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Abstract. The problem of answering queries using views is
to find efficient methods of answering a query using a set of
previously materialized views over the database, rather than
accessing the database relations. The problem has received
significant attention because of its relevance to a wide variety
of data management problems, such as data integration, query
optimization, and the maintenance of physical data indepen-
dence. To date, the performance of proposed algorithms has
received very little attention, and in particular, their scale up
in the presence of a large number of views is unknown. We
first analyze two previous algorithms, the bucket algorithm
and the inverse-rules algorithm, and show their deficiencies.
We then describe the MiniCon algorithm, a novel algorithm
for finding the maximally-contained rewriting of a conjunc-
tive query using a set of conjunctive views. We present the first
experimental study of algorithms for answering queries using
views. The study shows that the MiniCon algorithm scales up
well and significantly outperforms the previous algorithms.
We describe an extension of the MiniCon algorithm to handle
comparison predicates, and show its performance experimen-
tally. Finally, we describe how the MiniCon algorithm can be
extended to the context of query optimization.

Keywords: Materialized views – Data integration – Query
optimization – Web and databases

1 Introduction

The problem of answering queries using views (otherwise
known as rewriting queries using views) has recently received
significant attention because of its relevance to a wide vari-
ety of data management problems [Hal01]: query optimiza-
tion [CKPS95,LMSS95,ZCL+00], maintenance of physical
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data independence [YL87,TSI96,PDST00], data integration
[LRO96,DG97b,KW96,LKG99], and data warehouse and
web-site design [HRU96,TS97]. Informally speaking, the
problem is the following. Suppose we are given a queryQover
a database schema, and a set of view definitionsV1, . . . , Vn

over the same schema. Is it possible to answer the queryQ
using only the answers to the viewsV1, . . . , Vn, and if so,
how?

There are two main contexts in which the problem of an-
swering queries using views has been considered. In the first
context, where the goal is query optimization or maintenance
of physical data independence [YL87,TSI96,CKPS95], we
search for an expression that uses the views and isequivalent
to the original query. Here it is usually assumed that the num-
ber of views is on the same order as the size of the schema. The
second context is that of data integration, where views describe
a set of autonomous heterogenous data sources. A user poses
a query in terms of a mediated schema, and the data integra-
tion system needs to reformulate the query to refer to the data
sources. In a subsequent phase, the queries over the sources
are optimized and executed. The reformulation problem can
be solved by algorithms for answering queries using views,
though in this context, we usually cannot find a rewriting that
is equivalent to the user query because of the data sources’ lim-
ited coverage. Instead, we search for amaximally-contained
rewriting, which provides the best answer possible, given the
available sources. When the query and views are conjunc-
tive (i.e., select-project-join) without comparison predicates,
the maximally-contained rewriting is a union of conjunctive
queries over the views. In some data integration applications,
the number of data sources may be quite large – for example,
data sources may be a set of web sites, a large set of suppliers
and consumers in an electronic marketplace, or a set of peers
containing fragments of a larger data set in a peer-to-peer en-
vironment. Hence, the challenge in this context is to develop
an algorithm that scales up in the number of views.

We consider the problem of answering conjunctive queries
using a set of conjunctive views in the presence of a large
number of views. In general, this problem is NP-complete
because it involves searching through a possibly exponential
number of rewritings [LMSS95]. Previous work has mainly
considered two algorithms for this purpose. The bucket algo-
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rithm, developed as part of the Information Manifold System
[LRO96], controls its search by first considering each subgoal
in the query in isolation, and creating a bucket that contains
only the views that are relevant to that subgoal. The algo-
rithm then creates rewritings by combining one view from
every bucket. As we show, the combination step has several
deficiencies, and does not scale up well. The inverse-rules al-
gorithm, developed in [Qia96,DG97a], is primarily used in
the InfoMaster System [DG97a]. The inverse-rules algorithm
considers rewritings for each database relation independent of
any particular query. Given a user query, these rewritings are
combined appropriately.We show that the rewritings produced
by the inverse-rules algorithm need to be further processed in
order to be appropriate for query evaluation. Unfortunately,
in this additional processing step the algorithm must dupli-
cate much of the work done in the second phase of the bucket
algorithm.

Based on the insights into the previous algorithms, we
introduce the MiniCon algorithm, which addresses their limi-
tations and scales up to a large number of views. The key idea
underlying the MiniCon algorithm is a change of perspec-
tive: instead of building rewritings by combining rewritings
for each query subgoal or database relation, we consider how
each of thevariablesin the query can interact with the avail-
able views. The result is that the second phase of the MiniCon
algorithm needs to consider drastically fewer combinations of
views. Hence, as we show experimentally, the MiniCon algo-
rithm scales up much better. The specific contributions of the
paper are the following:

• We describe the MiniCon algorithm and its properties.
• We present a detailed experimental evaluation and analy-

sis of algorithms for answering queries using views. The
experimental results show: (1) the MiniCon algorithm sig-
nificantly outperforms the bucket and inverse-rules algo-
rithms; and (2) the MiniCon algorithm scales up to hun-
dreds of views, thereby showing for the first time that an-
swering queries using views can be efficient on large scale
problems. We believe that our experimental evaluation in
itself is a significant contribution that fills a void in previ-
ous work on this topic.

• We describe an extension of the MiniCon algorithm to
handle comparison predicates and experimental results on
its performance.

• We describe an extension of the MiniCon algorithm to the
context of cost-based query optimization, where the goal
is to find the single cheapest plan for the query using the
views. In doing so we distinguish the role of two sets of
views: those that are needed for the logical correctness of
the plan, and those that are only needed to reduce the cost
of the plan. We show that different techniques are needed
in order to identify each of these sets.

This paper focuses on the problem of answering queries
using views for select-project-join queries under set seman-
tics. While such queries are quite common in data integra-
tion applications, many applications will need to deal with
queries involving grouping and aggregation, semi-structured
data, nested structures and integrity constraints. Indeed, the
problem of answering queries using views has been considered
in these contexts as well [GHQ95,SDJL96,CNS99,GRT99,
PV99,CGLV99,DL97,Gry98]. In contrast to these works, our

focus is on obtaining a scalable algorithm for answering
queries using views and the experimental evaluation of such
algorithms. Hence, we begin with the class of select-project-
join queries.

The paper is organized as follows. Section 2 formally de-
fines the problem, and Sect.3 discusses the limitations of the
previous algorithms. Section 4 describes the MiniCon algo-
rithm, and Sect.5 presents the experimental evaluation. Sec-
tion 6 describes an extension of the MiniCon algorithm to
comparison predicates. Section 7 describes how to extend the
MiniCon algorithm to context of query optimization. Section 8
discusses related work and Sect.9 concludes. The proof of the
MiniCon algorithm is described in Appendix A.

2 Preliminaries

Queries and views:we consider the problem of answer-
ing queries using views forconjunctive queries(i.e., select-
project-join queries). Aconjunctive queryhas the form:

q(X̄) :- e1(X̄1), . . . , en(X̄n)

where q and e1, . . . , en are predicate names. The atoms
e1(X̄1), . . ., en(X̄n) are thesubgoalsin the body of the
query, wheree1, . . . , en refer to database relations. The atom
q(X̄) is called theheadof the query, and refers to the an-
swer relation. The tuples̄X, X̄1, . . . , X̄n contain either vari-
ables or constants. We require that the query besafe, i.e., that
X̄ ⊆ X̄1 ∪ . . . ∪ X̄n (that is, every variable that appears in
the head must also appear in the body). The variables inX̄
are thedistinguishedvariables of the query, and all the oth-
ers areexistentialvariables. We denote individual variables by
lowercase letters. We useV ars(Q) (Subgoals(Q)) to refer to
the set of variables (subgoals) inQ, andQ(D) to refer to the
result of evaluating the queryQ over the databaseD.

Note that unions can be expressed in this notation by allow-
ing a set of conjunctive queries with the same head predicate.
A view is a named query. If the query results are stored, we
refer to them as a materialized view, and we refer to the result
set as theextensionof the view. In Sect.6 we consider queries
that contain subgoals with comparison predicates<, ≤, �=. In
this case, we require that if a variablex appears in a subgoal of
a comparison predicate, thenxmust also appear in an ordinary
subgoal.

Example 1.Consider the following schema that we use
throughout the paper. The relationcites(p1,p2) stores pairs of
publication identifiers wherep1 citesp2. The relationsame-
Topic stores pairs of papers that are on the same topic. The
unary relationsinSIGMOD and inVLDB store ids of papers
published in SIGMOD and VLDB, respectively. The follow-
ing query asks for pairs of papers on the same topic that also
cite each other. Note that join predicates in this notation are
expressed by multiple occurrences of the same variables.

Q(x,y):- sameTopic(x,y), cites(x,y), cites(y,x)

Query containment and equivalence:the concepts of query
containment and equivalence enable us to compare between
queries and rewritings. We say that a queryQ1 is containedin
the queryQ2, denoted byQ1 � Q2, if the answer toQ1 is a
subset of the answer toQ2 for anydatabase instance. We say
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thatQ1 andQ2 areequivalentif Q1 � Q2 andQ2 � Q1, i.e.,
they produce the same set of tuples for any given database.

Containment mappingsprovide a necessary and sufficient
condition for testing query containment. A mappingτ from
V ars(Q2) to V ars(Q1) is a containment mapping if: (1)τ
maps every subgoal in the body ofQ2 to a subgoal in the body
of Q1; and (2)τ maps the head ofQ2 to the head ofQ1. The
queryQ2 containsQ1 if and only if there is a containment
mapping fromQ2 toQ1 [CM77].

Given a partial mappingτ on the variables of a query, we
extend it in the obvious manner to apply to sets of variables
and to subgoals of the query (when all the variables of the
subgoal are in the domain ofτ ).

Answering queries using views:given a queryQ and a set of
view definitionsV = V1, . . . , Vm, a rewriting of the query us-
ing the views is a query expressionQ′ whose body predicates
are eitherV1, . . . , Vm or comparison predicates.

We distinguish between two types of query rewritings:
equivalent rewritings,that are used in the contexts of query
optimization and the maintenance of physical data indepen-
dence, andmaximally-contained rewritings, that are used in
the context of data integration.

