

Merging Models Based on Given Correspondences

Rachel A. Pottinger

University of Washington
Seattle, WA 98195-2350 USA

rap@cs.washington.edu

Philip A. Bernstein

Microsoft Research
Redmond, WA 98052-6399 USA

philbe@microsoft.com

Abstract

A model is a formal description of a complex
application artifact, such as a database schema,
an application interface, a UML model, an
ontology, or a message format. The problem of
merging such models lies at the core of many
meta data applications, such as view integration,
mediated schema creation for data integration,
and ontology merging. This paper examines the
problem of merging two models given
correspondences between them. It presents
requirements for conducting a merge and a
specific algorithm that subsumes previous work.

1 Introduction

A model is a formal description of a complex application
artifact, such as a database schema, an application
interface, a UML model, an ontology, or a message
format. The problem of merging models lies at the core of
many meta data applications, such as view integration,
mediated schema creation for data integration, and
ontology merging. In each case, two given models need to
be combined into one. Because there are many different
kinds of models and applications, this problem has been
tackled independently in specific domains many times.
Our goal is to provide a generic framework that can be
used to merge models in all these contexts.

Combining two models requires first determining
correspondences between the two models and then merg-
ing the models based on those correspondences. Finding
correspondences is called schema matching; it is a major
topic of ongoing research and is not covered here [8-11].
Rather, we focus on the problem of combining the models

after correspondences are established. We encapsulate the
problem in an operator, Merge, which takes as input two
models, A and B, and a mapping MapAB between them that
embodies the given correspondences. It returns a third
model that is the “duplicate-free union” of A and B with
respect to MapAB. This is not as simple as set union
because the models have structure, so the semantics of
“duplicates” and duplicate removal may be complex. In
addition, the result of the union can manifest constraint
violations, called conflicts, that Merge must repair.

An example of the problems addressed by Merge can
be seen in Figure 1. It shows two representations of Actor,
each of which could be a class, concept, table, etc. Models
A and B are to be merged. MapAB is the mapping between
the two; relationships relating the models are shown by
dashed lines. In this case, it seems clear that Merge is
meant to collapse A.Actor and B.Actor into a single
element, and similarly for Bio. Clearly, A.ActID should be
merged with B.ActorID, but what should the resulting
element be called? What about the actor’s name? Should
the merged model represent the actor’s name as one
element (ActorName), two elements (FirstName and
LastName), three elements (ActorName with FirstName
and LastName as children), or some other way?

These cases of differing representations between input
models are called conflicts. For the most part, conflict
resolution is independent of the representation of A and B.
Yet most work on merging schemas is data-model-
specific, revisiting the same problems for ER variations
[19], XML [3], data warehouses [7], semi-structured data
[4], and relational and object-oriented databases [6]. Note
that these works, like ours, consider merging only the
models, not the instances of the models. Some models,
such as ontologies and ER diagrams, have no instance
data.

Actor

First
Name

ActID Last
Name

Bio

Actor

Actor
ID

Actor
Name Bio

Model A Model BMapAB

= = =

=

Figure 1: Examples of models to be merged

The similarities among these solutions offer an
opportunity for abstraction. One important step in this

Permission to copy without fee all or part of this material is granted
provided that the copies are not made or distributed for direct
commercial advantage, the VLDB copyright notice and the title of the
publication and its date appear, and notice is given that copying is by
permission of the Very Large Data Base Endowment. To copy otherwise,
or to republish, requires a fee and/or special permission from the
Endowment
Proceedings of the 29th VLDB Conference,
Berlin, Germany, 2003

direction was an algorithm for schema merging and
conflict resolution of models by Buneman, Davidson, and
Kosky (hereafter BDK) [6]. Given a set of pair-wise
correspondences between two models that have Is-a and
Has-a relationships, BDK give a formal definition of
merge and show how to resolve a certain kind of conflict
to produce a unique result. We use their theoretical
algorithm as a base, and expand the range of correspon-
dences, model representations, conflict categories, and
applications, yielding a robust and practical solution.

Merge is one of the operators proposed in [5] as part
of model management, a framework that consists of
operators for manipulating models and mappings. Other
model management operators include: Match, which
returns a mapping between two given models; Apply,
which applies a given function to all the elements of a
model; and Diff, which, given two models and a mapping,
returns a model consisting of all items in the first model
that are not in the second model [5].

The main contribution of this paper is the design of a
practical generic merge operator. It includes the following
specific contributions:
• Technical requirements for a generic merge operator.
• The use of an input mapping that is a first-class model,

enabling us to express richer correspondences than
previous approaches.

• A characterization of when Merge can be automatic.
• A taxonomy of the conflicts that can occur and a

definition of conflict resolution strategies using the
mapping’s richer correspondences.

• Experimental evaluation showing that our approach
scales to a large real world application.

• An analysis that shows our approach subsumes
previous merge work.

The paper is structured as follows: Section �2 gives a
precise definition of Merge. Section �3 describes our
categorization of conflicts that arise from combining two
models. Section �4 describes how to resolve conflicts in
Merge, often automatically. Section �5 defines our merge
algorithm. Section �6 discusses an alternate merge
definition and how to simulate it using Merge and other
model management operators. Section �7 evaluates Merge
experimentally by merging two large anatomy databases
and conceptually by showing how our approach subsumes
previous work. Section �8 is the conclusion.

2 Problem Definition

2.1 Representation of Models

Defining a representation for models requires (at least)
three meta-levels. Using conventional meta data terminol-
ogy, we can have: a model, such as the database schema
for a billing application; a meta-model, which consists of
the type definitions for the objects of models, such as a
meta-model that says a relational database schema
consists of table definitions, column definitions, etc.; and

a meta-meta-model, which is the representation language
in which models and meta-models are expressed.

The goal of our merge operator, Merge, is to merge
two models based on a mapping between them. For now,
we discuss Merge using a small meta-meta-model (which
we extend in Section �4.1). It consists of the following:
• Elements with semi-structured properties. Elements are

the first class objects in a model. Three properties are
required: Name, ID, and History. Name is self-explana-
tory. ID is the element’s unique identifier, used only by
the model management system. History describes the
last operator that acted on the element.

• Binary, directed, kinded relationships with cardinality
constraints. A relationship is a connection between two
elements. Relationship kinds define semantics, such as
Is-a, Has-a, and Type-Of. Relationships can be either
explicitly present in the model or implied by a meta-
meta-model’s rule, such as “a is a b” and “b is a c”
implies that “a is a c.” Relationship cardinalities are
omitted from the figures for ease of exposition.

In Figure 1 elements are shown as nodes, the value of the
Name property is the node’s label, mapping relationships
are edges with arrowheads, and sub-element relationships
are diamond-headed edges.

2.2 Merge Inputs

The inputs to Merge are the following:
• Two models: A and B.
• A mapping, MapAB, which is a model that defines how

A and B are related.
• An optional designation that one of A or B is the

preferred model. When Merge faces a choice that is
unspecified in the mapping, it chooses the option from
the preferred model, if there is one.

• Optional overrides for default Merge behavior
(explained further below).

