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Abstract

The problem of answering queries using views is to find efficient methods of answering a
query using a set of previously materialized views over the database, rather than accessing the
database relations. The problem has received significant attention because of its relevance to
a wide variety of data management problems, such as data integration, query optimization,
and the maintenance of physical data independence. To date, the performance of proposed
algorithms has received very little attention, and in particular, their scale up in the presence of
a large number of views is unknown.

We first analyze two previous algorithms, the bucket algorithm and the inverse-rules algo-
rithm, and show their deficiencies. We then describe the MiniCon algorithm, a novel algorithm
for finding the maximally-contained rewriting of a conjunctive query using a set of conjunctive
views. We present the first experimental study of algorithms for answering queries using views.
The study shows that the MiniCon algorithm scales up well and significantly outperforms the
previous algorithms. Finally, we describe an extension of the MiniCon algorithm to handle
comparison predicates, and show its performance experimentally.

1 Introduction

The problem of answering queries using views (a.k.a. rewriting queries using views) has recently
received significant attention because of its relevance to a wide variety of data management prob-
lems [Hal01]: query optimization [CKPS95, LMSS95, ZCL*00], maintenance of physical data in-
dependence [YL87, TSI96, PDST00], data integration [LRO96, DG97b, KW96, LKG99], and data
warehouse and web-site design [HRU96, TS97]. Informally speaking, the problem is the following.
Suppose we are given a query () over a database schema, and a set of view definitions Vi,...,V,
over the same schema. Is it possible to answer the query ) using only the answers to the views
Vi,..., Vg, and if so, how?

There are two main contexts in which the problem of answering queries using views has been
considered. In the first context, where the goal is query optimization or maintenance of physical
data independence [YL87, TSI96, CKPS95|, we search for an expression that uses the views and
is equivalent to the original query. Here it is usually assumed that the number of views is on
the same order as the size of the schema. The second context is that of data integration, where
views describe a set of autonomous heterogenous data sources. A user poses a query in terms of a
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mediated schema, and the data integration system needs to reformulate the query to refer to the
data sources. In a subsequent phase, the queries over the sources are optimized and executed. The
reformulation problem can be solved by algorithms for answering queries using views, though in this
context, we usually cannot find a rewriting that is equivalent to the user query because of the data
sources’ limited coverage. Instead, we search for a mazimally-contained rewriting, which provides
the best answer possible, given the available sources. When the query and views are conjunctive
(i.e., select-project-join) without comparison predicates, the maximally-contained rewriting is a
union of conjunctive queries over the views. The key challenge in this context is to develop an
algorithm that scales up in the number of views.

We consider the problem of answering conjunctive queries using a set of conjunctive views in
the presence of a large number of views. In general, this problem is NP-Complete because it
involves searching through a possibly exponential number of rewritings [LMSS95]|. Previous work
has mainly considered two algorithms for this purpose. The bucket algorithm, developed as part of
the Information Manifold System [LRO96], controls its search by first considering each subgoal in
the query in isolation, and creating a bucket that contains only the views that are relevant to that
subgoal. The algorithm then creates rewritings by combining one view from every bucket. As we
show, the combination step has several deficiencies, and does not scale up well. The inverse-rules
algorithm, developed in [Qia96, DG97a], is primarily used in the InfoMaster System [DG97a].
The inverse-rules algorithm considers rewritings for each database relation independent of any
particular query. Given a user query, these rewritings are combined appropriately. We show that
the rewritings produced by the inverse-rules algorithm need to be further processed in order to be
appropriate for query evaluation. Unfortunately, in this additional processing step the algorithm
must duplicate much of the work done in the second phase of the bucket algorithm.

