, we discuss the 
measurements for scale factor 30 briefly in Section 4.7. 

Execution on XML blobs evaluates simple path 
expressions without predicates and produces an Infoset 
work table with rows for the qualifying nodes and their 
subtrees. The PATH_ID column is not present in this 
work table. Predicates are applied as a post-filter step. The 
rest of query execution proceeds as in the indexed case 
described in Section 3. 

Looking at the gains in Table 1 — which gives the 
factor by which the choice of an XML index speeds up 
queries relative to the blob case — it is evident that XML 
indexes benefit the workload significantly. We consider a 
few of the queries below. 

4.3 Primary XML Index 
The performance gains are mainly related to parsing XML 
blob multiple times to evaluate the path expressions in the 
blob case. For primary XML index, not only is the parsing 
cost saved but also path expressions of the form 
“path=value” can be evaluated faster using the PATH_ID 
and VALUE columns. A case in point is Q4 (ordered 
access query), where the path expressions 
/site/open_auctions/open_auction/bidder/personref 
[@person="person18829"] and (/site/open_auctions/ 
open_auction/bidder/personref [@person = 
"person10487"] are evaluated using the primary XML 
index and yields nodes whose relative positions can be 
determined by comparing their ORDPATH labels. 

Q6 (regular path expression query) performance is the 
same with and without XML indexes since the query 
counts the number of rows in the ITEMS table and no 
XML processing occurs. 

One of the queries — Q9 (reference chasing query) — 
is slower than the execution on XML blob. It scans all 
rows of the primary XML index and evaluates two joins 
on values within XML instances. Owing to the larger size 
of the primary XML index compared to the XML blobs, 
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the index scan cost outweighs the cost of parsing and 
slows down the query. Query Q20 (aggregation query) 
has about the same performance as blobs. 

4.4 PATH_VALUE Index 
The PATH_VALUE index is very effective in speeding 
up some of the XMark queries, as shown in the 
PATH_VALUE column in Table 1.  

Consider query Q1 (exact match query), which 
evaluates the two path expressions PE1 = 
(/site/people/person/name/text())[1] and PE2 = 
/site/people/person/@id[.= "person0"], as shown in the 
appendix. The path expression /site/people/person/@id is 
compiled into a PATH_ID value, and “person0” is the 
required VALUE, which is unique in the XML column in 
the PEOPLE table. The combination (PATH_ID, 
VALUE) yields a very selective seek into the 
PATH_VALUE index. The other path expression PE1 
yields a PATH_ID value. Lookup of the PATH_VALUE 
index with only this value would cause a large number of 
rows in the index to be scanned. Instead, a primary XML 
index seek occurs with the ORDPATH of the “person” 
node (and the same ID value). Scanning down the primary 
XML index, the rest of the path expression is evaluated 
using the PATH_ID column. Evaluation of the query on 
the XML blob is much slower since PE2 is evaluated on 
all rows in the PEOPLE table. For the qualifying rows, 
the XML blob is parsed a second time to evaluate PE1. 

The performance gain with Q7 (regular path 
expression query) is large. The XML blob query has to 
scan all rows in four of the five tables and evaluate the 
three path expressions //description, //annotation and 
//email. On the other hand, these path expressions locate 
the “description”, “annotation” and “email” node clusters 
within the PATH_VALUE index on each XML column, 
and eliminate duplicate ID values for each cluster. This 
yields very efficient evaluation of the query. 

Other queries also benefit from the PATH_VALUE 
index to varying degrees, such as Q16, which evaluates 
long path expressions. 

4.5 PROPERTY Index 
Q2 (ordered access query) evaluates the path expression 
/site/open_auctions/open_auction/bidder[1]/increase/text() 
on all rows of the OPEN_AUCTIONS table. The primary 
key value ID is known from this table. Using ID and the 
PATH_ID value for the path 
/site/open_auctions/open_auction/bidder (ignoring the 
ordinal [1]), an index seek into the PROPERTY index 
finds the first bidder node within the XML instance. A 
back join with the primary XML index on the (ID, 
ORDPATH) value for the bidder node and a subtree scan 
for the remaining part of the path expression 
(increase/text()) yields the result. As a matter of fact, 
performing the tree scan on the primary XML index for a 
given ID value also performs quite well for the given data. 

Q10 (construction of complex result query) finds 
persons with interest (the path expression PE is 
/site/people/person[profile/interest/@category]) and for 
each such person retrieves personal attributes. The 
primary key ID of the PEOPLE table and the compiled 
PATH_ID value is known. Consequently, PE can be 
evaluated very efficiently using an index seek on the 
PROPERTY index. For these persons (ID and ORDPATH 
values are known), various properties (e.g. gender and 
age) are retrieved efficiently from the PROPERTY index 
using ID and PATH_ID values for the different properties 
(identified by appropriate path expressions). The gain is 
pronounced compared to the other XML index types. An 
index seek into the PROPERTY index occurs for each 
property. In the other indexed cases, an index scan of the 
rows for each person occurs on the primary XML index to 
retrieve the properties. 