The input mapping is more expressive than just simple
correspondences; it is a first-class model consisting of
elements and relationships. Some of its elements are
mapping elements. A mapping element is like any other
element except it also is the origin of one or more
mapping relationships, M(x, y), each of which specifies
that the origin element, x, represents the destination
element, y. So a given mapping element, x, represents all
elements y such that M(x, y). All elements of MapAB in
Figure 1 are mapping elements. In MapAB in Figure 2
AllBios is not a mapping element.

There are two kinds of mapping elements: equality
and similarity. An equality mapping element x asserts that
for all y1, y2 ∈ Y such that M(x, y1) and M(x, y2), y1=y2.
All elements represented by the same equality mapping
element are said to correspond to one another. A
similarity mapping element x asserts that the set of all y1,
y2 ∈ Y such that M(x, y1) and M(x, y2) are related
through a complex expression that is not interpreted by
Merge. This expression is the value of x’ s Expression

property, which is a property of all similarity mapping
elements. Each mapping element also has a property
HowRelated, with value “Equality” or “Similarity,” to
distinguish the two kinds of mapping elements.

Given this rich mapping structure, complex relation-
ships can be defined between elements in A and B, not
just simple correspondences. For example, the mapping in
Figure 2 (which is between the same models in Figure 1)
shows that the FirstName and LastName of model B
should be sub-elements of the ActorName element of
model A; this is expressed by element m4, which repre-
sents ActorName in A and contains elements m5 and m6
which represent FirstName and LastName respectively.

Actor

First
Name

ActID
Last

Name
Bio

Actor

Actor
ID

Actor
Name

Bio

Model A Model BMapAB-2

m1
(=)

m3
(=)

m4
(=)

m5
(=)

m6
(=)

All
Bios

m7(=)
Name=
“Official”

m8(=)
Name=

“Unofficial”
Figure 2: A more complicated mapping

A mapping can also contain non-mapping elements that
do not represent elements in either A or B but help
describe how elements in A and B are related, such as
AllBios in Figure 2. The mapping MapAB in Figure 2
indicates that A.Bio should be renamed “Official,” B.Bio
should be renamed “Unofficial,” and both are contained in
a new element, AllBios, that appears only in MapAB.

A mapping can express similarity between elements in
A and B. For example, if A.Bio is a French translation of
B.Bio and this needs to be reflected explicitly in the
merged model, they could be connected by a similarity
mapping element with an Expression property “A.Bio =
English2French(B.Bio)” not shown in Figure 2.

Prior algorithms, whose mappings are not first-class
models, cannot express these relationships. Often they
require user intervention during Merge to incorporate
relationships that are more complicated than simply
equating two elements. Merge can encode simple
correspondences in a mapping, so it can function even if a
first-class mapping is unavailable.

2.3 Merge Semantics

The output of Merge is a model that retains all non-
duplicated information in A, B, and MapAB; it collapses
information that MapAB declares redundant. If we consider
the mapping to be a third model, this definition corre-
sponds to the least-upper-bound defined in BDK [6], “a
schema that presents all the information of the schemas
being merged, but no additional information.” We require
Merge to be generic in the sense that it does not require its
inputs or outputs to adhere to any given meta-model. We
consider another merge definition in Section �6.

We now define the semantics of Merge more pre-
cisely. The function “Merge(A, MapAB, B) � G” merges
two models A and B based on a mapping MapAB, which

describes how A and B are related. The function produces
a new model G that satisfies the following Generic Merge
Requirements (GMRs):
1. Element preservation: Each element in the input has a

corresponding element in G. Formally: each element e
∈ A ∪ B ∪ MapAB corresponds to exactly one element
e′ ∈ G. We define this correspondence as �(e, e′).

2. Equality preservation: Input elements are mapped to
the same element in G if and only if they are equal in
the mapping, where equality in the mapping is transi-
tive. Formally: two elements s, t ∈ A ∪ B are said to be
equal in MapAB if there is an element v ∈ A ∪ B and an
equality mapping element x such that M(x, s) and M(x,
v), where either v = t or v is equal to t in MapAB. If two
elements s, t ∈ A ∪ B are equal in MapAB, then there
exists a unique element e ∈ G such that �(s, e) and �(t,
e). If s and t are not equal in MapAB, then there is no
such e, so s and t correspond to different elements in G.

3. Relationship preservation: Each input relationship is
explicitly in or implied by G. Formally: for each rela-
tionship R(s, t) ∈ A ∪ B ∪ MapAB where s, t ∈ A ∪ B ∪
MapAB and R is not a mapping relationship M(s, t) with
s ∈ MapAB, if �(s, s′) and �(t, t′), then either s′ = t′, R(s′,
t′) ∈ G, or R(s′, t′) is implied in G.

4. Similarity preservation: Elements that are declared to
be similar (but not equal) to one another in MapAB retain
their separate identity in G and are related to each other
by some relationship. More formally, for each pair of
elements s, t ∈ A ∪ B, where s and t are connected to a
similarity mapping element, x, in MapAB and s and t are
not equal, there exist elements e, s′, t′ ∈ G and a meta-
model specific non-mapping relationship R such that
�(s, s′), �(t, t′), R(e, s′), R(e, t′), �(x, e), and e includes
an expression relating s and t.

5. Meta-meta-model constraint satisfaction: G satisfies
all constraints of the meta-meta-model. G may include
elements and relationships in addition to those specified
above that help it satisfy these constraints. Note that we
do not require G to conform to any meta-model.

6. Extraneous item prohibition: Other than the elements
and relationships specified above, no additional
elements or relationships exist in G.

7. Property preservation: For each element e ∈ G, e has
property p if and only if ∃ t ∈ A ∪ B ∪ MapAB s.t. �(t, e)
and t has property p.

8. Value preference: The value, v, of a property p, for an
element e is denoted p(e) = v. For each e ∈ G, p(e) is
chosen from mapping elements corresponding to e if
possible, else from the preferred model if possible, else
from any element that corresponds to e. More formally:

• T = { t | �(t, e)}
• J ={ j ∈ (T ∩ MapAB) | p(j) is defined}
• K ={ k ∈ (T ∩ the preferred model) | p(k) is defined}
• N ={ n ∈ T | p(n) is defined}

• If J ≠ ∅, then p(e) = p(j) for some j ∈ J

• Else if K ≠ ∅, then p(e) = p(k) for some k ∈ K
• Else p(e) = p(n) for some n ∈ N

GMR 8 illustrates our overall conflict resolution strategy:
give preference first to the option specified in the
mapping (i.e., the explicit user input), then to the
preferred model, else choose a value from one of the input
elements. The ID, History, and HowRelated properties are
determined differently as discussed in Section �5.

For example, the result of merging the models in
Figure 2 is shown in Figure 3. Note that the relationships
Actor-FirstName and Actor-LastName in model B and the
Actor-Bio relationships in both models are implied by
transitivity in Figure 3, so GMR 3 is satisfied.

ActorIDAllBios ActorName

LastNameFirstName

Actor

UnofficialOfficial
Figure 3: The result of performing the merge in Figure 2

The GMRs are not always satisfiable. For example, if
there are constraints on the cardinality of relationships
that are incident to an element, then there may be no way
to preserve all relationships. Depending on the
relationships and meta-meta-model constraints, there may
be an automatic resolution, manual resolution or no
possible resolution that adheres to the GMRs. In Section �4
we present conflict resolutions for a set of common
constraints and discuss when such resolution can be
automatic. We also specify default resolution strategies
for each category of constraint and note when resolution
can be made to adhere to the GMRs outlined above.

