Temporal and Real-Time Databases: A survey
Gultekin Ozsoyoglu and Richard T. Snodgrass
1995
Presented by Jian Xu
Discussion by Lan Wu

Outline
• Temporal database
• Real-time database

Temporal Database
• Time as an important domain
• Valid time and transaction time
 – Valid time models events in reality
 – Trans. time models facts known by database
• Temporal data, Temporal database
 – A database that supports some aspect of time.

An example (from wiki)
• a short biography of John Doe.
 – born on April 3rd, 1975 in Smallville. His birth was registered on April 4th, 1975.
 – He went to live on his own in Bigtown. Although he moved out on August 26th, 1994, he forgot to register the change of address officially.
 – He updated his record on December 27, 1994.
 – John Doe was accidentally hit by a truck on April 1st, 2001. The coroner reported his date of death on the next day.

Example (cont.)
• Recording valid time

<table>
<thead>
<tr>
<th>Name</th>
<th>Place</th>
<th>Start-T</th>
<th>End-T</th>
</tr>
</thead>
<tbody>
<tr>
<td>John Doe</td>
<td>Smallville</td>
<td>3-Apr-1975</td>
<td>= 26-Aug-1993</td>
</tr>
<tr>
<td>John Doe</td>
<td>Bigtown</td>
<td>26-Aug-1993</td>
<td>= 1-Apr-2001</td>
</tr>
</tbody>
</table>

Example (cont.)
• Need for Transaction time

<table>
<thead>
<tr>
<th>Name</th>
<th>Place</th>
<th>VTStart</th>
<th>VTEnd</th>
<th>TTStart</th>
<th>TTEnd</th>
</tr>
</thead>
<tbody>
<tr>
<td>John Doe</td>
<td>Smallville</td>
<td>03/04/1975</td>
<td>=</td>
<td>04/04/1975</td>
<td>27/12/1994</td>
</tr>
<tr>
<td>John Doe</td>
<td>Bigtown</td>
<td>26/08/1993</td>
<td>=</td>
<td>27/12/1994</td>
<td>=</td>
</tr>
</tbody>
</table>
Some approaches

- Temporal Relational
 - Data model
 - Extend relational model to support temporal data
 - Query languages
 - SQL based: TSQL2, HSQL, TDM...
 - RA based: Legol, TRA...
 - Other variations: Quel, QBE based

- Temporal Object-Oriented
 - Data models
 - Caruso, TIGUKAT, TOODM...
 - Query languages
 - SQL based: VISION, TOOSQL

A close look at TSQL2

- Temporal query language TSQL2
 - Record a media plan in a Temporal Database

 CREATE TABLE NBCShows
 (ShowName Char(30) NOT NULL,
 InsertionLength INTERVAL SECOND,
 Cost Integer
) AS VALID STATE YEAR(2) TO NBCSeason;

 - Insert temporal record into the table

 INSERT INTO NBCShows
 VALUES ('Roseanne', INTERVAL '30',
 SECOND, 251000) VALID TIMESTAMP
 'Spring season 1994';

A close look at TSQL2

- Query the database!

 Example 2 How long has the Roseanne show run?

 SELECT SNAPSHOT ShowName,
 CAST(VALID(N) TO INTERVAL DAY)
 FROM NBCShows(Showname) AS N
 WHERE N.ShowName = 'Roseanne'

Temporal-Query processing

- Focus on Temporal-Relational db.
- Query optimization
 - Highly desired
 - DB size grows monotonically
 - More Involved
 - predicates involving time are harder to optimize
 - Inequalities are common
 - Opportunities exist
 - Time is one-dimension, single direction
Temporal Operations

- **New joins**
 - As time is presented as intervals, joins over temporal field involves interval comparison.
 - Implicit valid-time selection, only rows which are valid at the same time are joined
- **Temporal Indexes**
 - R-tree *designed for objects that has spans over dimensionalities*
 - Interval-tree *designed for intervals*

(looks) Related Models

- **Temporal**
 - Record time related tuples and query them
- **Time series**
 - Identifying the nature of the phenomenon represented by the sequence of observations
 - Forecasting
- **Stream**
 - Another sequential model

A note for stream system

- A stream can be views as a queue of data arriving at a port of your computer
- Stream elements can be time-stamped and treated as temporal data
- A number of temporal queries also apply to stream data
- Stream also have other distinctive characteristics and requirements

Have a break

The Real-time World

- **Real-time system**
 - Rapid reaction to events
 - Industry control, security alert ...
- **Real-time database**
 - Operation need to be finished timely
 - Validness of a results depends also on time

Motivations

- **Real-time system is commonly used.**
 - Aero-craft control system
 - Various of Surveillance, Detection, and Tracking tasks
- **Data collected by RT-sys need also be processed in real time**
 - To support decision
 - To ensure timely reaction
New types of transactions

- Hard, soft and firm transactions
 - Hard: transaction should never miss deadline
 - Soft: increasing penalty on miss of deadline
 - Firm: 0-1 penalty

- Transaction type affects policy and strategy on transaction-processing

Discussion

- Give examples for
 - Hard transaction
 - Soft transaction
 - Firm transaction
 and compare their common characters and differences.

Other factors

- Factors characterize real-time trans.
 - Transaction arrival pattern
 - Data access type
 - Accessed-object properties
 - Knowledge of items to be used
 - CPU and I/O time knowledge

Consistency

- Internal and external consistency
 - Internal: data satisfies constraints
 - External: data always reflect reality
 both with respect to transactions

- For real-time database, maintaining external consistency is of great importance

New Trans. Management Ideas

- Compare real-time transaction to conventional trans., management.
 - Trans. cooperate v.s. compete
 - Diff. in resolving data and resource conflicts
 - DBMS, maximize resource utilization
 - RT-DBMS, satisfy time constraints

Discussion

- Compare transaction management in conventional database to what in real-time database and reason why transaction cooperative is preferred.

- Do you find other factors that may shape the transaction management differently in the two types of systems?
Trans. processing in RT-DB

• Processing Hard-Deadline transaction
 – database need to ENSURE the transaction can be finished on time
 – Needs complete knowledge on above factors
 – Utilize of real-time task scheduling

Trans. processing in RT-DB

• Processing Soft-Deadline/Firm-Deadline
 • scheduling
 – Earliest-deadline first
 – Highest-value first
 – least-slack time first
 – dynamic priority assignment
 • Concurrency control
 – lock-based protocols
 – Timestamp ordering protocols
 – Optimistic concurrency control protocols

Conclusion

• Both types of db are desired and has wide application
• A lot of problems need to be investigated

• Spatial-Temporal database
• Stream system addresses some real-time applications.