4.6 VALUE Index 
Q1 (exact match query) performs very well with the 
VALUE index. Two path expressions PE1 = 
(/site/people/person/name/text())[1] and PE2 = 
/site/people/person/@id[.= "person0"] occur in the query, 
as shown in the appendix. The value “person0” is unique 
in the XML column of the PEOPLE table, and the 
PATH_ID value is known at compilation time. 
Consequently, PE2  is very selective on the VALUE index. 
Other queries benefit to different extents. Q9 does not use 
the VALUE index and uses the primary XML index.  

4.7 Results for Scale Factor 30  
The gains for scale factor 30 generally are more subdued 
than scale factor 0.5 since the processing becomes I/O 
bound. We present only a few of the measurements in 
Table 2 owing to space limitations.  
 
QUERY PRIMARY PATH_ 

VALUE 
PROPERTY VALUE 

Q1 2.8 595.3 5.2 602.2 
Q5 1.2 1.1 0.8 1.1 
Q15 1.8 18.3 6.2 5.9 
Q16 1.4 48.2 4.5 5.0 
Table 2 Gain in using XML index for XMark queries (i.e. 
execution time using XML blob/execution time using 
XML index) for scale factor 30.  
 

Q1 performs extremely well with PATH_VALUE and 
VALUE indexes since the search predicate is highly 
selective. Bottom-up evaluation leads to improved gain in 
Q15 and Q16 as well using the PATH_VALUE index.  

In the case of primary XML index, many more rows in 
the Infoset table are scanned for Q1 to evaluate the 
predicate, for which the gain is smaller than in the case of 
scale factor 0.5. Similar effects are seen in the other 
queries as well, such as Q5.  
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The PROPERTY index is a little slower in Q1 because 
a larger number of rows in the PEOPLE table are scanned 
to find their primary key values that are then used in 
PROPERTY index lookup.  

5. Related Work 
Several ideas have been proposed in the literature for 
decomposing XML data into a fixed database schema. 
Document order and structure is efficiently captured using 
a single ORDPATH in our approach as opposed to the 
EDGE table [6], Monet system [14], XRel [21], XParent 
[10] and accelerator table [8].  

The EDGE table and XParent both use an Ordinal 
column to store the relative order of siblings in XML 
instances. They also store parent-child relationships, so 
that determining ancestor-descendant relationship and 
serializing XML require transitive closure computation. 
The XParent approach suggests materializing the 
ancestor-descendant relationship in an ANCESTOR table 
with a Level column that can be used for parent-child 
checks as well, but requires more space than ours.  

In both EDGE table and XParent, insertion of subtrees 
requires incrementing the Ordinal value of the “following-
siblings” [18]. The ANCESTOR table requires more 
maintenance. ORDPATH avoids such relabelling. 

The Monet system partitions the XML data into a set 
of tables corresponding to the different paths. This 
distributes the children of a node into different tables, and 
determining the children of a node requires a number of 
joins. The Monet and XRel systems store the byte range 
of each XML subtree in the original XML. Serialization 
of XML is straightforward: the byte range is used to 
retrieve the corresponding XML fragments, and avoids 
scanning rows from the primary XML index in our 
approach. Document order is determined by comparing 
the starting byte of each node. Ancestor-descendant 
relationship requires checking for byte range inclusion, 
and a check for the minimal containing range is needed 
for parent-child relationship; for ORDPATH, both result 
in matching prefixes. The byte ranges of the “following” 
nodes [18] must be changed when a subtree is inserted or 
deleted, which is an expensive operation. ORDPATH is 
very flexible for subtree insertion and deletion. 

The accelerator table labels XML nodes with their pre-
order and post-order ranks in the XML tree, and is 
otherwise an edge table. Its properties are similar to the 
byte range approaches. For example, ancestor-descendant 
relationship requires checking for inclusion of pre- and 
post-order rank pairs, and subtree insertion updates the  
pre- and post-order ranks of a large number of nodes.  

Path-value based queries require multiple joins to 
match the path in EDGE and accelerator tables. The 
Monet system looks up the value in the table 
corresponding to the path. For wildcard and //-axis 
queries, it potentially requires a large number of table 
look ups. The XRel and XParent schemes look up the data 

table using a mapped value for the path stored in a path 
directory. Property look ups have similar characteristics.  