3 Conflict Resolution

Determining the merged model requires resolving con-
flicts in the input. We categorize conflicts based on the
meta-level at which they occur:
• Representation conflicts (Section �3.1) are caused by

conflicting representations of the same real world
concept – a conflict at the model level. Resolving these
conflicts requires manual user intervention. Such con-
flict resolution is necessary for many uses of mappings
– not just Merge. Hence we isolate it from Merge by
requiring it to be captured in the input mapping.

• Meta-model conflicts (Section �3.2) are caused by the
constraints in the meta-model (e.g., SQL DDL). Enforc-
ing such constraints is inherently non-generic, so we
resolve them using a separate operator after Merge.

• Fundamental conflicts (Section �3.3) are caused by
violations of constraints in the meta-meta-model.
Unlike representation conflicts, fundamental conflicts
must be resolved by Merge since subsequent operators
count on the fact that the Merge result is a well-formed
model.

3.1 Representation Conflicts

A representation conflict arises when two models describe
the same concept in different ways. For example, in

Figure 1 model A represents Name by one element,
ActorName, while model B represents it by two elements,
FirstName and LastName. After merging the two models,
should Name be represented by one, two or three
elements? The decision is application dependent.

Merge resolves representation conflicts using the input
mapping. Having a mapping that is a model allows us to
specify that elements in models A and B are either:
• The same, by connecting them to the same equality

mapping element. Merge can collapse these elements
into one element that includes all relationships incident
to the elements in the conflicting representations.

• Related by relationships and elements in our meta-
meta-model. E.g., we can model FirstName and
LastName in B as sub-elements of ActorName in A by
the mapping shown in Figure 2.

• Related in some more complex fashion that we cannot
represent using our meta-meta-model’s relationship
kinds. E.g., we can represent that ActorName equals the
concatenation of FirstName and LastName by a similar-
ity mapping element that has mapping relationships
incident to all three and an Expression property describ-
ing the concatenation. Resolution can be done by a later
operator that understands the semantics of Expression.

The mapping can also specify property values. For exam-
ple, in Figure 2 MapAB specifies that one of the elements
contained by AllBios is named Official and the other is
named Unofficial.

Solving representation conflicts has been a focus of
the ontology merging literature [14, 15] and of database
schema merging [2, 19].

3.2 Meta-model Conflicts

A meta-model conflict occurs when the merge result
violates a meta-model-specific (e.g., SQL DDL) con-
straint. For example, suppose that in Figure 2 Actor is a
SQL table in model A, an XML database in model B, and
a SQL table in the merged model. If the mapping in
Figure 2 is used, there will be a meta-model conflict in the
merge result because SQL DDL has no concept of sub-
column. This does not violate any principle about the
generic merged outcome. Rather, it is meta-model-
specific. Traditionally, merge results are required to
conform to a given meta-model during the merge.
However, since Merge is meta-model independent, we do
not resolve this category of conflict in Merge. Instead, we
break out coercion as a separate step, so that Merge
remains generic and the coercion step can be used
independently of Merge. We therefore introduce an opera-
tor, EnforceContraints, that coerces a model to obey a set
of constraints. This operator is necessarily meta-model
specific. However, it may be possible to implement it in a
generic way, driven by a declarative specification of each
meta-model’s constraints. EnforceContraints would
enforce other constraints, such as integrity constraints, as
well. We leave this as future work.

3.3 Fundamental Conflicts

The third and final category of conflict is called a
fundamental conflict. It occurs above the meta-model
level at the meta-meta-model level, the representation that
all models must adhere to. A fundamental conflict occurs
when the result of Merge would not be a model due to
violations of the meta-meta-model. This is unacceptable
because later operators would be unable to manipulate it.

One possible meta-meta-model constraint is that an
element has at most one type. We call this the one-type
restriction. Given this constraint, an element with two
types manifests a fundamental conflict. For example in
the model fragments in Figure 4(a) ZipCode has two
types: Integer and String. In the merge result in Figure
4(b), the two ZipCode elements are collapsed into one
element. But the type elements remain separate, so
ZipCode is the origin of two type relationships.

ZipCode ZipCode

Integer String

M1
(=)

ZipCode

Integer String
(a) (b)

Figure 4: A merge that violates the one-type restriction

Since Merge must return a well-formed instance of the
meta-meta-model, it must resolve fundamental conflicts.
Resolution rules for some fundamental conflicts have
been proposed, such as [6] for the one-type restriction.
We have identified other kinds of fundamental conflicts
and resolution rules for them which we describe in
Section �4 and incorporate into our generic Merge.

The choice of meta-meta-model, particularly the con-
straints on the relationships, is therefore integrally related
to Merge. However, since we are skeptical that there is a
meta-meta-model capable of solving all meta data man-
agement problems, we chose the following approach: We
define the properties of Merge using very few assump-
tions about the meta-meta-model only that it consists
of elements and relationships. We then define fundamen-
tal conflict resolution for a meta-meta-model that includes
many of the popular semantic modeling constructs.
Finally we describe other typical meta-meta-model con-
flicts and provide conflict resolution strategies for them.

4 Resolving Fundamental Conflicts

The meta-meta-models we consider are refinements of the
one described in Section �2.1. Section �4.1 describes
Vanilla, an extended entity-relationship-style meta-meta-
model that includes many popular semantic modeling
constructs. Section �4.2 describes our merging strategy,
both for Vanilla and for relationship constraints that may
be used in other meta-meta-models.

4.1 The Vanilla Meta-Meta-Model

Elements are first class objects with semi-structured
properties. Name, ID, and History are the only required
properties. Note that these are properties of the element

viewed as an instance, not as a template for instances. For
example, suppose an element e represents a class
definition, such as Person. Viewing e as an instance, it
has a Name property whose value is “Person,” and might
have properties CreatedBy, LastModifiedBy, Comments,
and IsInstantiable. To enable instances of Person to have
a property called Name (thereby viewing e as a template
for an instance), we create a relationship from e to another
element, a, where Name(a) = “Name.”

Relationships are binary, directed, kinded, and have an
optional cardinality constraint. They are also ordered, as
in XML, but the order can be ignored in meta-models that
do not use it. A relationship kind is one of "Associates",
"Contains", "Has-a", "Is-a", and "Type-of" (described
below). Reflexive relationships are disallowed. Between
any two elements we allow at most one relationship of a
given kind and cardinality pairing.

Bob

Alice

 Column

Table

 Column

Key

 Student

Person

 Column

Street

(a)

Associates
(b)

Contains
(c)

Has-a
(d)
Is-a

(e)
Type-of

Figure 5: Different relationship kinds in Vanilla

There are cases where the previous restriction is incon-
venient. For example, one might want two distinct Has-a
relationships between "Movie" and "Person", namely
"director" and "actor". This can be handled either by
specializing Person into two sub-elements, or by reifying
the director and actor Has-a relationships (i.e., turn the
relationships into objects), which is the choice used in
Vanilla. We disallow multiple named relationships of the
same cardinality and kind between two elements because
it leads to a need for correspondences between named
relationships of different models. E.g., if the director and
actor relationships are called "réalisatuer" and "acteur" in
another model, we need a relationship between director
and réalisatuer and between actor and acteur. These corre-
spondences between relationships would complicate the
meta-meta-model. Reifying relationships retains the same
expressiveness while avoiding this complexity. Merge
does not need to treat these reified relationships specially;
since they are ordinary elements that Merge will preserve,
just like relationships (see GMRs 1 and 3).