Definition 1. (Equivalent rewriting) LetQ be a query, and
V = V1, . . . , Vn be a set of views, both over the same database
schema. The queryQ′ is an equivalent rewriting ofQ us-
ing V if for any databaseD, the result of evaluatingQ′ over
V1(D), . . . , Vn(D) is the same asQ(D).

Example 2.Consider the query from Example 1 and the fol-
lowing views. The viewV1 stores pairs of papers that cite each
other, andV2 stores pairs of papers on the same topic and each
of which cites at least one other paper.

Q(x,y):- sameTopic(x,y), cites(x,y), cites(y,x)
V1(a,b):- cites(a,b), cites(b,a)
V2(c,d) :- sameTopic(c,d), cites(c,c1), cites(d,d1)

The following is an equivalent rewriting ofQ:

Q’(x,y):- V1(x,y), V2(x,y) .

To check thatQ’ is an equivalent rewriting, we unfold the view
definitions to obtainQ”, and show thatQ is equivalent toQ”
using a containment mapping (in this case it’s the identity on
x andy andx1 → y, y1 → x).

Q”(x,y):- cites(x,y), cites(y,x), sameTopic(x,y), cites(x,x1)
cites(y,y1)

Data integration: one of the main uses of algorithms for an-
swering queries using views is in the context of data integra-
tion systems that provide their users with a uniform interface
to a multitude of data sources [LRO96,KW96,FW97,Ull97,
LKG99]. Users pose queries in terms of amediated schema,
which is a set of relations designed to capture the salient as-
pects of the application. The data, however, is stored in the
sources. In order to be able to translate users’ queries into
queries on the data sources, the data integration system needs
a description of the contents of the sources. One of the ap-
proaches to specifying such descriptions is to describe a data
source as a view over the mediated schema, specifying which
tuples can be found in the source. For example, in our domain,

we may have two data sources,S1 andS2, containing pairs
of SIGMOD (respectively, VLDB) papers that cite each other.
The sources can be described as follows:

S1(a,b):- cites(a,b), cites(b,a), inSIGMOD(a),
inSIGMOD(b)

S2(a,b):- cites(a,b), cites(b,a), inVLDB(a), inVLDB(b)

Given a queryQ, the data integration system first needs
to reformulateQ to refer to the data sources, i.e., the views.
There are two differences between this application of answer-
ing queries using views and that considered in the context of
query optimization. First, the views here are not assumed to
containall the tuples in their definition since the data sources
are managed autonomously. For example, the sourceS1 may
not contain all the pairs of SIGMOD papers that cite each other.
Second, we cannot always find an equivalent rewriting of the
query using the views because there may be no data sources
that contain all of the information the query needs. Instead,
we consider the problem of finding a maximally-contained
rewriting, as illustrated below.

Example 3.Continuing with our example, assuming we have
the data sources described byS1, S2 andV2 and the same
queryQ, the best rewriting we can generate is:

Q’(x,y):- S1(x,y), V2(x,y)
Q’(x,y):- S2(x,y), V2(x,y)

Note that this rewriting is a union of conjunctive queries,
describing multiple ways of obtaining answer to the query
from the available sources. The rewriting is not an equivalent
rewriting, since it misses any pair of papers that is not both in
SIGMOD or both in VLDB, but we do not have data sources
to provide us such pairs. Furthermore, since the sources are
not guaranteed to have all the tuples in the definition of the
view, our rewritings need to consider different views that may
have similar definitions. For example, suppose we have the
following sourceS3:

S3(a,b):- cites(a,b), cites(b,a), inSIGMOD(a),
inSIGMOD(b)

The definition ofS3 is identical to that ofS1, however,
because of source incompleteness, it may contain different
tuples thanS1. Hence, our rewriting will also have to include
the following in addition to the other two rewritings.

Q’(x,y):- S3(x,y), V2(x,y)

Maximally-contained rewritings are defined with respect
to a particular query language in which we express rewritings.
Intuitively, the maximally-contained rewriting is one that pro-
vides all the answers possible from a given set of sources.
Formally, they are defined as follows.

Definition 2. (Maximally-contained rewriting) The queryQ′
is a maximally-contained rewriting of a queryQ using the
viewsV = V1, . . . , Vn w.r.t. a query languageL if

1. for any databaseD, and extensionsv1, . . . , vn of the views
such thatvi ⊆ Vi(D), for 1 ≤ i ≤ n, thenQ′(v1, . . . , vn)
⊆ Q(D) for all i,

2. there is no other queryQ1 in the languageL, such that for
every databaseD and extensionsv1, . . . , vn as above (1)
Q′(v1, . . . , vn) ⊆ Q1(v1, . . . , vn) and (2)Q1(v1, . . . , vn)
⊆ Q(D), and there exists at least one database for which
(1) is a strict set inclusion.
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Note that in the above definition,Q1 andQ′ need to be in
the languageL, butQ does not have to.

Given a conjunctive queryQand a set of conjunctive views
V, the maximally-contained rewriting of a conjunctive query
may be a union of conjunctive queries (we refer to the indi-
vidual conjunctive queries asconjunctive rewritings). Hence,
considering Definition 2, if the languageL is less expressive
than non-recursive datalog, there may not be a maximally-
contained rewriting of the query. When the queries and the
views are conjunctive and do not contain comparison predi-
cates, it follows from [LMSS95] that we need only consider
conjunctive rewritingsQ′ that have at most the number of sub-
goals in the queryQ. The ability to find a maximally-contained
rewriting depends in subtle ways on other properties of the
problem. It follows from [AD98] that if: (1) the query contains
comparison subgoals; or (2) the views are assumed to be com-
plete, then there may not be a maximally-contained rewriting
if we considerL to be the language of unions of conjunctive
queries or even if we consider datalog with recursion.

Remark 1. It is important to emphasize at this point that
the definitions considered in this section only ensure that the
rewriting of the query obtains as many answers as possible
from a set of views, which is the main concern in the context
of data integration. The bulk of this paper is not concerned
with the problem of finding the rewriting that yields thecheap-
estquery execution plan over the views, which would be the
main concern if our goal was query optimization. In Sect.7 we
present an extension of the MiniCon algorithm to the context
of query optimization, and show how the ideas underlying the
MiniCon algorithm apply in that context as well. In addition,
we do not consider here the issue of ordering the results from
the sources. 
�

3 Previous algorithms

The theoretical results on answering queries using views
[LMSS95] showed that when there are no comparison predi-
cates in the query, the search for a maximally-contained rewrit-
ing can be confined to a finite space: an algorithm needs to con-
sider every possible conjunction ofn or fewer view atoms,
wheren is the number of subgoals in the query. Two pre-
vious algorithms, the bucket algorithm and the inverse-rules
algorithm, attempted to find more effective methods to pro-
duce rewritings that do not require such exhaustive search. In
this section we briefly describe these algorithms and point out
their limitations. In Sect.5 we compare these algorithms to
our MiniCon algorithm and show that the MiniCon algorithm
significantly outperforms them. We describe the algorithms
for queries and views without comparison subgoals.

3.1 The bucket algorithm

The bucket algorithm was developed as part of the Informa-
tion Manifold System [LRO96]. The key idea underlying the
bucket algorithm is that the number of query rewritings that
need to be considered can be drastically reduced if we first
consider each subgoal in the query in isolation and deter-
mine which views may be relevant to a particular subgoal.
The bucket algorithm is even more effective in the presence

of comparison subgoals because comparison subgoals often
enable the bucket algorithm to deem many views as being
irrelevant to a query.

We illustrate the bucket algorithm with the following query
and views. Note that the query now only asks for a set of papers,
rather than pairs of papers.

Q1(x) :- cites(x,y),cites(y,x),sameTopic(x,y)
V4(a) :- cites(a,b), cites(b,a)
V5(c,d) :- sameTopic(c,d)
V6(f,h) :- cites(f,g),cites(g,h),sameTopic(f,g)

In the first step, the bucket algorithm creates a bucket for each
subgoal inQ1. The bucket for a subgoalg contains the views
that include subgoals to whichg can be mapped in a rewriting
of the query. If a subgoalg unifies with more than one sub-
goal in a viewV , then the bucket ofg will contain multiple
occurrences ofV . 1 The bucket algorithm would create the
following buckets:

cites(x,y) cites(y,x) sameTopic(x,y)
V4(x) V4(x) V5(x,y)

V6(x,y) V6(x,y) V6(x,y)

Note that it is possible to unify the subgoalcites(x,y) in the
query with the subgoalcites(b,a) in V4, with the mappingx
→ b, y → a. However, the algorithm did not include the entry
V4(y) in the bucket because it requires that every distinguished
variable in the query be mapped to a distinguished variable in
the view.

In the second step, the algorithm considers conjunctive
query rewritings, each consisting of one conjunct from every
bucket. Specifically, for each element of the Cartesian product
of the buckets, the algorithm constructs a conjunctive rewriting
and checks whether it is contained (or can be made to be
contained by adding join predicates) in the query. If so, the
rewriting is added to the answer. Hence, the result of the bucket
algorithm is a union of conjunctive rewritings.

In our example, the algorithm will try to combineV4 with
the other views and fail (as we explain below). Then it will
consider the rewritings involvingV6, and note that by equat-
ing the variables in the head ofV6 a contained rewriting is
obtained. Finally, the algorithm will also note thatV6 andV5
can be combined. Though not originally described as part of
the bucket algorithm, it is possible to add an additional sim-
ple check that will determine that the resulting rewriting will
be redundant (becauseV5 can be removed). Hence, the only
rewriting in this example (which also turns out to be an equiv-
alent rewriting) is:

Q1’(x) :- V6(x,x)

The main inefficiency of the bucket algorithm is that it
misses some important interactions between view subgoals by
considering each subgoal in isolation. As a result, the buckets
contain irrelevant views, and hence the second step of the
algorithm becomes very expensive. We illustrate this point on
our example.