Value-based lookups benefit from a separate VALUE 
table in the EDGE table approach, which is similar in 
spirit to our VALUE index. The Monet system has to 
search a number of CDATA tables for imprecisely 
specified path. The specified value is used as a filter on 
the data table in XRel and XParent, and the accelerator 
table.  

Our notion of secondary XML indexes can be applied 
to each of these approaches to speed up different query 
classes. On the other hand, we could introduce a path 
directory to save space in XML indexes, although it adds 
a JOIN in case of wildcard and //-axis queries. 

6. Conclusions 
This paper introduces techniques for indexing XML 
instances stored in a relational database in an 
undecomposed form. It introduces a B+tree called primary 
XML index that encodes the Infoset items of XML nodes. 
We have avoided the approach of decomposition of XML 
instances based on their schema since our goal is uniform 
data representation and query processing with or without 
XML schemas. Secondary XML indexes improve the 
performance of common classes of queries: (a) PATH (or 
PATH_VALUE) index for path-based queries, (b) 
PROPERTY index for property bag scenarios (c) VALUE 
index for value-based queries, and (d) work break index 
for content indexing with structural information. 
Performance measurements using the XMark benchmark 
show that these indexing ideas are highly effective for a 
wide class of queries.  

The above indexing ideas can be extended in several 
ways. Many applications know the expected query 
workload and will benefit by indexing only the paths 
occurring in the queries. An expression-based XML index 
is the solution. Navigational queries, such as opening a 
folder, go down a hierarchy one level at a time in breadth-
first order. If this type of query is prevalent in a workload, 
it is beneficial to create an index for the parent-child 
relationship.  ID/IDREF sets up linking within an XML 
instance which is different from document order. Primary 
XML index is not geared toward efficient traversal of 
IDREF links. Instead, an index can be created on the 
IDREF links for efficient traversal of IDREF links. 

XML index maintenance can be performed by 
reconstructing the index rows corresponding to the 
modified XML instance. Alternatively, it can be done 
incrementally, and ORDPATH is especially suited to 
handle such changes. This is an interesting topic for future 
investigation, as also is an experimental comparison 
between our indexing scheme and the comparable ones. 
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APPENDIX — XMARK Benchmark 
For completeness of the presentation, we present the 
XMARK queries adapted for our system. The data is 
contained in the following tables:  
Create table PEOPLE (p_id  int IDENTITY PRIMARY  

KEY, p_xmlperson     xml) 
Create table ITEMS (i_id  int IDENTITY PRIMARY  

KEY, i_xmlitem         xml) 
Create table open_auctions(oa_id  int IDENTITY 

PRIMARY KEY, oa_xmlopen_auction        xml) 
Create table closed_auctions(ca_id  int IDENTITY  

PRIMARY KEY, ca_xmlclosed_auction      xml) 
Create table categories(c_id  int identity primary key,  
          ct_xmlcategory  xml) 

Some of the queries described in the XMark 
benchmark and discussed in this paper are presented 
below along with their implementation in our system. 
Query Q1: Return the name of the person with ID 
'person0' 
select p_xmlperson.value('(/site/people/person/name 

/text())[1]', 'nvarchar(4000)')  
from people  
where p_xmlperson.exist('/site/people/person/@id[.=  
"person0"]') =1 
Query Q2: Return the initial increases of all open 
auctions. 
select oa_xmlopen_auction.query('<increase> {  

/site/open_auctions/open_auction/bidder[1] 
/increase/text() } </increase>')  

from open_auctions 
Query Q4: List the reserves of those open auctions where 
a certain person issued a bid before another person   
select oa_xmlopen_auction.query('<history>  

       {/site/open_auctions/open_auction/reserve/text()} 
</history>') 

from open_auctions 
where oa_xmlopen_auction.exist('  

(/site/open_auctions/open_auction/bidder/ 
      personref[@person = "person18829"])[1] <<  
(/site/open_auctions/open_auction/bidder/ 
      personref[@person = "person10487"])[1]')=1 
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Query Q6: How many items are listed on all continents?  
select count(i_id) from items   