A relationship R(x, y) between elements x and y may
be a mapping relationship, M(x, y), described earlier, or
one of the following:
• Associates - A(x, y) means x is Associated with y. This

is the weakest relationship that can be expressed. It has
no constraints or special semantics. Figure 5(a) says
that Alice is Associated with Bob.

• Contains - C(x, y) means container x Contains
containee y. Intuitively, a containee cannot exist on its
own; it is a part of its container element. Operationally,
this means that if all of the containers of an element, y,
are deleted, then y must be deleted. Contains is a
transitive relationship and must be acyclic. If C(x, y)

and x is in a model M, then y is in M as well. Figure 5(b)
says that Table Contains Column.

• Has-a - H(x, y) means x Has-a sub-component y
(sometimes called “weak aggregation”). Has-a is weak-
er than Contains in that it does not propagate delete and
can be cyclic. Figure 5(c) says that Key Has-a Column.

• Is-a - I(x, y) means x Is-a specialization of y. Like
Contains, Is-a is transitive, acyclic, and implies model
membership. Figure 5(d) says that Student Is-a Person.

• Type-of - T(x, y) means x is of type y. Each element can
be the origin of at most one Type-of relationship (the
one-type restriction described in Section �3.3). Figure
5(e) says that the Type-of Street is Column.

Vanilla has the following cross-kind-relationship implica-
tions that imply relationships based on explicit ones:
• If T(q, r) and I(r, s) then T(q, s)
• If I(p, q) and H(q, r) then H(p, r)
• If I(p, q) and C(q, r) then C(p, r)
• If C(p, q) and I(q, r) then C(p, r)
• If H(p, q) and I(q, r) then H(p, r)
A model L is a triple (EL, RootL, ReL) where EL is the set
of elements in L, RootL ∈ EL is the root of L, and ReL is
the set of relationships in L. Given a set of elements E and
set of relationships Re (which may include mapping
relationships), membership in L is determined by applying
the following rules to RootL ∈ E, adding existing model
elements and relationships until a fixpoint is reached (i.e.,
until applying each rule results in no new relationships):
• I(x, y), x ∈ EL � y ∈ EL; if an element x is in the model,

then its generalization y is in the model
• C(x, y), x ∈ EL� y ∈ EL; if a container x is in the

model, then its containee y is in the model
• T(x, y), x ∈ EL �y ∈ EL; if an element x is in the model,

then its type y is in the model
• R(x, y), x ∈ EL, y ∈ EL� R(x, y) ∈ ReL
• M(x, y), x ∈ EL � M(x, y) ∈ ReL
Since a mapping is a model, its elements must be
connected by relationships indicating model membership
(Contains, Is-a, or Type-of). However, since these
relationships obfuscate the mapping, we often omit them
from figures when they do not affect Merge’s behavior.

In what follows, when we say relationships are
“ implied” , we mean “ implied by transitivity and cross-
kind-relationship implication.”

We define two models to be equivalent if they are
identical after all implied relationships are added to each
of them until a fixpoint is reached (i.e., applying each rule
results in no new relationships). A minimal covering of a
model is an equivalent model that has no edge that is
implied by the union of the others. A model can have
more than one minimal covering. To ensure that the
merge result G is a model, we require that RootMapAB is an
equality mapping element with M(RootMapAB, RootA) and
M(RootMapAB, RootB), and that RootMapAB is the origin of no
other mapping relationships.

4.2 Meta-Meta-Model Relationship Characteristics
and Conflict Resolution

This section explores resolution of fundamental conflicts
in Merge with respect to both Vanilla and other meta-
meta-models: what features lead to an automatic Merge,
when manual intervention is required, and default resolu-
tions. The resolution strategies proposed here are incorpo-
rated in the Merge algorithm in Section �5. Since the
default resolution may be inadequate due to application-
specific requirements, Merge allows the user to either (1)
specify an alternative function to apply for each conflict
resolution category or (2) resolve the conflict manually.

Vanilla has only two fundamental constraints (i.e., that
can lead to fundamental conflicts): (1), the Is-a and
Contains relationships must be acyclic and (2) the one-
type restriction. These fundamental conflicts can be
resolved fully automatically in Vanilla.

4.2.1 Relationship-Element Cardinality Constraints
Many meta-meta-models restrict some kinds of
relationships to a maximum or minimum number of
occurrences incident to a given element. For example, the
one-type restriction says that no element can be the origin
of more than one Type-of relationship. Such restrictions
can specify minima and/or maxima on origins or
destinations of a relationship of a given kind.

Cardinality Constraints in Vanilla - Merge resolves one-
type conflicts using a customization of the BDK
algorithm [6] for Vanilla, a discussion of which can be
found in the full version of our paper [16]. Recall Figure 4
where the merged ZipCode element is of both Integer and
String types. The BDK resolution creates a new type that
inherits from both Integer and String and replaces the two
Type-of relationships from ZipCode by one Type-of
relationship to the new type, as shown in Figure 6. Note
that both of the original relationships (ZipCode is of type
Integer and String) are implied.

ZipCode

Integer String

NewType
Figure 6: Resolving the one-type conflict of Figure 4

This creates a new element, NewType in Figure 6, whose
Name, ID, and History properties must be determined. The
ID property is assigned an unused ID value, and Name is
set to be the names of the elements it inherits from,
delineated by a slash; e.g., NewType in Figure 6 is named
“ Integer/String.” The History property records why the
element came into existence, in this case, that Merge cre-
ated it from the elements Integer and String. As with any
other conflict resolution, this behavior can be overridden.

This approach to resolving one-type conflicts is an
example of a more general approach, which is the one we
use as a default: to resolve a conflict, alter explicit
relationships so that they are still implied and the GMRs
are still satisfied. Thus, the more implication rules in the
meta-meta-model, the easier conflict resolution is.

Requiring that G, the output of Merge, is a model is a
form of a minimum element-relationship cardinality; by
Vanilla’s definition, a model G satisfies model member-
ship if all elements of G are reachable from G’ s root by
following containment relationships: Is-a, Contains, and
Type-of. Hence, each element must be the origin or desti-
nation of at least one such relationship (depending on the
relationship containment semantics). Ignoring conflict
resolution, we know that G adheres to this constraint:
1. χ(RootA, RootG), χ(RootB, RootG), χ(RootMapAB, RootG)

from the input and GMR 2 (Equality preservation).
2. RootG is not the destination of any relationships (and

hence is a candidate to be root) because of GMR 6
(Extraneous item prohibition) and because it only
corresponds to RootA, RootB, and RootMapAB which
likewise are roots.

3. Each element g ∈ G can be determined to be a member
of the model with root RootG: Each element e such that
χ(e, g) must be a member of A, B, or MapAB. Assume
without loss of generality that e ∈ A. Then there must
be a path P of elements and relationships from RootA to
e that determines that e is in A. By GMR 1 (Element
preservation) and GMR 3 (Relationship preservation), a
corresponding path P′ must exist in G, and hence g is a
member of the model with root RootG.

