Birch: An efficient data clustering method for very large databases

Tian Zhang, Raghu Ramakrishnan, Miron Livny

CPSC 504
Presenter: Joel Lanir
Discussion: Dan Li

Outline
- What is data clustering
- Data clustering applications
- Previous Approaches
- Birch's Goal
- Clustering Feature
- Birch clustering algorithm
- Clustering example

What is Data Clustering?
A cluster is a closely-packed group. A collection of data objects that are similar to one another and treated collectively as a group.

Data Clustering is the partitioning of a dataset into clusters

Data Clustering
- Helps understand the natural grouping or structure in a dataset
- Large set of multidimensional data
- Data space is usually not uniformly occupied
- Identify the sparse and crowded places
- Helps visualization

Discussion
- Can you give some examples for very large databases? What applications can you imagine that require such large databases for clustering?
- What are the special requirements that “large” databases pose on clustering, or more general on data mining?

Some Clustering applications
- Biology – building groups of genes with related patterns
- Marketing – partition the population of consumers to market segments
- Division of WWW pages into genres.
- Image segmentations – for object recognition
- Land use – Identification of areas of similar land use from satellite images
- Insurance – Identify groups of policy holders with high average claim cost
Data Clustering – previous approaches

- probability based (Machine learning): make wrong assumption that distributions on attributes are independent on each other
- Probability representations of clusters is expensive

Approaches

Distance Based (statistics)
- Must be a distance metric between two items
- Assumes that all data points are in memory and can be scanned frequently
- Ignores the fact that not all data points are equally important
- Close data points are not gathered together
- Inspects all data points on multiple iterations

These approaches do not deal with dataset and memory size issues!

Clustering parameters

- Centroid – Euclidian center
- Radius – average distance to center
- Diameter – average pairwise difference within a cluster

Radius and diameter are measures of the tightness of a cluster around its center. We wish to keep these low.

Clustering Feature (CF)

- CF is a compact storage for data on points in a cluster
- Has enough information to calculate the intra-cluster distances
- Additivity theorem allows us to merge sub-clusters

Birch’s goals:

- Minimize running time and data scans, thus formulating the problem for large databases
- Clustering decisions made without scanning the whole data
- Exploit the non uniformity of data – treat dense areas as one, and remove outliers (noise)
Clustering Feature (CF)

Given \(N \) \(d \)-dimensional data points in a cluster: \(\{ X_i \} \) where \(i = 1, 2, \ldots, N \),
\[CF = (N, LS, SS) \]

\(N \) is the number of data points in the cluster,
\(LS \) is the linear sum of the \(N \) data points,
\(SS \) is the square sum of the \(N \) data points.

CF Additivity Theorem

If \(CF_1 = (N_1, LS_1, SS_1) \), and \(CF_2 = (N_2, LS_2, SS_2) \) are the CF entries of two disjoint subclusters.

The CF entry of the subcluster formed by merging the two disjoint subclusters is:
\[CF_1 + CF_2 = (N_1 + N_2, LS_1 + LS_2, SS_1 + SS_2) \]

CF Tree

\(B = \text{Max. no. of CF in a non-leaf node} \)
\(L = \text{Max. no. of CF in a leaf node} \)

CF TREE

- \(T \) is the threshold for the diameter or radius of the leaf nodes
- The tree size is a function of \(T \). The bigger \(T \) is, the smaller the tree will be.
- The CF tree is built dynamically as data is scanned.

CF Tree Insertion

- Identifying the appropriate leaf: recursively descending the CF tree and choosing the closest child node according to a chosen distance metric
- Modifying the leaf: test whether the leaf can absorb the node without violating the threshold. If there is no room, split the node
- Modifying the path: update CF information up the path.

Birch Clustering Algorithm

- Phase 1: Scan all data and build an initial in-memory CF tree.
- Phase 2: condense into desirable length by building a smaller CF tree.
- Phase 3: Global clustering
- Phase 4: Cluster refining – this is optional, and requires more passes over the data to refine the results
Birch – Phase 1
- Start with initial threshold and insert points into the tree
- If run out of memory, increase threshold value, and rebuild a smaller tree by reinserting values from older tree and then other values
- Good initial threshold is important but hard to figure out
- Outlier removal – when rebuilding tree remove outliers

Birch - Phase 2
- Optional
- Phase 3 sometime have minimum size which performs well, so phase 2 prepares the tree for phase 3.
- Removes outliers, and grouping clusters.

Birch – Phase 3
- Problems after phase 1:
 - Input order affects results
 - Splitting triggered by node size
- Phase 3:
 - cluster all leaf nodes on the CF values according to an existing algorithm
 - Algorithm used here: agglomerative hierarchical clustering

Birch – Phase 4
- Optional
- Additional scan/s of the dataset, attaching each item to the centroids found.
- Recalculating the centroids and redistributing the items.
- Always converges

Clustering example
- From top to bottom:
 - BIRCH classification
 - Visible wavelength band
 - Near-infrared band

Clustering example
- K-means Clustering to 5 classes
Conclusions
- Birch performs faster than then existing algorithms on large datasets
- Scans whole data only once
- Handles outliers

Discussion
- After reading the two papers for data mining, what do you think is the criteria to say if a data mining algorithm is “good”?
- Efficiency?
- I/O cost?
- Memory/disk requirement?
- Stability?
- Immunity to abnormal data?

Thanks for listening