Consider the viewV4, and suppose that we decide to use
V4 in such a way that the subgoalcites(x,y) is mapped to the
subgoalcites(a,b) in the view, as shown below:

1 If we have knowledge of functional dependencies in the schema,
then it is often possible to recover an attribute that has been projected
away, but we do not consider this case here.
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Q1(x) :- cites(x,y), cites(y,x), sameTopic(x,y)
↓ ↓ ?

V4(a) :- cites(a,b), cites(b,a)

We can mapy to b and be able to satisfy bothcites pred-
icates. However, sinceb does not appear in the head ofV4, if
we useV4, then we will not be able to apply the join predicate
betweencites(x,y) andsameTopic(x,y) in the query. There-
fore,V4 is not usable for the query, but the bucket algorithm
would not discover this.

Furthermore, even if the query did not containsame-
Topic(x,y), the bucket algorithm would not realize that if it
usesV4, then it has to use it forbothof the query subgoals. Re-
alizing this would save the algorithm exploring useless com-
binations in the second phase.

As we explain later, the MiniCon algorithm discovers these
interactions in the first phase. In this example, MiniCon will
determine thatV4 is irrelevant to the query. In the case in which
the query does not contain the subgoalsameTopic(x,y), the
MiniCon algorithm will discover that the twocite subgoals
need to be treated atomically.

3.2 The inverse-rules algorithm

Like the bucket algorithm, the inverse-rules algorithm[Qia96,
DG97a] was also developed in the context of a data integration
system. The key idea underlying the algorithm is to construct
a set of rules thatinvert the view definitions, i.e., rules that
show how to compute tuples for the database relations from
tuples of the views. Given the views in the previous example,
the algorithm would construct the following inverse rules:

R1:cites(a, f1(a)) :- V4(a)
R2:cites(f1(a), a) :- V4(a)
R3:sameTopic(c,d) :- V5(c,d)
R4:cites(f, f2(f,h)) :- V6(f,h)
R5:cites(f2(f,h), h) :- V6(f,h)
R6:sameTopic(f, f2(f,h)) :- V6(f,h)

Consider the rules R1 and R2; intuitively, their meaning is
the following. A tuple of the form(p1) in the extension of the
viewV4 is a witness of two tuples in the relationcites. It is a
witness in the sense that it tells that the relationcites contains
a tuple of the form(p1, Z), for some value ofZ, and that the
relation also contains a tuple of the form(Z, p1), for thesame
value ofZ.

In order to express the information that the unknown value
of Z is the same in the two atoms, we refer to it using the
functional Skolem termf1(Z). Note that there may be several
values ofZ in the database that cause the tuple(p1) to be in
the self-join ofcites, but all that we know is that there exists
at least one such value.

The rewriting of a queryQ using the set of viewsV is sim-
ply the composition ofQ and the inverse rules forV. Hence,
one of the important advantages of the algorithm is that the
inverse rules can be constructed ahead of time in polynomial
time, independent of a particular query.

The rewritings produced by the inverse-rules algorithm, as
originally described in [DG97a], are not appropriate for query
evaluation for two reasons. First, applying the inverse rules
to the extension of the views may invert some of the useful
computation done to produce the view. Second, we may end

up accessing views that are irrelevant to the query. To illustrate
the first point, suppose we use the rewriting produced by the
inverse-rules algorithm in the case where the viewV6 has the
extension{ (p1, p1), (p2,p2) }.

First, we would apply the inverse rules to the extensions
of the views. Applying R4 would yieldcites(p1, f2(p1,p1)),
cites(p2, f2(p2,p2)), and similarly applying R5 and R6 would
yield the following tuples:

cites(p1, f2(p1,p1)),
cites(f2(p1,p1),p1),
cites(f2(p2,p2),p2),
sameTopic(p1,p1),
sameTopic(p2,p2).

Applying the queryQ1 to the tuples computed above ob-
tains the answersp1 andp2. However, this computation is
highly inefficient. Instead of directly using the tuples ofV6 for
the answer, the inverse-rules algorithm first computed tuples
for the relationcites, and then had to recompute the self-join
of cites that was already computed forV6. Furthermore, if the
extensions of the viewsV4 andV5 are not empty, then apply-
ing the inverse rules would produce useless tuples as explained
in Sect.3.1.

Hence, before we can fairly compare the inverse-rules al-
gorithm to the others, we need to further process the rules.
Specifically, we need to expand the query with every possible
combination of inverse rules. However, expanding the query
with the inverse rules turns out to repeat much of the work
done in the second phase of the bucket algorithm. In our ex-
ample, since we have four rules forcites and two rules for
sameTopic, we may need to consider 32 such expansions in
the worst case.

In the experiments described in Sect.5 we consider an ex-
tended version of the inverse-rules algorithm that produces
a union of conjunctive queries by expanding the definitions
of the inverse rules. We expanded the subgoals of the query
one at a time, so we could stop an expansion of the query
at the moment when we detect that a unification for a subset
of the subgoals will not yield a rewriting (thereby optimiz-
ing the performance of the inverse-rules algorithm). We show
that the inverse-rules algorithm can perform much better than
the bucket algorithm, but the MiniCon algorithm scales up
significantly better than either algorithm.

Remark 2.It is important to clarify why our study considers
the extended version of the inverse-rules algorithm, rather than
the original version. It is easy to come up with (real) exam-
ples in which the execution of plan generated by the original
inverse-rules algorithm would be arbitrarily worse than that
of the bucket algorithm or the MiniCon algorithm. Hence, we
face the usual tradeoff between spending significant time on
optimization, but with much more substantial savings at run-
time. An optimizer that would accept the result of the orig-
inal inverse-rules algorithm would definitely try to optimize
the plan by trying to reduce the number of joins it needs to
perform. By using the extended version of the inverse-rules
algorithm we are putting all three algorithms on equal footing
in the sense that one does not need more optimization than
the other. Optimizations will still be applied to them, but the
same optimizations can be applied to the results of each of the
algorithms. 
�
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4 The MiniCon Algorithm

The MiniCon algorithm begins like the bucket algorithm, con-
sidering which views contain subgoals that correspond to sub-
goals in the query. However, once the algorithm finds a partial
mapping from a subgoalg in the query to a subgoalg1 in
a view V , it changes perspective and looks at the variables
in the query. The algorithm considers the join predicates in
the query (which are specified by multiple occurrences of the
same variable) and finds the minimal additional set of subgoals
that need to be mapped to subgoals inV , given thatg will be
mapped tog1. This set of subgoals and mapping information
is called aMiniCon Description(MCD), and can be viewed as
a generalization of buckets. In the second phase, the algorithm
combines the MCDs to produce the rewritings. It is important
to note that because of the way we construct the MCDs, the
MiniCon algorithm does not require containment checks in
the second phase, giving it an additional speedup compared to
the bucket algorithm. Section 4.1 describes the construction of
MCDs, and Sect.4.2 describes the combination step. For ease
of exposition we describe the MiniCon algorithm for queries
and views without constants. The proof of correctness of the
MiniCon algorithm can be found in Appendix 9.

4.1 Forming the MCDs

We begin by introducing a few terms that are used in the de-
scription of the algorithm. Given a mappingτ fromV ars(Q)
to V ars(V ), we say that a view subgoalg1 coversa query
subgoalg if τ(g) = g1.

An MCD is a mapping from a subset of the variables in the
query to variables in one of the views. Intuitively, an MCD rep-
resents a fragment of a containment mapping from the query to
the rewriting of the query. The way in which we construct the
MCDs guarantees that these fragments can later be combined
seamlessly.

As seen in our example, we need to consider mappings
from the query to specializations of the views, where some
of the head variables may have been equated (e.g.,V6(x,x)
instead ofV6(x,y) in our example). Hence, every MCD has
an associatedhead homomorphism.A head homomorphism
h on a viewV is a mappingh from V ars(V ) to V ars(V )
that is the identity on the existential variables, but may equate
distinguished variables, i.e., for every distinguished variable
x, h(x) is distinguished, andh(x) = h(h(x)).

Formally, we define MCDs as follows.

Definition 3. (MiniCon descriptions) An MCDC for a query
Q over a viewV is a tuple of the form
(hC , V (Ȳ )C , ϕC , GC) where:

• hC is a head homomorphism onV ,
• V (Ȳ )C is the result of applyinghC toV , i.e.,Ȳ = hC(Ā),

whereĀ are the head variables ofV ,
• ϕC is a partial mapping fromV ars(Q) tohC(V ars(V ))
• GC is a subset of the subgoals inQ which are covered by

some subgoal inhC(V ) using the mappingϕC (note: not
all such subgoals are necessarily included inGC).

In words,ϕC is a mapping fromQ to the specialization
of V obtained by the head homomorphismhC .GC is a set of

subgoals ofQ that we cover by the mappingϕC . Property 1
below specifies the exact conditions we need to consider when
we decide which subgoals to include inGC . Note thatV (Ȳ )C

is uniquely determined by the other elements of an MCD, but
is part of an MCD specification for clarity in our subsequent
discussions. Furthermore, the algorithm will not consider all
the possible MCDs, but only those in whichhC is the least
restrictive head homomorphism necessary in order to unify
subgoals of the query with subgoals in a view.

The mappingϕC of an MCDC may map a set of vari-
ables inQ to the same variable inhC(V ). In our discussion,
we sometimes need to refer to a representative variable of
such a set. For each such set of variables inQ we choose
a representative variable arbitrarily, except that we choose a
distinguished variable whenever possible. For a variablex in
Q, ECϕC

(x) denotes the representative variable of the set to
which x belongs.ECϕC

(x) is defined to be the identity on
any variable that is not inQ.

The construction of the MCDs is based on the following
observation on the properties of query rewritings. The proof
of this property is a corollary of the correctness proof of the
MiniCon algorithm.

Property 1. LetC be an MCD forQ overV . ThenC can only
be used in a non-redundant rewriting ofQ if the following
conditions hold:

C1. For each head variablex of Q which is in the domain of
ϕC , ϕC(x) is a head variable inhC(V ).