Hence, conflict resolution notwithstanding, G is
guaranteed to satisfy model membership. After conflict
resolution for Vanilla, G still satisfies model membership;
the BDK solution to the one-type restriction only adds
relationships and elements that adhere to model
containment. As shown in Section �4.2.2, the acyclic
resolution only collapses a cycle, which cannot disturb the
model membership of the remaining element.

Cardinality Constraints in General - There are two kinds
of relationship-element cardinality constraints: for some
n: (1) at least n relationships of a given kind must exist
(minimality constraints) and (2) at most n relationships of
a given kind may exist (maximality constraints).

Since Merge (excluding conflict resolution) preserves
all relationships specified in the input, the merged model
is guaranteed to preserve minimality constraints. For
example, one potential minimality constraint is that each
element must be the origin of one Type-of relationship. If
this were the case, then each of the input models, A, B,
and MapAB would have to obey the constraint. Hence each
element in A, B, and MapAB would be the origin of at least
one Type-of relationship. Since Merge preserves the
relationships incident to each element, each element in G
is also the origin of at least one Type-of relationship. Con-
flict resolution may break this property, so conflict resolu-
tion strategies must consider these kinds of constraints.

More care is required for a maximality constraint,
such as the one-type restriction. If it occurs in a meta-
meta-model, the generic merge attempts resolution by
removing redundant relationships. Next, the default
Merge resolution will look for a cross-kind implication

rule that can resolve the conflict (i.e., apply the default
resolution strategy). If no such rule exists, then we know
of no way to resolve the conflict while still adhering to the
GMRs. To continue using the one-type restriction as an
example, first we calculate a minimal covering of the
merged model and see if it still has a one-type restriction
conflict. If so, then we apply a cross-kind implication rule
(if T(q, r) and I(r, s) then T(q, s)) which allows us to
resolve the conflict and still adhere to the GMRs.

4.2.2 Acyclicity
Many meta-meta-models require some relationship kinds
to be acyclic. In Vanilla, Is-a and Contains must be
acyclic. In this section, we consider acyclic constraints
first in Vanilla and then in general.

Acyclicity in Vanilla - Merging the example in Figure 7
(a) would result in Figure 7 (b) which has a cycle between
elements a and b. Since Is-a is transitive, a cycle of Is-a
relationships implies equality of all of the elements in the
cycle. Thus Merge’s default solution is to collapse the
cycle into a single element. As with all conflicts, users
can override with a function or manual resolution. To
satisfy GMR 7 (Property preservation), the resulting
merged element contains the union of all properties from
the combined elements. GMR 8 (Value preference)
dictates the value of the merged element’s properties.

a

b

b

a

=

=

a

b
(a) (b)

Figure 7: Merging the models in (a) causes the cycle in (b)

Acyclicity Constraints in General - If the constrained rela-
tionship kind is not transitive, collapsing the cycle would
not retain the desired semantics in general. The default
resolution is to see if any cross-kind-relationship implica-
tions allow all relationships to exist implicitly without
violating the acyclicity constraint. If so, the conflict can
be resolved automatically. Without such a relationship
implication it is impossible to merge the two models
while retaining all of the relationships; either some default
resolution strategy must be applied that does not retain all
relationships, or human intervention is required.

4.2.3 Other Relationship Conflicts
The following are conflicts that may occur in meta-meta-
models other than Vanilla:
• Certain relationships kinds many not be allowed to span

meta-levels or Isa-levels. For example, an Is-a
hierarchy may not cross meta-levels, or a Type-of
relationship may not cross Is-a levels.

• If a meta-meta-model allows only one relationship of a
given kind between a pair of elements, the cardinality
of the relationship must be resolved if there is a
conflict. For example, in Figure 8 what should be the
cardinality of the Contains relationship between Actor
and ActID? 1:n? m:1? m:n? One could argue that it

should be m:n because this is the most general, however
this may not be the desired semantics. Any resolution of
this conflict is going to lose information and therefore
will not adhere to GMR 3 (Relationship preservation),
so no generic resolution can adhere to the GMRs.

Actor

ActID

Actor

ActID =

=

1:n m:1

Figure 8: Merging multiple cardinalities

• If only one set of specializations of an element may be
declared disjoint, merging two orthogonal such sets re-
quires conflict resolution, e.g., if actors are specialized
as living/dead in one model and male/female in another.

5 The Merge Algorithm

This section describes an algorithm for Merge that
satisfies the GMRs; an implementation of this algorithm
is discussed in Section �7.1.
1. Initialize the merge result G to ∅.
2. Elements: Induce an equivalence relation by grouping

the elements of A, B, and MapAB. Initially each element
is in its own group. Then:
a. If a relationship M(d, e) exists between an element e

∈ (A ∪ B) and a mapping equality element d ∈
MapAB, then combine the groups containing d and e.

b. After iterating (a) to a fixpoint, create a new element
in G for each group.

3. Element Properties: Let e be a merged element in G
corresponding to a group I. The value v of property p of
e, p(e) = v, is defined as follows:
a. Excluding the property HowRelated, the properties of

e are the union of the properties of the elements of I.
Merge determines the values of properties of e other
than History, ID, and HowRelated as follows:
J = { j ∈ (I ∩ MapAB) | p(j) is defined}
K = { k ∈ (I ∩ the preferred model) | p(k) is defined}
N = { n ∈ I | p(n) is defined}

i. If J ≠ ∅, then p(e) = p(j) for some j ∈ J
ii. Else if K ≠ ∅, then p(e) = p(k) for some k ∈ K
iii. Else p(e) = p(n) for some n ∈ N

By definition of N, some value for each property of e
must exist. In (i) – (iii) if more than one value is
possible, then one is chosen arbitrarily.
b. Property ID(e) is set to an unused ID value. Property

History(e) describes the last action on e. It contains
the operator used (in this case, Merge) and the ID of
each element in I. This implicitly connects the Merge
result to the input models and mapping without the
existence of an explicit mapping between them.

c. Element e is a mapping element if and only if some
element in I is in (A ∪ B) and is a mapping element
(i.e., A and/or B is a mapping). Hence, How-
Related(e) is defined only if e is a mapping element;
its value is determined by GMR 8 (Value preference).
This is the only exception to GMR 7 (Property
preservation).

4. Relationships:
For every two elements e′ and f′ in G that correspond to
distinct groups E and F, where E and F do not contain
similarity elements, if there exists e ∈ E and f ∈ F such
that R(e, f) is of kind t and has cardinality c, then create
a (single) relationship R(e′, f′) of kind t and cardinality
c. Reflexive mapping relationships (i.e., mapping rela-
tionships between elements that have been collapsed)
are excluded since they no longer serve a purpose. For
example, without this exclusion, after the Merge in
Figure 2 is performed, the mapping relationship
between elements ActorName and m4 would be
represented by a reflexive mapping relationship with
both relationship ends on ActorName. However, this
relationship is redundant, so we eliminate it from G.
a. If element e in G corresponds to a similarity mapping

element m in MapAB, replace each mapping relation-
ship, M, whose origin is m by a Has-a relationship
whose origin is e and whose destination is the
element of G that corresponds to M’s destination’s
group. For example, if the two Bio elements in Figure
1 were connected by a similarity mapping element
instead of an equality element, the result would be as
in Figure 9.

b. Relationships originating from an element are
ordered as follows:
• First those corresponding to relationships in MapAB.
• Then those corresponding to relationships in the

preferred model but not in MapAB.
• Then all other relationships.
Within each of the above categories, relationships
appear in the order they appear in the input.

c. Finally, Merge removes implied relationships from G
until a minimal covering remains.