Query Q7: How many pieces of prose are in our 
database? 
SELECT  SUM(c) as pieces_of_prose 
FROM (SELECT COUNT(i_id) AS c FROM items  
WHERE i_xmlitem.exist('//description') = 1UNION all  
SELECT COUNT(oa_id) AS c FROM open_auctions  
WHERE oa_xmlopen_auction.exist('//description') = 1 
UNION all  
SELECT COUNT(ca_id) AS c FROM closed_auctions  
WHERE ca_xmlclosed_auction.exist('//description') = 1 
UNION all  
SELECT COUNT(ct_id) AS c FROM categories  
WHERE ct_xmlcategory.exist('//description') = 1 
UNION all 
SELECT COUNT(i_id) AS c FROM items  
WHERE i_xmlitem.exist(‘//annotation') = 1 UNION all  
SELECT COUNT(oa_id) AS c FROM open_auctions  
WHERE oa_xmlopen_auction.exist('//annotation') = 1 
UNION all  
SELECT COUNT(ca_id) AS c FROM closed_auctions  
WHERE ca_xmlclosed_auction.exist('//annotation') = 1 
UNION all  
SELECT COUNT(ct_id) AS c FROM categories  
WHERE ct_xmlcategory.exist(‘//annotation') = 1 
UNION all 
SELECT COUNT(i_id) AS c FROM items  
WHERE i_xmlitem.exist(‘//email') = 1 
UNION all  
SELECT COUNT(oa_id) AS c FROM open_auctions  
WHERE oa_xmlopen_auction.exist(‘//email') = 1 
UNION all  
SELECT COUNT(ca_id) AS c FROM closed_auctions  
WHERE ca_xmlclosed_auction.exist(‘//email') = 1 
UNION all  
SELECT COUNT(ct_id) AS c FROM categories  
WHERE ct_xmlcategory.exist(‘//email') = 1) as i 
Query Q9: List the names of persons and the names of 
the items they bought in Europe.  
SELECT t.p_xmlperson.query(' 

<person name="{(/site/people/person/name)[1]}">  
{sql:column("i_name")}</person>') 

FROM (     
      SELECT p_xmlperson, p_id, i_id, i_xmlitem.value('  

       (/site/regions/namerica/item/name)[1]',   
       'nvarchar(400)') i_name 

FROM    people LEFT OUTER JOIN closed_auctions  
       ON (p_xmlperson.value('  

(/site/people/person/@id)[1]',  
'nvarchar(400)') =  

  ca_xmlclosed_auction.value(' 
(/site/closed_auctions/closed_auction/ 
buyer/@person)[1]', 'nvarchar(400)') 

       LEFT OUTER JOIN items  
       ON (ca_xmlclosed_auction.value(' 

(/site/closed_auctions/closed_auction/ 

itemref/@item)[1]', 'nvarchar(400)') =  
i_xmlitem.value(' 
(/site/regions/namerica/item/@id)[1]',                      

'nvarchar(400)')) t ORDER BY p_id, i_id 
Query Q10: List all persons according to their interest; 
use French markup in the result. 
select  person.value('(.)[1]', 'varchar(50)') category,  

      cp.p_xmlperson.query( 
          '<personne><statistiques>                        

<sexe>{/site/people/person/gender/text()}</sexe>, 
<age>{/site/people/person/age/text()}</age>,                    
 <education>{/site/people/person/education/text()} 
</education>, <revenu> 
{/site/people/person/income/text()}</revenu> 
</statistiques><coordonnees> 
<nom>{/site/people/person/name/text()}</nom>,              
<rue>{/site/people/person/address/street/text()}</rue>,     
<ville>{/site/people/person/address/city/text()}</ville>,     
<pays>{/site/people/person/address/country/text()} 
</pays>, <reseau>                               
<courrier>{/site/people/person/emailaddress/text()} 
</courrier> 
<pagePerso>{/site/people/person/homepage/text()} 
</pagePerso></reseau></coordonnees>                
<cartePaiement>{/site/people/person/creditcard/text()} 
</cartePaiement></personne>') 
from people cp cross apply 
cp.p_xmlperson.nodes('/site/people/person/profile/interest
/@category') n(person) ORDER BY category 
Query Q16: Return the IDs of those auctions that have 
one or more keywords in emphasis.  
select ca_xmlclosed_auction.query(‘ 
          <person id ="{(/site/closed_auctions/ 

closed_auction/seller/@person)[1]}"/> ') 
from closed_auctions 
where ca_xmlclosed_auction.exist(‘ 

/site/closed_auctions/closed_auction/annotation/ 
description/parlist/listitem/parlist/listitem/text/ 
emph/keyword/text()') =1 

Query Q20: Group customers by their income and output 
the cardinality of each group. 
SELECT CAST( ('<result>' + '<preferred>' +  

 cast(sum(case when income>=100000 then 1    
               else 0 end) as nvarchar(10))+ '</preferred>' + 
            '<standard>' +                cast(sum(case when 
income<100000 and  

 income>=30000 then 1 else 0 end) as  
 nvarchar(10))+ '</standard>' + 

           '<challenge>' +  
 cast(sum(case when income<30000 then 1 else 0  
 end) as nvarchar(10)) + '</challenge>' + 

           '<na>' + cast(sum(case when income is null then 1  
         else 0 end) as nvarchar(10))+  

     '</na>' + '</result>' ) AS XML) 
FROM  (SELECT p_xmlperson.value(' 

(/site/people/person/profile/@income)[1]','float') 
as income FROM people) i 
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