C2. If ϕC(x) is an existential variable inhC(V ), then for
everyg, subgoal ofQ, that includesx: (1) all the variables
in g are in the domain ofϕC ; and (2)ϕC(g) ∈ hC(V )

Clause C1 is the same as in the bucket algorithm. Clause
C2 captures the intuition we illustrated in our example, where
if a variablex is part of a join predicate which is not enforced
by the view, thenxmust be in the head of the view so the join
predicate can be applied by another subgoal in the rewriting.
In our example, clause C2 would rule out the use ofV4 for
queryQ1 because the variableb is not in the head ofV4, but
the join predicate withsameTopic(x,y) has not been applied
in V4.

The algorithm for creating the MCDs is shown in Fig.1.
Consider the application of the algorithm to our example with
the queryQ1 and the viewsV4, V5, andV6. The MCDs that
will be created are shown in Fig.2.

We first consider the subgoalcites(x,y) in the query. As
discussed above, the algorithm does not create an MCD for
V4 because clause C2 of Property 1 would be violated (the
property would require thatV4 also cover the subgoalsame-
Topic(x,y) sinceb is existential inV4 ). For the same reason,
no MCD will be created forV4 even when we consider the
other subgoals in the query.

In a sense, the MiniCon algorithm shifts some of the work
done by the combination step of the bucket algorithm to the
phase of creating the MCDs. The bucket algorithm will dis-
cover thatV4 is not usable for the query when combining the
buckets. However, the bucket algorithm needs to discover this
many times (each time it considersV4 in conjunction with
another view), and every time it does so, it uses a containment
check, which is much more expensive. Hence, as we show
in the next section, with a little more effort spent in the first
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procedureformMCDs (Q, V)
/∗ Q andV are conjunctive queries.∗/

C = ∅.
For each subgoalg ∈ Q

For viewV ∈ V and every subgoalv ∈ V
Let h be the least restrictive head homomorphism onV

such that there exists a mappingϕ, s.t.ϕ(g) = h(v).
If h andϕ exist, then add toC any new MCDC

that can be constructed where:
(a)ϕC (respectively,hC ) is an extension ofϕ (respectively,h),
(b) GC is the minimal subset of subgoals ofQ such

thatGC , ϕC andhC satisfy Property 1, and
(c) It is not possible to extendϕ andh to ϕ′

C andh′
C

s.t. (b) is satisfied andG′
C , as defined in (b), is

a subset ofGC .
ReturnC

Fig. 1.First phase of the MiniCon algorithm: forming MCDs. Note
that condition (b) minimizesGc givena choice ofhC andϕC , and
is therefore not redundant with condition (c)

V(Ȳ ) h ϕ G
V5(c,d) c → c, d → d x → c, y → d 3
V6(f,f) f → f, h → f x → f, y → f 1,2,3

Fig.2.MCDs formed as part of our example of the MiniCon algorithm

phase, the overall performance of the MiniCon algorithm out-
performs the bucket algorithm and the inverse-rules algorithm.

Another interesting observation is the difference in per-
formance in the presence of repeated occurrences of the same
predicate in the views or the query. For the bucket algorithm
repeated occurrences lead to larger buckets, and hence more
combinations to check in the second phase. For the inverse-
rules algorithm, repeated occurrences mean there are more ex-
pansions to check in the second phase. In contrast, the Mini-
Con algorithm can more often rule out the consideration of
certain occurrences of a predicate due to violations of Prop-
erty 1.

Remark 3.(covered subgoals) : When we construct an MCD
C, we must determine the set of subgoals of the queryGC

that are covered by the MCD. The algorithm includes inGC

only theminimalset of subgoals that are necessary in order to
satisfy Property 1. To see why this is not an obvious choice,
suppose we have the following query and views:

Q1’(x) :- cites(x,y),cites(z,x), inSIGMOD(x)
V7(a) :- cites(a,b), inSIGMOD(a)
V8(c) :- cites(d,c), inSIGMOD(c)

One can also consider including the subgoalinSIG-
MOD(x) in the set of covered subgoals for the MCD for both
V7 andV8, becausex is in the domain of their respective
variable mappings anyway. However, our algorithm will not
includeinSIGMOD(x), and will instead create a special MCD
for it.

The reason for our choice is that it enables us to focus in the
second phase only on rewritings where the MCDs covermu-
tually exclusivesets of subgoals in the query, rather than over-
lapping subsets. This yields a more efficient second phase.
�

4.2 Combining the MCDs

Our method for constructing MCDs pays off in the second
phase of the algorithm, where we combine MCDs to build
the conjunctive rewritings. In this phase we consider combi-
nations of MCDs, and for each valid combination we create
a conjunctive rewriting of the query. The final rewriting is a
union of conjunctive queries.

The following property states that the MiniCon algorithm
need only consider combinations of MCDs that cover pairwise
disjoint subsets of subgoals of the query. The proof of the
property follows from the correctness proof of the MiniCon
algorithm.

Property 2. Given a queryQ, a set of viewsV, and the set of
MCDsC for Q over the views inV, the only combinations of
MCDs that can result in non-redundant rewritings ofQ are of
the formC1, . . . , Cl, where

D1. GC1 ∪ . . . ∪GCl
= Subgoals(Q), and

D2. for everyi �= j,GCi ∩GCj = ∅.

The fact that we only need to consider sets of MCDs that
provide partitions of the subgoals in the query drastically re-
duces the search space of the algorithm. Furthermore, even
though we do not discuss it here, the algorithm can also be ex-
tended to output the rewriting in a compact encoding that iden-
tifies the common subexpressions of the conjunctive rewrit-
ings, and therefore leads to more efficient query evaluation.
We note that had we chosen the alternate strategy in Remark 3,
clause D2 would not hold.

Given a combination of MCDs that satisfies Property 2,
the actual rewriting is constructed as shown in Fig.3.

In the final step of the algorithm we tighten up the rewrit-
ings by removing redundant subgoals as follows. Suppose a
rewritingQ′ includes two atomsA1 andA2 of the same view
V , whose MCDs wereC1 andC2, and the following condi-
tions are satisfied: (1) wheneverA1 (respectively,A2) has a
variable fromQ in positioni, thenA2 (respectively,A1) either
has the same variable or a variable that does not appear inQ in
that position; and (2) the ranges ofϕC1 andϕC2 do not over-
lap on existential variables ofV . In this case we can remove
one of the two atoms by applying toQ′ the homomorphism
τ that is: (1) the identity on the variables ofQ; and (2) is the
most general unifier ofA1 andA2. The underlying justifica-
tion for this optimization is discussed in [LMSS95], and it can
also be applied to the bucket algorithm and the inverse-rules
algorithm.

We note that even after this step, the rewritings may
still contain redundant subgoals. However, removing them in-
volves several tests for query containment; both inverse-rules
algorithm and the bucket algorithm require these removal steps
as well.

In our example, the algorithm will consider usingV5 to
cover subgoal3, but when it realizes that there are no MCDs
that cover either subgoal1 or 2 without covering subgoal3, it
will discardV5. Thus, the only rewriting that will be consid-
ered is

Q1’(x) :- V6(x,x).

Constants in the query and views:when the query or the view
include constants, we make the following modifications to the
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procedurecombineMCDs(C)
/∗ C are MCDs formed by the first step of the algorithm.∗/
/∗ Each MCD has the form(hC , V (Ȳ ), ϕC , GC , ECC). ∗/
Given a set of MCDs,C1, . . . , Cn, we define the function

EC onV ars(Q) as follows:
If for i 
= j, ECϕi(x) 
= ECϕj (x), defineECC(x) to be

one of them arbitrarily but consistently across ally
for whichECϕi(y) = ECϕi(x)

Let Answer = ∅
For every subsetC1, . . . , Cn of C such that

GC1 ∪ GC2 ∪ . . . ∪ GCn = subgoals(Q) and for every
i 
= j, GCi ∩ GCj = ∅
Define a mappingΨi on theȲi’s as follows:
If there exists a variablex ∈ Q such thatϕi(x) = y

Ψi(y) = x
Else

Ψi is a fresh copy ofy
Create the conjunctive rewriting

Q′(EC(X̄)) :- VC1(EC(Ψ1( ¯YC1))), . . . ,
VCn(EC(Ψn( ¯YCn)))

Add Q′ to Answer.
ReturnAnswer.

Fig. 3.Phase 2: combining the MCDs

algorithm. First, the domain and range ofϕC in the MCDs may
also include constants. Second, an MCD also records a (pos-
sibly empty) set of mappingsψC from variables inV ars(Q)
to constants.

When the query includes constants, we add the following
condition to Property 1:

C3. If a is a constant inQ it must be the case that either: (1)
ϕC(a) is a distinguished variable inhC(V ); or (2)ϕC(a)
is the constanta.

When the views have constants, we modify Property 1 as
follows:

• We relax clause C1: a variablex that appears in the head
of the query must either be mapped to a head variable in
the view (as before) or be mapped to a constanta. In the
latter case, the mappingx → a is added toψC .

• If ϕC(x) is a constanta, then we add the mappingx → a
to ψC . (Note that condition C2 only applies to existential
variables, and therefore ifϕC(x) is a constant that appears
in the body ofV but not in the head, an MCD is still
created).

Next, we combine MCDs with some extra care. Two
MCDs, C1 andC2, both of which havex in their domain,
can be combined only if they: (1) either both mapx to the
same constant; or (2) one (e.g.,C1) mapsx to a constant and
the other (e.g.,C2) mapsx to distinguished variable in the
view. Note that ifC2 mapsx to an existential variable in the
view, then the MiniCon algorithm would never consider com-
biningC1 andC2 in the first place, because they would have
overlappingGC sets.

Finally, we modify the definition ofEC, such that when-
ever possible, it chooses a constant rather than a variable.
�

The following theorem summarizes the properties of the
MiniCon algorithm. Its full proof is given in the appendix.

Theorem 1. Given a conjunctive queryQ and conjunctive
viewsV, both without comparison predicates or constants, the
MiniCon algorithm produces the union of conjunctive queries
that is a maximally-contained rewriting ofQ usingV. 
�

It should be noted that the worst-case asymptotic running
time of the MiniCon algorithm is the same as that of the bucket
algorithm and of the inverse-rules algorithm after the modifi-
cation described in Sect.3.2. In all cases, the running time is
O(nmM)n, wheren is the number of subgoals in the query,
m is the maximal number of subgoals in a view, andM is the
number of views.