Actor

ActorIDSim ActorName

BioBio
Figure 9: Results of the Merge in Figure 1 if the Bio elements

were connected by a similarity mapping element

5. Fundamental conflict resolution: After steps (1) – (4)
above, G is a duplicate-free union of A, B, and MapAB,
but it may have fundamental conflicts (i.e., may not
satisfy meta-meta-model constraints). For each
fundamental conflict, if a special resolution strategy has
been defined, then apply it. If not, apply the default
resolution strategy described in Section �4.2. �

Resolving one conflict may interfere with another, or even
create another. This does not occur in Vanilla; resolving a
one-type conflict does create two Is-a relationships, but
they cannot be cyclic since their origin is new and thus
cannot be the destination of another Is-a relationship.
However, if interference between conflict resolution steps
is a concern in another meta-meta-model, then Merge can
create a priority scheme based on an ordered list of
conflict resolutions. The conflict resolutions are then

applied until fixpoint. Since resolving one-type conflicts
cannot create cycles in Vanilla, conflict resolution in
Vanilla is guaranteed to terminate. However, conflict
resolution rules in other meta-meta-models must be
examined to avoid infinite loops.

The algorithm described above adheres to the GMRs
in Section �2.3. We can see this as follows:
• Step 1 (Initialization) initializes G to the empty set.
• Step 2 (Elements) enforces GMR 1 (Element preserva-

tion). It also enforces the first direction of GMR 2
(Equality preservation); elements equated by MapAB are
equated in G. No other work is performed in step 2.

• Step 3 (Element properties) performs exactly the work
in GMR 7 (Property preservation) and GMR 8 (Value
preference) with the exceptions of the refinements in
steps 3b and 3c for the ID, History, and HowRelated
properties. No other work is performed in step 3.

• In step 4 (Relationships), step 4a enforces GMR 3
(Relationship preservation) and step 4b enforces that a
relationship exists between elements mapped as similar,
as required in GMR 4 (Similarity preservation). Step 4d
removes only relationships that are considered redun-
dant by the meta-meta-model. Step 4c (relationship or-
dering) is the only step not explicitly covered by a
GMR, and it does not interfere with any other GMRs.

• Step 5 (Fundamental conflict resolution) enforces GMR
5 (Meta-meta-model constraint satisfaction) and
performs no other work.

If special resolution strategies in step 5 do nothing to
violate any GMR or equate any elements not already
equated, GMRs 2 (Equality preservation), 4 (Similarity
preservation) and 6 (Extraneous item prohibition) are
satisfied, and all GMRs are satisfied. Other than special
properties (ID, History, and HowRelated) and the ordering
of relationships, no additional work is performed beyond
what is needed to satisfy the GMRs.

6 Alternate Merge Definitions

Many alternate merge definitions can be implemented
using our Merge operator in combination with other
model management operators. In this section we consider
three-way merge, a common merging problem that occurs
in file versioning and computer supported collaborative
work [1]. Given a model and two different modified ver-
sions of it, the goal is to merge the modified versions into
one model. Other Merge variations can be found in [16].

For example, consider Figure 10 where model O has
been modified in two different ways to create both models
A and B. Suppose there are mappings between O and A
and between O and B based on element name equivalence.
Notice that in A, element d has been moved to be a child
of element b, and in B the element c has been deleted.

Model OModel A
a

db

Model B
a

cb

d

a

cb d

Figure 10: A three-way merge assuming name equality.

Model O is the common ancestor of models A and B.
There are several variations of three-way merge which
arise due to different treatments of an element modified in
one model and deleted or modified in the other. One
variation assumes that elements deleted in one model but
modified in the other should be included in the merged
model. More precisely it assumes that the merged model L
should have the following properties:
• If an element e was added in A or B, then e is in L.
• If an element e is present and unmodified in A, B, and

O, then e is in L.
• If an element e was deleted in A or B and unmodified or

deleted in the other, then e is not in L.
• If an element e was deleted in A or B and modified in

the other, then e is in L (because by modifying e the
model designer has shown that e is still of interest).

• If an element e was modified in A or B and unmodified
in the other, then the modified version of e is in L.

• If an element e was modified in both A and B, then
conflict resolution is needed to determine what is in L.

This 3-way merge can be implemented as follows. We
determine equality for elements in A and B based on the
History property.
1. Create a mapping MapAB between A and B such that:

a. If a ∈ A and b ∈ B are equal, a mapping element ex-
pressing equality between a and b is added to MapAB.

b. If an element e exists in each of O, A, and B, and a
property of e has been changed in exactly one of A or
B, then MapAB has the changed property value in the
mapping element corresponding to e.

2. Create model D such that if an element or relationship
has been deleted in one of A or B and is unmodified in
the other, it is included in D.

3. G = Merge(A, MapAB, B).
4. MapGD = Match(G, D) – based on History property
5. Return Diff(G, D, MapGD).
Note that this does not handle equating a new element x
created independently in both A and B. To allow this, a
new mapping could be created to relate A.x and B.x.

Creating the information contained in MapAB and D
can be done using a sequence of model management
operators. Details are in the full version of our paper [16].

Most algorithms for three-way merge have (1) a
“preferred” model that breaks ties and (2) a method for
resolving conflicts such as when an element is deleted in
one descendent model and modified in the other. We
support the former with Merge’s preferred model and the
latter by applying the model management Apply operator.

7 Evaluation

Our evaluation has two main goals: Section �7.1 shows
that Merge can be applied to a real world application
where it scales to large models and discovers relevant
conflicts and Section �7.2 shows that our Merge definition
subsumes previous work.

7.1 Applying Merge to Large Ontologies

We tested Merge on a large bioinformatics application to
show that Merge scales to large models and uncovers real
conflicts caused by merging such large models. The goal
was to merge two models of human anatomy: the
Foundational Model of Anatomy (FMA) [18], which is
designed to model anatomy in great detail, and the
GALEN Common Reference Model [17], which is
designed to aid clinical applications. These are very large
models; as expressed in a variant of Vanilla, FMA
contains 895,307 elements and 2,032,020 relationships,
and GALEN contains 155,307 elements and 569,384
relationships. Both of the models were larger in the
Vanilla variant than in their “native” format since many of
their relationships required reification. The two models
have significant structural differences (e.g., some con-
cepts expressed in FMA by three elements are expressed
in GALEN by four elements), so merging the two is chal-
lenging. Note that there is no additional instance
information for either model. Merge was implemented
generically in approximately 7,500 non-blank lines of C#
with SQL Server as a permanent store.

A database researcher familiar with FMA, GALEN,
and model management took 13 weeks to import the
models into a variant of Vanilla and create a mapping
consisting of 6265 correspondences. The mapping is
small relative to the model sizes since the models have
different goals and thus different contents. It contains only
1-to-1 correspondences, so we were unable to test our
hypothesis that having the mapping as a first class model
enables more accurate merging. Hence we concentrated
on three other issues: (1) few changes to Vanilla and
Merge would be needed to merge the models, even though
Merge was not tailored for this domain, (2) Merge would
function on models this large, and (3) the merged result
would not be simply read from the mapping (i.e., the
conflicts that we anticipated would occur).

For the first issue, the researcher needed to add to Va-
nilla two relationship kinds: Contains-t(x, y), which says
that x can contain instances of y, and Has-t(x, y), which
says that x can have instances of y. Neither relationship
kind led to new fundamental conflicts Also, the one-type
restriction was not relevant to the anatomists. The only
change to Merge’s default behavior was to list the two
new relationship kinds and ignore the one-type restriction.

Merging these models took approximately 20 hours on
a Pentium III 866 with 1 GB of RAM. This is an
acceptable amount of time since Merge would only be run
occasionally in a relatively long project (13 weeks in our

case). The merge result before fundamental conflict
resolution had 1,045,411 elements and 2,590,969
relationships. 9,096 relationships were duplicates, and
1,339 had origins and destinations that had been equated.

Since the input mapping only uses 1-to-1 correspon-
dences, we would expect most elements in the merged
model to correspond to exactly two elements: one in FMA
and one in GALEN. However, 2344 merged elements
correspond to exactly three elements in FMA and
GALEN, and 623 correspond to more than 3 elements.
One merged element corresponds to 1215 elements of
GALEN and FMA.

The anatomists verified that the specialization
hierarchy should be acyclic, as it was in both inputs.
However, before conflict resolution the merge result
contained 338 cycles in the specialization hierarchy, most
of length 2. One was of length 18.

The anatomists agreed that the result of the merge was
useful both as a final result, assuming that the input
mapping was perfect, and as a tool for determining
possible flaws in the input mapping. Exploring the former
is a largely manual process and is the subject of ongoing
medical informatics research.

7.2 Comparison to Previous Approaches

There has been considerable work on merge in other
contexts and applications. An important result of our work
is that it subsumes previous literature on merge. In this
section we show how Merge, assisted by other model
management operators, can implement previous
approaches to generic merging (Section �7.2.1), view
integration (Section �7.2.2), and ontology merging (Section
�7.2.3) even though it is not tailored to their meta-models.

7.2.1 Generic Merging Algorithms
BDK provides the basis for our work: their algorithm
creates the duplicate free union of two models based on
name equality of the models’ elements. Their meta-meta-
model contains elements with a name property and two
relationship kinds, Is-A and Has-a, where Has-a must
obey the one-type restriction.

Essentially Merge encompasses all of the BDK work
by taking the duplicate free union of two models and then
applying the one-type conflict resolution. Their work
considers no other meta-meta-model conflicts, and no
other resolutions when their solution to the one-type
conflict is inappropriate. In addition, BDK cannot resolve
representation conflicts because it lacks an explicit map-
ping to allow it to do so. Further details of how Merge
corresponds to the BDK algorithm can be found in [16].

Rondo [12] is a model management system prototype
that includes an alternate Merge definition based entirely
on equality mappings. Two elements can be declared to
be equal, and each 1-1 mapping relationship can specify a
preference for one element over another. Like our Merge
and BDK’s, Rondo essentially creates the duplicate-free
union of the elements and relationships involved. Some

conflicts require removing elements or relationships from
the merged model (e.g., if a SQL column is in two tables
in a merge result, it must be deleted from one of them).
Just as our Merge resolves such meta-model conflicts
later, Rondo does such resolutions in a separate operator.

Our Merge is richer than Rondo’s in several respects:
1. It can resolve representation conflicts more precisely,

since the input mapping structure can relate elements in
some fashion other than equivalence.

2. It can resolve conflicts that require the creation of
additional elements and relationships rather than
pushing the work to a subsequent manual step.

3. By specifying that a choice is first taken from the map-
ping, then the preferred model, and then any model, it
allows for some preferences to be made once per Merge
in addition to those made at each mapping element

7.2.2 View Integration
View integration is the problem of combining multiple
user views into a unified schema [2]. View integration
algorithms (1) ensure the merged model contains all of the
objects in the two original models, (2) reconcile
representation conflicts in the views (e.g., if a table in one
view is matched with a column in another), and (3)
require user input to guide the merge.

Spaccapietra and Parent have a well known algorithm
[19] that consists of a set of rules and a prescribed order
in which to apply them. Their meta-meta-model, ERC+,
has three different object types: attributes, entities, and
relations. An entity is an object that is of interest on its
own. An attribute describes data that is only of interest
while the object it characterizes exists. A relation
describes how objects in the model interact. ERC+ has
three kinds of relationships: Is-a, Has-a, and May-be-a,
which means that an object may be of that type.

Vanilla can encode ERC+ by representing attributes,
entities and relations as elements. ERC+ Is-a relationships
are encoded as Vanilla Is-a relationships. ERC+ Has-a
relationships are encoded as Vanilla Contains
relationships (the semantics are the same). To encode in
Vanilla the May-be-a relationships originating at an
element e, we create a new type t such that Type-of(e, t)
and for all f such that e May-be-a f, Is-a(f, t).

The Spaccapietra and Parent algorithm for merging
models can be implemented using model management by
encoding their conflict resolution rules either directly into
Merge or in mappings.

Below, we summarize each of their rules and how it is
covered by GMRs to merge two ERC+ diagrams A and B
to create a new diagram, G. Again we use �(e, e′) to say
that e ∈ A ∪ B corresponds to an element e′ ∈ G.
1. Objects integration – If a ∈ A, b ∈ B, a = b, and both a

and b are not attributes, then add one object g to G such
that �(a, g) and �(b, g). Also, if a and b are of differing
types, then g should be an entity. This corresponds to
GMR 1 (Element preservation) plus an application of

the EnforceConstraints operator to coerce the type of
objects of uncertain type into entities.

2. Links integration – If there exist relationships R(p, c)
and R(p′, c′), where p, c ∈ A, p′, c′ ∈ B, p = p′, c = c′,
�(p, g), �(p′, g), �(c, t), and �(c′, t) (i.e., two parent-child
pairs are mapped to one another), where neither g nor t
are attributes, then R(g, t) is added to G. This is covered
by GMR 3 (Relationship preservation).

3. Paths integration rule - Exclude implied relationships
from the merged model. This is covered by GMR 3
(Relationship preservation) and Merge algorithm step
4d (Relationships: removing implied relationships). If
the user indicates other (non-implied) redundant rela-
tionships, they must be either removed outside Merge
to avoid violating GMR 3 (Relationship preservation)
or expressed by an element representing an integrity
constraint in the mapping and hence in the merge result.

4. Integration of attributes of corresponding objects – If
there exist relationships R(p, c) and R(p′, c′) where p, c
∈ A, p′, c′ ∈ B, p = p′, c = c′, �(p, g), �(p′, g) (i.e., two
parent-child pairs are mapped to one another), and c
and c′ are attributes, then add an attribute t to G such
that �(c, t), �(c′, t) and R(g, t). This is covered by GMRs
2 and 3 (Equality and Relationship preservation).