The next section describes experimental results showing
the differences between the three algorithms in practice.

5 Experimental results

The goal of our experiments was twofold. First, we wanted to
compare the performance of the bucket algorithm, the inverse-
rules algorithm, and the MiniCon algorithm in different cir-
cumstances. Second, we wanted to validate that MiniCon can
scale up to large number of views and large queries. Our ex-
periments considered three classes of queries and views: (1)
chain queries; (2) star queries; and (3) complete queries, all of
which are well known in the literature [MGA97].

To facilitate the experiments, we implemented a random
query generator which enables us to control the following pa-
rameters: (1) the number of subgoals in the queries and views;
(2) the number of variables per subgoal; (3) the number of
distinguished variables; and (4) the degree to which predicate
names are duplicated in the queries and views. The results
are averaged over multiple runs generated with the same pa-
rameters (at least 40, and usually more than 100). All graphs
either contain 95% confidence intervals or the intervals were
less than twice as thick as the line in the graph and were thus
excluded. An important variable to keep in mind throughout
the experiments is the number of rewritings that can actually
be obtained.

In most experiments we considered queries and views that
had the same query shape and size. Our experiments were all
run on a dual Pentium II 450 MHz running Windows NT 4.0
with 512MB RAM. All of the algorithms were implemented
in Java and compiled to an executable.

5.1 Chain queries

In the context of chain queries we consider several cases. In
the first case, shown in Fig.4, only the first and last variables of
the query and the view are distinguished. Therefore, in order
to be usable, a view has to be identical to the query, and as a
result there are very few rewritings. The bucket algorithm per-
forms the worst, because of the number and cost of the query
containment checks it needs to perform (it took on the order
of 20 s for five views of size 10 subgoals, and hence we do not
even show it on the graph). The inverse-rules algorithm and
the MiniCon algorithm scale linearly in the number of views,
but the MiniCon algorithm outperforms the inverse-rules al-
gorithm by a factor of about 2 (and this factor is independent
of query and view size). In fact, the MiniCon algorithm can
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Chain queries with 10 subgoals and two 
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Fig. 4. This graph considers chain queries with two distinguished
variables in the views, and shows that the MiniCon algorithm and
the inverse-rules algorithms both scale up to hundreds of views. The
MiniCon algorithm outperforms the inverse-rules algorithm by a fac-
tor of 2
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Fig. 5.This graph shows chain queries where the views are of lengths
2, 3, and 4, and the query has 12 subgoals

handle more than 350 views with ten subgoals each in less
than 1 s.

The difference in the performance between the inverse-
rules algorithm and the MiniCon algorithm in this context and
in others is due to the second phases of the algorithms. In this
phase, the inverse-rules algorithm is searching for a unifica-
tion of the subgoals of the query with heads of inverse rules.
The MiniCon algorithm is searching for sets of MCDs that
cover all the subgoals in the query, but cover pairwise disjoint
subsets. Hence, the MiniCon algorithm is searching a much
smaller space, because the number of subgoals is smaller than
the number of variables in the query. Moreover the MiniCon
algorithm is performing better because in the first phase of the
algorithm it already removed from consideration views that
may not be usable due to violations of Property 1. In contrast,
the inverse-rules algorithm must try unifications that include
such views and then backtrack. The amount of work that the
inverse-rules algorithm will waste depends on the order in
which it considers the subgoals in the query when it unifies
them with the corresponding inverse rules. If a failure appears
late in the ordering, more work is wasted. The important point
to note is that the optimal order in which to consider the sub-

Chain queries with 8 subgoals and all 
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Fig. 6. Chain queries where all variables in the views are distin-
guished. Note that the containment check required by the bucket
algorithm causes it to be roughly twice as slow as either the MiniCon
algorithm or inverse-rules algorithm

goals depends heavily on the specific views available and is,
in general, very hard to find. Hence, it would be hard to extend
the inverse-rules algorithm such that its second phase would
compare in performance to that of the MiniCon algorithm.

In the second case we consider, shown in Fig.5, the views
are shorter than the query (of lengths 2, 3 and 4, while the
query has 12 subgoals).

Finally, as shown in Fig.6, we also considered another case
in which all the variables in the views are distinguished. In this
case, there are many rewritings (often more than 1,000), and
hence the performance of the algorithms is limited because of
the sheer number of rewritings. Since virtually all combina-
tions produce contained rewritings, any complete algorithm is
forced to form a possibly exponential number of rewritings;
for queries and views with eight subgoals, the algorithms take
on the order of 100 s for five views. The graph in Fig.6 shows
that on average the MiniCon algorithm performs better than
the inverse-rules algorithm by anywhere between 10% and
25%. However, in this case the variance in the results is very
high, and hence it is hard to draw any general conclusions.
(The confidence intervals cannot be shown in the graph with-
out cluttering it.) The reason for the large variance is that some
of the queries in the workload have a huge number of rewrit-
ings (and hence take much more time), while others have a
very small number of rewritings. Other experiments showed
that the savings for the MiniCon algorithm over the inverse-
rules algorithm, as expected, grew with the number of views
and the number of subgoals in the query; this is because the
number of combinations that was considered was much higher
and thus the smaller search space that the MiniCon algorithm
considered was much more evident.

5.2 Star and complete queries

In star queries, there exists a unique subgoal in the query that
is joined with every other subgoal, and there are no joins be-
tween the other subgoals. In the cases of two distinguished
variables in the views or all view variables being distinguished,
the performance of the algorithms mirrors the corresponding
cases of chain queries. Hence, we omit the details of these
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Star queries with 10 subgoals with 
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Fig. 7. This figure shows the running times for star queries, where
the distinguished variables in the views are those not participating
in the joins. The MiniCon algorithm significantly outperforms the
inverse-rules algorithm

experiments. Figure 7 shows the running times of the inverse-
rules algorithm and the MiniCon algorithm in the case where
the distinguished variables in the views are the ones that do
not participate in the joins. In this case, there are relatively
few rewritings. We see that the MiniCon algorithm scales up
much better than the inverse-rules algorithm. For 20 views
with ten subgoals each, the MiniCon algorithm runs 15 times
faster than the inverse-rules algorithm. Here the explanation is
that the first phase of the MiniCon algorithm is able to prune
many of the irrelevant views, whereas the inverse-rules algo-
rithm discovers that the views are irrelevant only in the second
phase, and often it must be discovered multiple times.

An experiment with similar settings but for complete
queries is shown in Fig.8. In complete queries every subgoal
is joined with every other subgoal in the query. As the figure
shows, the MiniCon algorithm outperforms the inverse-rules
algorithm by a factor of 2.3 for 20 views, and by a factor of
3 for 50 views, which is less of a speedup than with of star
queries. The explanation for this is that there are more joins in
the query, and thus the inverse-rules algorithm is able to detect
useless views earlier in its search because failures to unify oc-
cur more frequently. Finally, we also ran some experiments on
queries and views that were generated randomly with no spe-
cific pattern. The results showed that the MiniCon algorithm
still scales up gracefully, but the behavior of the inverse-rules
algorithm was too unpredictable (though always worse than
the MiniCon algorithm), due to the nature of when the al-
gorithms discover that a rule cannot be unified. Additional
experiments are needed in order to draw any conclusion as to
how the algorithms perform for completely random queries.

5.3 Summary

In summary, our experiments showed the following points.
First, the MiniCon algorithm scales up to large numbers of
views and significantly outperforms the other two algorithms.
This point is emphasized by Table 1, where we tried to push
the MiniCon algorithm to its limits. The table considers the
number of subgoals and number of views that the MiniCon
algorithm is able to process given 10 s. In some cases, the
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Fig. 8.This figure shows running times for complete queries where
three variables are distinguished.As in Fig.7, the MiniCon algorithm
significantly outperforms the inverse-rules algorithm

Query type Distinguished # of subgoals # of views

Chain All 3 45

Chain All 12 3

Chain Two 5 9225

Chain Two 99 115

Star Non Joined 5 12235

Star Non Joined 99 35

Star Joined 10 4520

Star Joined 99 75

Table1.The number of views that the MiniCon algorithm can process
in under 10 s in various situations

algorithm can handle thousands of views, which is a magnitude
that was clearly out of reach of previous algorithms.

Second, the experiments showed that the bucket algorithm
performed much worse than the other two algorithms in all
cases. More interesting was the comparison between the Mini-
Con algorithm and the inverse-rules algorithm. In all cases the
MiniCon algorithm outperformed the inverse-rules algorithm,
though by differing factors. In particular, the performance of
the inverse-rules algorithm was very unpredictable. The prob-
lem with the inverse-rules algorithm is that it discovers many
of the interactions between the views in its second phase, and
the performance in that phase is heavily dependent on the or-
der in which it considers the query subgoals. However, since
the optimal order depends heavily on the interaction with the
views, a general method for ordering the subgoals in the query
is hard to find. Finally, all three algorithms are limited in cases
where the number of resulting rewritings is especially large
since a complete algorithm must produce a possibly exponen-
tial number of rewritings.

6 Comparison predicates

The effect of comparison predicates on the problem of answer-
ing queries using views is quite subtle. If the views contain
comparison predicates but the query does not, then the Mini-
Con algorithm without any changes still yields the maximally-
contained query rewriting. On the other hand, if the query con-
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tains comparison predicates, then it follows from [AD98] that
there can be no algorithm that returns a maximally-contained
rewriting, even if we consider rewritings that are recursive
datalog programs (let alone unions of conjunctive queries).

In this section we present an extension to the MiniCon al-
gorithm that would: (1) always find only correct rewritings; (2)
find the maximally-contained rewriting in many of the com-
mon cases in which comparison predicates are used; and (3)
is guaranteed to produce the maximally-contained rewriting
when the query contains onlysemi-intervalconstraints, i.e.,
when all the comparison predicates in the query are of the form
x ≤ c or x < c, wherex is a variable andc is a constant (or
they are all of the formx ≥ c orx > c). We refer to this algo-
rithm as MiniCon IP. We show experiments demonstrating the
scale up of the extended algorithm. Finally, we show an ex-
ample that provides an intuition for which cases the algorithm
will not capture.