5. Attributes with path integration – if for some attributes
c ∈ A and c′ ∈ B, c = c′, there is no relationship R such
that R(p, c) and R(p′, c′) where p = p′ (i.e., c and c′ have
different parents), add an element g to G such that �(c,
g), �(c′, g), and add all relationships necessary to attach
g to the merged model. If one of the relationship paths
is implied and the other is not, add only the non-implied
path. This is covered by GMRs 1 and 3 (Element and
Relationship preservation).

6. Add objects and links without correspondent – All
objects and relationships that do not correspond to
anything else are added without a correspondent. This
is covered by GMR 1 (Element preservation) and 3
(Relationship preservation).

7.2.3 Ontology Merging
The merging of ontologies is another model merging
scenario. A frame-based ontology specifies a domain-
specific vocabulary of objects and a set of relationships
among them; the objects may have properties and
relationships with other objects. The two relationships are
Has-a and Is-a. Ontologies include constraints (called
facets), but they were ignored by all algorithms that we
studied. We describe here PROMPT [14], a.k.a. SMART
[15], which combines ontology matching and merging.

PROMPT focuses on driving the match, since once the
match has been found, their merge is straightforward. As
in Merge, their merging and matching begin by including
all objects and relationships from both models. As the
match proceeds, objects that are matched to one another
are collapsed into a single object. Then PROMPT
suggests that objects, properties, and relationships that are
related to the merged objects may match (e.g., if two

objects each with a “color” property have been merged, it
suggests matching those “color” properties).

Our algorithm allows us to provide as much merging
support as PROMPT. In the merge of two models, A and
B, to create a new model G, PROMPT has the following
merge functionality, which we relate to our GMRs. We
consider PROMPT’s match functionality to be outside
Merge’ s scope.
1. Each set of objects O ∈ A ∪ B whose objects have been

matched to each other correspond to one object in G.
This is covered by GMR 2 (Equality preservation).

2. Each object o ∈ A ∪ B that has not been matched to
some other object corresponds to its own object in G.
This is covered by GMR 2 (Equality preservation).

3. An object g ∈ G consists of all of the properties of the
objects in A or B that correspond to it. This is covered
by GMR 7 (Property preservation).

4. If a conflict exists on some property’s name or value, it
is resolved either (1) by the user, corresponding to the
user input in Merge’ s mapping or (2) by choosing from
the “preferred” model. This is covered by GMR 8
(Value preference).

Hence, given the input mapping, our algorithm provides a
superset of PROMPT’s merge functionality.

8 Conclusions and Future Work

In this paper we defined the Merge operator for model
merging, both generically and for a specific meta-meta-
model, Vanilla. We defined and classified the conflicts
that arise in combining two models and described when
conflicts from different classes must be resolved. We gave
resolution strategies for conflicts that must be resolved in
Merge, both for Vanilla and in general. We evaluated
Merge by showing how Merge in Vanilla can be used to
subsume some previous merging algorithms and by
testing Merge on two large real-world ontologies.

We envision several future directions. The first
involves showing that the Merge result, when applied to
models and mappings that are templates for instances, has
an appropriate interpretation on instances. This will dem-
onstrate the usefulness of Merge in specific applications
such as data integration and view integration [13, 20].

In some of our experiments we encountered a complex
structure in one model that expressed a similar concept to
a complex structure in another model, but there was no
obvious mapping for the individual elements even though
the structures as a whole were similar. An open question
is how best to express such similarities and exploit them.

Finally, we would like to see a model-driven
implementation of the EnforceConstraints operator that
we proposed in Section �3.2.

Acknowledgements
We thank Alon Halevy, Sergey Melnik, Renée Miller, and
Erhard Rahm for their continuing collaborations and Peter

Mork for the match used in Section �7.1 and many helpful
conversations. We thank Michael Ernst, Zack Ives, and
Steve Wolfman for their comments on earlier drafts of
this paper. This work is partially funded by a Microsoft
Research Graduate Fellowship.

References
1. Balasubramaniam, S. and Pierce, B.C., What is a File

Synchronizer? MOBICOM, 1998, 98-108.
2. Batini, C., Lenzerini, M. and Navathe, S.B. A Comparative

Analysis of Methodologies for Database Schema
Integration. Computing Surveys, 18(4). 323-364.

3. Beeri, and Milo, Schemas for Integration and Translation of
Structured and Semi-Structured Data. ICDT, 1999, 296-313.

4. Bergamaschi, S., Castano, S. and Vincini, M. Semantic
Integration of Semistructured and Structured Data Sources.
SIGMOD Record, 28 (1). 54-59.

5. Bernstein, P.A., Applying Model Management to Classical
Meta Data Problems. CIDR, 2003, 209-220.

6. Buneman, P., Davidson, S.B. and Kosky, A., Theoretical
Aspects of Schema Merging. EDBT, 1992, 152-167.

7. Calvanese, D., Giacomo, Lenzerini, M., Nardi, D. and
Rosati. Schema and Data Integration Methodology for
DWQ, 1998.

8. Doan, A., Domingos, P. and Halevy, A., Reconciling
Schemas of Disparate Data Sources: A Machine Learning
Approach. SIGMOD, 2001, 509-520.

9. Guarino, N., Semantic Matching: Formal Ontological
Distinctions for information Organization, Extraction, and
Integration. Summer School on Information Extraction,
1997.

10. Hernández, M., Miller, R.J. and Haas, L.M., Clio: A Semi-
Automatic Tool For Schema Mapping. SIGMOD, 2001.

11. Madhavan, J., Bernstein, P.A. and Rahm, E., Generic
Schema Matching with Cupid. VLDB, 2001, 49-58.

12. Melnik, S., Rahm, E. and Bernstein, P.A., Rondo: A
Programming Platform for Generic Model Management.
SIGMOD, 2003, 193-204.

13. Motro, A. Superviews: Virtual Integration of Multiple
Databases. Trans. on Soft. Eng., SE-13(7). 785-798.

14. Noy, N.F. and Musen, M.A., PROMPT: Algorithm and Tool
for Ontology Merging and Alignment. AAAI, 2000.

15. Noy, N.F. and Musen, M.A., SMART: Automated Support
for Ontology Merging and Alignment. Banff Workshop on
Knowledge Acquisition, Modeling, and Management, 1999.

16. Pottinger, R.A. and Bernstein, P.A. Merging Models Based
on Given Correspondences, U of Washington. Technical
Report UW-CSE-03-02-03, 2003.

17. Rector, A., Gangemi, A., Galeazzi, E., Glowinski, A. and
Rossi-Mori, A., The GALEN CORE Model Schemata for
Anatomy: Towards a re-usable application-independent
model of medical concepts. The Twelfth International
Congress of the European Federation for Medical
Informatics, 1994.

18. Rosse, C. and Mejino, J.L.V. A Reference Ontology for
Bioinformatics: the Foundational Model of Anatomy. 2003.
Journal of Biomedical Informatics. In press.

19. Spaccapietra, S. and Parent, C. View Integration: A Step
Forward in Solving Structural Conflicts. TKDE, 6(2).

20. Ullman, J.D., Information Integration Using Logical Views.
ICDT, 1997, 19-40.