In our discussion, we refer to the set of comparison sub-
goals in a queryQ asI(Q). Given a set of variables̄X, we
denote byIX̄(Q) the subset of the subgoals inI(Q) that in-
cludes: (1) only variables in̄X or constants; and (2) contains at
least one existential variable ofQ. Intuitively, IX̄(Q) denotes
the set of comparison subgoals in the query thatmustbe sat-
isfied by the view ifX̄ is the domain of an MCD. We assume
without loss of generality thatI(Q) is logically closed, i.e.,
that if I(Q) |= g, theng ∈ I(Q). We can always compute the
logical closure ofI(Q) in time that is quadratic in the size of
Q [Ull89].

We make three changes to the MiniCon algorithm to handle
comparison predicates. First, we only consider MCDsC that
satisfy the following conditions:

1. Ifx ∈ V ars(Q),ϕC(x) is an existential variable inhC(V )
andy appears in the same comparison atom asx, theny
must be in the domain ofϕC .

2. If X̄ is the set of variables in the domain of the mapping
ϕC , thenI(hC(V )) |= ϕC(IX̄).

The first condition is an extension of Property 1, and the
second condition guarantees the comparison subgoals in the
view logically entail the relevant comparison subgoals in the
query. Note that because of the second condition, the only
subgoals inIX̄(Q) that may not be satisfied byV must include
only variables thatϕC maps to distinguished variables ofV .
As a result, such a subgoal can simply be added to the rewriting
after the MCDs are combined.

The second change is that we disallow all MCDs that con-
strain variables to be incompatible with the variables they map
in the query. For example, if a query has a subgoalx > 17
and an MCD mapsx to a view variablea, anda < 5 is in the
view, then we can ignore the MCD.

The third change we make to the MiniCon algorithm is the
following: after forming a rewritingQ′ by combining a set of
MCDs, we add the subgoalEC(g) for any subgoal ofI(Q)
that is not satisfied byQ′.

Example 4.Consider a variation on our running example,
where the predicateyear denotes the year of publication of a
paper.

Q2(x) :- inSIGMOD(x), cites(x,y), year(x,r1), year(y,r2),
r1 ≥ 1990, r2 ≤ 1985

V9(a,s1) :- inSIGMOD(a), cites(a,b), year(a,s1),
year(b,s2), s2 ≤ 1983

V10(a,s1) :- inSIGMOD(a), cites(a,b), year(a,s1),
year(b,s2), s2 ≤ 1987

Our algorithm would first considerV9 with the mapping{x
→ a, y → b, r1 → s1, r2 → s2}. In this case, the subgoalr2 ≤
1985 is satisfied by the view, butr1 ≥ 1990 is not. However,
sinces1 is a distinguished variable inV9, the algorithm can
create the rewriting:

Q2’(x) :- V9(x,r1), r1 ≥ 1990

When the algorithm considers a similar variable mapping
to V10, it will notice that the constraint onr2 is not satisfied,
and since it is mapped to an existential variable inV10, no
MCD is created.

Example 5.The following example provides an intuition for
which rewritings our extended algorithm will not discover.
Consider the following query and view:

Q3(u) :- e(u,v), u ≤ v
V11(a) :- e(a,b), e(b,a)

The algorithm will not create any MCD because the sub-
goalu ≤ v in the query is not implied by the view. However,
the following is a contained rewriting ofQ3.

Q3’(u) :- V11(u)

In general, in order to find a containment mapping in the pres-
ence of comparison predicates, [Klu88] shows that we must
find a mapping for every ordering of the variables. For exam-
ple, we must consider two different containment mappings,
depending on whethera ≤ b or a > b. In each of these
mappings, the subgoale(u, v) may be mapped to a different
subgoal. Our algorithm will only find rewritings in which the
target of the mapping for a subgoal in the query is the same
for any possible order on the variables.

Figures 9 and 10 show sample experiments that we ran
on the extended algorithm in the case of chain queries. In
the experiments, we took the identical queries and views and
added a number of comparison subgoals of the formx < c or
x > c to the queries under consideration by MiniCon IP.

The experiments show that the same trends we saw with-
out comparison predicates appear here as well. In general,
the addition of comparison predicates reduces the number of
rewritings because more views can be deemed irrelevant. This
is illustrated in Fig.10 where all of the variables in the views
are distinguished and therefore without comparison predicates
there would be many more rewritings. However, since the com-
parison predicates reduce the number of relevant views, the
algorithm with comparison predicates scales up to a larger
number of views. In Fig.9, the number of rewritings is very
small, but the addition of the overhead to deal with comparison
predicates does not appreciably slow the MiniCon algorithm.

7 Cost-based query rewriting

The previous sections considered the problem of answering
queries using views for the context of data integration, where
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Fig. 9. Experiments with the MiniCon algorithm and comparison
predicates. The query and view shapes are the same as in Fig.4. The
graph shows that adding comparison predicates does not appreciably
slow the MiniCon algorithm, and the additional views that can be
pruned cause the algorithm to speed up overall
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Fig. 10.Running times for the MiniCon algorithm and comparison
predicates when all of the variables in the views are distinguished

the incompleteness of the data sources required that we con-
sider the union of all possible rewritings of the query. In this
section we show how the principles underlying the MiniCon
algorithm can also be used for answering queries using views
in the context of query optimization (as in [TSI96,CKPS95]),
and in the process, shed some light on the problem of query
optimization with views. The fundamental difference in this
context is that we want thecheapestrewriting of the query us-
ing the views. Since the views are assumed to be complete (i.e.,
include all the tuples satisfying their definition) and since we
are looking for an equivalent rewriting, we can limit ourselves
to a single rewriting.

The following example shows how considering cost affects
the result of a rewriting algorithm.

Example 6.Suppose we have the following query and views:

Q4(x,y) :- e1(x,y), e2(y,z), e3(z,x)
V12(a,b,c) :- e1(a,b), e2(b,c)
V13(d,e,f) :- e2(d,e), e3(e,f)
V14(g) :- e1(g,h), e3(i, g)

If the join ofe1 ande3 is very selective, the cheapest rewriting
of the query may be the following (assuming the subgoals are
joined from left to right):

Q4’(x,y) :- V14(x), V12(x,y,z), V13(y,z,x)

Here, the viewV14 does not contribute to thelogical correct-
ness of the query, but only to reducing the cost of the query
plan. Note that the MiniCon algorithm would not consider
V14(x) because it would not create an MCD forV14, since
Property 1 would not be satisfied.
�

In general, the problem of answering queries using views
in the context of query optimization requires that we consider
views for two different roles: the logical correctness of the
query, and the reduction in the cost of the rewriting. In fact, it
is shown in [CH00] that the optimal query execution plan may
include an exponential (in the size of the query and schema)
number of views in the second role, while it follows from
[LMSS95] that the number of views in the first role is bounded
by the number of subgoals in the query.

We proceed in two steps. In Sect.7.1 we show how the
information captured in MCDs can be used to improve the
bottom-up dynamic-programming algorithm used in [TSI96]
for query optimization using materialized views. However,
the algorithm we describe in Sect.7.1 only considers views
that contribute to the logical correctness of the rewriting, and
therefore may not produce the optimal rewriting. In Sect.7.2
we show how we can augment the resulting rewriting with
cost-reducing views. Note that the approach we describe in
Sect.7.2 is inherently heuristic, and its goal is to avoid the ex-
haustive enumeration whose cost (according to [CH00]) would
be prohibitive.

7.1 Modifying GMAP to consider MCDs

In the context of query optimization, we may have access to
the database relations in addition to the views. In order to
uniformly treat database relations and views, we assume that
for every database relationE we define a view of the form
VE(X̄) :- E(X̄), whereX̄ is a tuple of distinct variables. In
our running example we will assume that we do not have access
to the database relations.

We first briefly recall the principles underlying the GMAP
algorithm [TSI96], and then describe how we modify it to
exploit MCDs. The GMAP algorithm is a modification of
System-R style bottom-up dynamic programming, except that
the optimizer builds query execution plans by accessing a set
of views, rather than a set of database relations. Hence, in ad-
dition to the meta-data that the query optimizer has about the
materialized views (e.g., statistics, indexes) the optimizer is
also given as input the query expressions defining the views.

The GMAP algorithm begins by considering only views
that can be used in a rewriting of the query (e.g., pruning views
that refer to relations not mentioned in the query or do not ap-
ply necessary join predicates). The algorithm distinguishes
betweenpartial query execution plansof the query andcom-
plete execution plans, that provide an equivalent rewriting of
the query using the views. The enumeration of the possible
join trees terminates when there are no more unexplored par-
tial plans.
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The GMAP algorithm grows the plans by combining a
partial plan (using all join methods) with an additional view.
A partial planP is pruned from further consideration if there is
another planP ′ such that: (1)P ′ is cheaper thanP ; and (2)P ′
contributes the same or more to the query thanP . Informally,
a planP ′ contributes more to the query than the planP if it
covers more of the relations in the query and selects more of
the attributes that are needed further up the query tree.

Our algorithm precedes the join enumeration phase by the
creation of MCDs, but it considers only a subset of the views
that were considered in the data integration context.

In our discussion, we use the following notation to make
use of the variable mappings used in procedurecombineM-
CDs (Fig.3). Given a set of MCDs,C = C1, . . . , Cl, we de-
note byV toQC , the set of atomsVC1(EC(Ψ1( ¯YC1))), . . . ,
VCl

(EC(Ψl( ¯YCl
))), as defined in procedurecombineMCDs.

Note thatV toQC effectively creates a set of atoms of the heads
of the views inC, such that the atoms use the variables of
Q whenever possible. Hence,V toQC makes explicit exactly
which join predicates need to be applied between view atoms
in the rewriting. Thus, in our example, ifC1 denotes the set of
MCDs created for the views in the rewritingQ4’, thenV toQC1

is V12(x,y,z), V13(y,z,x), V14(x).
Given a queryQ and a set of views,V1, . . . , Vn, our algo-

rithm proceeds as follows:

1. We prune from further consideration any viewV for which
there does not exist a variable mappingψ from the vari-
ables ofV to the variables ofQ, such that for every subgoal
g ∈ V ,ψ(g) is a subgoal inQ. (Note that this condition is
similar to that of a containment mapping [CM77], except
that we do not require thatψ map the head ofV to the
head ofQ.) Views that do not satisfy this condition cannot
be part of an equivalent rewriting ofQ using the views. In
our example, if we also had a view defined as:

V15(m,n) :- e1(m,n), e4(m)

then we would pruneV15 because it cannot be part of
an equivalent rewriting ofQ (the subgoale4 cannot be
mapped toQ).

2. With the views selected in the first step, we construct the
MCDs as described in Sect.4.1. In our example we would
create MCDs forV12 andV13, but we do not create an
MCD for V14 because it does not satisfy Property 1.

3. We now begin the bottom-up construction ofcandidate
solutions. A candidate solution is a query execution plan
over the views, which may either be a partial or complete
plan for the query.2

(a) For the base case, we start with plans that access a
single view. Specifically, for every MCDC, we create
the atomV toQ{C}. We then select the best access path
to (the single atom in)V toQ{C}. In our example, we
create the atomsV12(x,y,z) andV13(y,z,x).

(b) With every candidate solutionP , we associate a sub-
set of the subgoals of the query, denoted byPG. Intu-
itively, this set specifies which subgoals in the query
are covered by the solutionP , and this information is

2 We describe the algorithm for the case where we construct only
left-linear trees, but the generalization to arbitrary bushy trees is
straightforward.

gleaned from the MCDs. In the base case, the setPG

associated with the candidate solution constructed for
the view in MCDC isGC .
We combine a candidate solutionP with a candidate
solution (of size 1)P ′ only if the union ofPG andP ′

G
contains strictly more subgoals than eitherPG or P ′

G.
Note that using the information inPG andP ′

G enables
us to significantly prune the number of candidate solu-
tions we consider compared to the GMAP algorithm.
For example, suppose our example also included the
view:
V16(k,l) :- e1(k,l)
and we had a partial solution,P , that included the sin-
gle atomV12(x,y,z). Then, we would not combineP
withV16(x,y) sinceV16 does not cover any more sub-
goals thanV12. On the other hand, we would consider
addingV13(y,z,x) to P sinceV13 coverse3, which
is not covered byP , andP coverse1 which is not
covered byV13.
Given the views inP (whose corresponding MCDs
areC) and the viewV in P ′, whose MCD isCV , we
computeV toQ{C∪{CV }}. This tells us exactly which
join predicates need to be applied betweenP andP ′
(specifically, wheneverP andP ′ share a variable, a
join predicate needs to be applied). We will try com-
biningP andP ′ using every possible join method for
every join predicate that needs to be applied.

(c) As in the GMAP algorithm, we distinguish complete
solutions, which correspond to equivalent rewritings of
the query using the views, and partial solutions which
can possibly be extended to complete solutions. Fur-
thermore, as in GMAP, we compare every pair of can-
didate solutionsP andP ′. If P is both cheaper than
P ′ and contributes as much or more to the query, then
we pruneP ′.
For example, if we had two candidate solutionsP1,
which consists ofV12(x,y,z) and the candidate solu-
tion P2 which consists ofV16(x,y), if P1 is cheaper
than P2 we would pruneP1 becauseP1 is both
cheaper thanP2 and contributes more thanP1. How-
ever, ifP2 is cheaper thanP1, we would prune neither
candidate solution becauseP1 contributes more than
P2.

(d) We terminate when there are no new combinations of
partial solutions to be explored.

7.2 Adding cost-reducing views

As stated earlier, the algorithm in the previous section may
not produce the cheapest plan because it only considers
views that are needed for the logical correctness of the
plan, and not cost-reducing views. (Note, however, that the
algorithm will always find a plan if one exists even when
we do not have access to the database relations.) In this
section we describe a heuristic approach to augmenting the
plan produced in the previous section with cost-reducing
views. Informally, we consider each cost-reducing view in
turn, and try to place it in the places in the plan where it
may have an effect. For example, consider the viewV14(x)
in our example. This view can only be useful if it is placed
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before the atomV12(x,y,z) (in order to reduce the number
of values ofx) or after the atomV12(x,y,z) (to reduce
the size of the join withV13(y,z,x). However,V14(x) is
useless if placed afterV13(y,z,x).
We denote the plan produced by the algorithm in the pre-
vious section byPmg. Recall that we are considering left-
linear plans in our description. We createcost-reducing
view atomsas follows:
(a) As in the previous section, we consider only views

that can be part of an equivalent rewriting of the query
using the views.

(b) We create MCDs for these views, except that we do
not require the MCDs to satisfy Property 1. Denote
the resulting MCDs byC1, . . . , Ck. In our example
we would create MCDs forV12(x,y,z), V13(y,z,x),
V14(x).

(c) Let the set of MCDs corresponding to the views in the
planPmg be Cmg. For every MCDCj , 1 ≤ j ≤ k,
we computeV toQ{Cmg∪{Cj}}, and we denote byUj

the atom corresponding toCj inV toQ{Cmg∪{Cj}} (re-
call thatV toQ{Cmg∪{Cj}} computes an atom for every
MCD). We will now try to insert the atomsU1, . . . , Uk

in the planPmg.
(d) Note that with every join operation inPmg we can

associate a set of variables, specifically, the variables
that occur in the subtree of the join operator. The po-
sitions inPmg that arerelevantto the atomUj are the
join operators beginning with the first operator whose
variable set includes any of the variables inUj , and
ending with the first join operator that includes all the
variables inUj .
For everyj, 1 ≤ j ≤ k, we proceed as follows. We
consider the cheapest planP ′

mg, that results from in-
sertingUj in one of the positions relevant toUj . If a
variable inUj appears in the left-most leaf of the join
tree, then we also consider the plan in whichUj is the
left child of the first join operator in the plan. IfP ′

mg is
cheaper thanPmg, we replacePmg by the planP ′

mg.3

(e) We continue iterating through the cost-reducing view
atoms until no change is made to the resulting plan.

In our example, we would consider placing the atom
V14(x) as the first or second left-most leaf of the tree (i.e.,
either beforeV12(x,y,z) or immediately after it).

It is important to note that our algorithm may still not ob-
tain the cheapest plan.The main reason is that we are beginning
from the planPmg, and only modifying it locally, while the
cheapest plan may actually be an augmentation of a plan that
was found to be more expensive thanPmg in the cost-based
join enumeration. It is possible to consider applying our algo-
rithm to several plans from the cost-based join enumeration,
rather than only to the cheapest one. However, in general,
obtaining the cheapest plan may involve a prohibitively ex-
pensive search.

3 For ease of exposition, we chose to describe a relatively conserva-
tive condition on the positions in which we can insert a cost-reducing
view atom. Several further optimizations are possible the most obvi-
ous of which is that we would not insert a cost-reducing view atom
in a planafter all the joins performed in the view have already been
performed in the plan.

8 Related work

Algorithms for rewriting queries using views are surveyed in
[Hal01]. Most of the previous work on the problem focused on
developing algorithms for the problem, rather that on study-
ing their performance. In addition to the algorithms men-
tioned previously, algorithms have been developed for con-
junctive queries with comparison predicates [YL87], queries
and views with grouping and aggregation [GHQ95,SDJL96,
CNS99,GRT99], queries over semi-structured data [PV99,
CGLV99], and OQL queries [FRV96]. The problem of an-
swering queries using views has been considered for schemas
with functional and inclusion dependencies [DL97,Gry98],
languages that query both data and schema [Mil98], and dis-
junctive views [AGK99]. Clearly, each of the above extensions
to the basic problem represents an opportunity for a possi-
ble extension of the MiniCon algorithm. Two works [AD98,
GGM99] examine the complexity of finding all the possible
answers from a set of view extensions. They show that if the
views are assumed to be complete, then finding the maximal
set of answers is NP-hard in the size of the data. Hence, find-
ing a maximally-contained rewriting may not be possible if
we consider query languages with polynomial data complex-
ity. Mitra [Mit99] developed a rewriting algorithm that also
captures the intuition of Property 1, and thus would likely
lead to better performance than the bucket algorithm and the
inverse-rules algorithm. He also considered an optimization
similar to our method for removing redundant view subgoals.

Several works discussed extensions to query optimizers
that try to make use of materialized views in query process-
ing [TSI96,CKPS95,ALU01,BDD+98,PDST00,ZCL+00].
In some cases, they modified the System-R style join enumer-
ation component [TSI96,CKPS95], and in others they incor-
porated view rewritings into the rewrite phase of the optimizer
[ZCL+00,PDST00].These works showed that considering the
presence of materialized views did not negatively impact the
performance of the optimizer. However, in these works the
number of views tended to be relatively small. In [ALU01]
the authors consider the problem of finding the most efficient
rewriting of the query using a set of views, in the context of
query optimization. The paper considers three specific cost
models, and for each describes an algorithm that produces the
cheapest plan. The algorithm we describe in Sect.7 is inde-
pendent of a particular cost model, and can incorporate the
models described in [ALU01]. In addition, our algorithm can
also handle cost models that consider relation sizes, special
orders and specific join implementations, as done in tradi-
tional query optimizers. In [PDST00], the authors consider
a more general setting where they use a constraint language
to describe views, physical structures and standard types of
constraints.

A commercial implementation of answering queries using
views is described for Oracle 8i in [BDD+98]. Their algorithm
works in two phases. In the first phase, the algorithm applies
a set of rewrite rules that attempt to replace parts of the query
with references to existing materialized views. The result of
the rewrite phase is a query that refers to the views. In the
second phase, the algorithm compares the estimated cost of
two plans: the cost of the result of the first phase, and the cost of
the best plan found by the optimizer that doesnotconsider the
use of materialized views. The optimizer chooses to execute
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the cheaper of these two plans. The main advantage of this
approach is its ease of implementation, since the capability of
using views is added to the optimizer without changing the
join enumeration module. On the other hand, the algorithm
considers the cost of only one possible rewriting of the query
using the views, and hence may miss the cheapest use of the
materialized views.

9 Conclusions

This paper makes two important contributions. First, we
present a new algorithm for answering queries using views,
and second, we present the first experimental evaluation of
such algorithms. We began by analyzing the two existing algo-
rithms, the bucket algorithm and the inverse-rules algorithm,
and found that they have significant limitations. We devel-
oped the MiniCon algorithm, a novel algorithm for answer-
ing queries using views, and showed that it scales gracefully
and outperforms both existing algorithms. As a result of our
work, we have established that answering queries using views
can be done efficiently for large-scale problems. Finally, we
described an extension of our algorithm to handle compar-
ison predicates, and showed that the techniques underlying
the MiniCon algorithm are also useful for the context of cost-
based query optimization using views.

We close by briefly discussing another important extension
of the MiniCon algorithm. In data integration applications,
where views represent data sources, we often have limited
access patterns to the data. For example, if Amazon.com has
a relationBook(title, price), we cannot ask for all tuples in
the relation. Instead, we need to provide a value for the title in
order to get a price. The problem of answering queries using
views in this context has been considered in [RSU95,KW96,
DL97,LKG99]. In [RSU95] it is shown that when we consider
equivalent rewritings, the rewriting may belonger than the
query. In [DL97] it is shown that if we are looking for the
maximally-contained rewriting, it may have to be a recursive
datalog program over the views.

The MiniCon algorithm can be adapted in a straightfor-
ward fashion to the presence of binding patterns. Specifically,
we can follow the same strategy of [DL97], where inverse
rules were augmented bydomain rules. In our case we pro-
duce the rewriting by the MiniCon algorithm by first ignoring
the binding pattern limitations. Then we add domain rules,
and augment the rewriting by adding domain subgoals where
necessary.

Appendix

Proof of correctness of the MiniCon algorithm

A.1 Preliminaries

We consider conjunctive queries and views without built-in
predicates or constants. We assume the query has the form

Q(X̄) : −e1(X̄1), . . . , en(X̄n)

Without loss of generality we assume that no variable appears
in more than one view, and the variables used in the views are

disjoint from those in the query. Furthermore, we assume that
the heads of the views and the query do not contain multiple
occurrences of any variable. We apply variable mappings to
tuples and to atoms with the obvious meaning, i.e.,ϕ(X̄) =
(ϕ(x1), ϕ(x2), . . . , ϕ(xn)) whereX̄ = (x1, . . . , xn).

Recall that a maximally-contained rewriting is, in general,
a union of conjunctive rewritings. A conjunctive rewriting has
the form

Q′(Ȳ ) :- V1(Ȳ1), V2(Ȳ2), . . . ,Vk(Ȳk)

Note that for anyi �= j it is possible thatVi = Vj .
Given a conjunctive rewritingQ′, the expansionof Q′,

denoted byQ′′ is the query in which the view atoms are re-
placed by their definitions (i.e., they are unfolded). Note that
when expanding the view definitions we need to create fresh
variables for the existential variables in the views. We assume
we have a functionf i(x) that returns the ith fresh copy of a
variablex. For a given subgoalgi ∈ Q′, we denote byexp(i)
the set of subgoals inQ′′ obtained by expanding the definition
of Vi.

Given two head homomorphismsh1 andh2 over the vari-
ables of a viewV , we say thath2 is more restrictive thanh1
if wheneverh1(x) = h1(y), thenh2(x) = h2(y).

Recall that the MiniCon algorithm produces conjunctive
rewritings of the form

Q′(EC(X̄)) :- VC1(EC(Ψ1( ¯YC1))), . . . ,
VCm(EC(Ψm( ¯YCm)))

Where for a variablex inQ,EC(x) denotes the represen-
tative variable of the set to whichx belongs.EC is defined to
be the identity on any variable that is not inQ.

Remark 4.The following property will be used in the sound-
ness proof. Suppose that a subgoalg ∈ Q is in Gi, i.e.,
ϕi(g) ∈ hi(Vi). The expansionQ′′ will contain an atomτ(g),
where, for a variablex:

• τ(x) = EC(x) if ϕi(x) is a head variable inhi(Vi), and
• τ(x) = f i(x) otherwise.

A.2 Proof of soundness

We need to show that every conjunctive rewritingQ′ that is
obtained by the MiniCon algorithm is contained inQ. To show
soundness, we show that there is a containment mappingΥ ,
fromQ toQ′′.

We define an intermediateΥi for i = 0, . . . , k by induction
as follows. The containment mappingΥ will be defined to be
Υk.

U1 For allx wherex ∈ V ars(Q) andEC(x) ∈ V ars(Q′′),
Υ0(x) = EC(x).

U2 Υi is an extension ofΥi−1, defined as follows: for allx in
theDomain(ϕi), if x �∈ Domain(Υi−1) thenΥi(x) =
f i(EC(ϕi(x))).

Now we show thatΥ is a containment mapping.

• Mapping of the head: we need to show thatΥ (X̄) =
EC(X̄). Because of U1, it suffices to show that for every
variable inx ∈ X̄, EC(x) appears inQ′′. By Property 1,
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clause C1, we know wheneverx is in the domain ofϕ and
is a head variable inQ, ϕ mapsx to a head variable in
h(V ). By Property 2, clause D1, we know that given an
MCD set, all the head variables inQ are in the domain of
someMCD in the set. From the definition ofΨi, we know
that X̄ is a subset of the union of the ranges of theΨi’s,
and hence,EC(x) is inQ′′ for everyx ∈ X̄.

• Mapping of a subgoalg. We need to show thatQ′′ includes
Υ (g). By Remark 9 we know thatQ′′ includesτ(g). It
suffices to show thatΥ (g) = τ(g), which follows imme-
diately from the definition ofΥ .

A.3 Completeness

Let P be a maximally-contained rewriting ofQ usingV, and
let R be the rewriting produced by the MiniCon algorithm.
The MiniCon algorithm is complete ifR � P . Since bothR
andP are unions of conjunctive queries, it suffices to show
that if p′ is a conjunctive rewriting inP , then there exists a
conjunctive rewritingr′ in R, such thatr′ � p′ [SY81].

Sincep′ is part of a maximally-contained rewriting ofQ,
there exists a containment mappingθ fromQ to the expansion
p′′ of p′ [CM77]. We will useθ to show that there exists a
set of MCDs that are created by the MiniCon algorithm such
that when the MCDs are combined, we obtain a conjunctive
rewriting r′ that containsp′.

We proceed as follows:

• For each subgoalgi ∈ p′, we defineGi to be the set of
subgoalsg ∈ Q, such thatθ(g) ∈ exp(i) (i.e.,Gi includes
the set of subgoals inQ that are mapped to the expansion
of gi in p′′). Note that fori �= j, the setsGi andGj are
disjoint.

• We denote byθi the restriction of the containment mapping
θ to the variables appearing inGi.

• The mapping θi is a mapping fromV ars(Gi) to
V ars(exp(gi)). However, it can be written as a com-
position of two mappings, one fromV ars(Gi) to
hi(V ars(Vi)) (where hi is a head homomorphism on
Vi), and another fromhi(V ars(Vi)) to V ars(exp(gi)).
Formally, there exists a mappingτi : V ars(Gi) →
hi(V ars(Vi)) and a renamingα of the variables in
hi(V ars(Vi)), such thatθi(x) = α(τi(hi(x))) for every
variablex ∈ Gi.
We choosehi to be the least restrictive head homomor-
phism onV ars(Vi) for which τi andα exist. Note that
since we chosehi to be the least restrictive head homomor-
phism, thenanyMCD created by the MiniCon algorithm
for Vi would at least as restrictive asτi (hence,τi depends
only onQ and the viewVi, and not on howVi is used in
the rewritingp′).

• We show that we now have all the components of an MCD,
which we will denote byCi:
– hi is a head homomorphism onV ars(Vi),
– hi(Vi(Ā)) is the result of applyinghi to the head vari-

ablesĀ of Vi.
– τi is a partial mapping fromV ars(Q) to hi(V ars

(Vi)), and
– Gi is a set of subgoals inQ that are covered byτi.

Furthermore, the MCDCi satisfies the conditions of Prop-
erty 1 which are enforced by the MiniCon algorithm:

C1. For any head variablex of Q, τi(x) is a head variable
of hi(Vi), becauseθi(x) is a head variable ofp′′.

C2. It follows from the fact thatθi is a restriction of a
containment mapping fromQ to p′′, that if τi(x) is an
existential variable inhi(Vi), then for every subgoal
g1 ∈ Q that includesx: (1) all the variables ing1 are
in the domain ofτi; and (2)τi(g1) ∈ hi(Vi).

In addition, note thatC1, . . . , Ck satisfy Property 2, which
is the condition that the MiniCon algorithm checks before
it combines a set of MCDs:

D1. G1 ∪ . . . ∪ Gk = Subgoals(Q) becauseθ is a con-
tainment mapping fromQ to p′′, and

D2. for everyi �= j, Gi ∩ Gj = ∅ because of the way we
constructed theGi’s.

• The only difference between the MCDCi and an MCD
created by the MiniCon algorithm is thatτi may not be the
minimal mapping necessary to satisfy Property 1. How-
ever, this is easy to fix by simply decomposing the MCD
Ci into a set of MCDs that satisfy Property 1 exactly and
contain only minimal mappings forτi and minimal sets of
subgoals in their fourth component. Note that even after
decomposing the MCDs, theGi’s are still disjoint subsets
of subgoals inQ, and hence Property 2 is still satisfied.

• At this point we have shown that we have a set of MCDs
C1, . . . , Cl, that satisfy Properties 1 and 2. Furthermore,
each of the mappingsτi in the MCDs is less restrictive
than θ in the following sense: for any variablesx, y, if
τi(x) = τi(y) thenθ(x) = θ(y).
As a result, when procedurecombineMCDs creates the
function EC, it will have the property thatEC(x) =
EC(y)only if θ(x) = θ(y). Consequently, the conjunctive
rewriting r′ that is produced whenC1, . . . , Cl are com-
bined will have the same property: whenever the same
variable appears in two argument positions inr′, those
two argument positions will have the same variable inp′.
Hence, there is a containment mapping fromr′ to p′, and
thereforep′ � r′.
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