Based on the insights into the previous algorithms, we introduce the MiniCon algorithm, which
addresses their limitations and scales up to a large number of views. The key idea underlying
the MiniCon algorithm is a change of perspective: instead of building rewritings by combining
rewritings for each query subgoal or database relation, we consider how each of the wariables
in the query can interact with the available views. The result is that the second phase of the
MiniCon algorithm needs to consider drastically fewer combinations of views. Hence, as we show
experimentally, the MiniCon algorithm scales up much better. The specific contributions of the
paper are the following:

e We describe the MiniCon algorithm and its properties.

e We present a detailed experimental evaluation and analysis of algorithms for answering queries
using views. The experimental results show (1) the MiniCon algorithm significantly outper-
forms the bucket and inverse-rules algorithms, and (2) the MiniCon algorithm scales up to
hundreds of views, thereby showing for the first time that answering queries using views can
be efficient on large scale problems. We believe that our experimental evaluation in itself is
a significant contribution that fills a void in previous work on this topic.

e We describe an extension of the MiniCon algorithm to handle comparison predicates and
experimental results on its performance.

This paper focuses on the problem of answering queries using views for select-project-join queries
under set semantics. While such queries are quite common in data integration applications, many
applications will need to deal with queries involving grouping and aggregation, semi-structured
data, nested structures and integrity constraints. Indeed, the problem of answering queries using
views has been considered in these contexts as well [GHQ95, SDJL96, CNS99, GRT99, PV99,



CGLV99, DL97, Gry98]. In contrast to these works, our focus is on obtaining a scalable algorithm
for answering queries using views and the experimental evaluation of such algorithms. Hence, we
begin with the class of select-project-join queries.

The paper is organized as follows. Section 2 formally defines the problem, and Section 3 discusses
the limitations of the previous algorithms. Section 4 describes the MiniCon algorithm, and Section 5
presents the experimental evaluation. Section 6 describes an extension of the MiniCon algorithm
to comparison predicates. Section 7 discusses related work and Section 8 concludes. The proof of
the MiniCon algorithm is described in Appendix A.

2 Preliminaries

Queries and views: We consider the problem of answering queries using views for conjunctive
queries (i.e., select-project-join queries). A conjunctive query has the form:

¢(X) - er(X1),...,en(Xp)

where ¢ and ey,..., e, are predicate names. The atoms e;(X1),...,e,(X,) are the subgoals in the
body of the query, where ey, ..., e, refer to database relations. The atom ¢(X) is called the head of
the query, and refers to the answer relation. The tuples X, X1,..., X,, contain either variables or

constants. We require that the query be safe, i.e., that X C X; U...U X, (that is, every variable
that appears in the head must also appear in the body). The variables in X are the distinguished
variables of the query, and all the others are ezistential variables. We denote individual variables
by lowercase letters. We use Vars(Q) (Subgoals(Q)) to refer to the set of variables (subgoals) in
@, and Q(D) to refer to the result of evaluating the query @ over the database D.

Note that unions can be expressed in this notation by allowing a set of conjunctive queries with
the same head predicate. A view is a named query. If the query results are stored, we refer to them
as a materialized view, and we refer to the result set as the extension of the view. In Section 6 we
consider queries that contain subgoals with comparison predicates <, <, #. In this case, we require
that if a variable x appears in a subgoal of a comparison predicate, then  must also appear in an
ordinary subgoal.

Example 2.1 : Consider the following schema that we use throughout the paper. The relation
cites(pl,p2) stores pairs of publication identifiers where pl cites p2. The relation sameTopic stores
pairs of papers that are on the same topic. The unary relations inSIGMOD and inVLDB store ids of
papers published in SIGMOD and VLDB respectively. The following query asks for pairs of papers
on the same topic that also cite each other. Note that join predicates in this notation are expressed
by multiple occurrences of the same variables.

Q(x,y):- sameTopic(x,y), cites(x,y), cites(y,x)

a

Query containment and equivalence: The concepts of query containment and equivalence
enable us to compare between queries and rewritings. We say that a query Q1 is contained in the
query o, denoted by Q)1 C @9, if the answer to ()1 is a subset of the answer to ()2 for any database
instance. We say that ()1 and Q)9 are equivalent if Q1 C @2 and @2 C @1, i.e., they produce the
same set of tuples for any given database.

Containment mappings provide a necessary and sufficient condition for testing query contain-
ment. A mapping 7 from Vars(Q2) to Vars(Q) is a containment mapping if (1) 7 maps every



subgoal in the body of @2 to a subgoal in the body of @)1, and (2) 7 maps the head of Q2 to the
head of 1. The query Q)9 contains )1 if and only if there is a containment mapping from @3 to
Q1 [CMTT7].

Given a partial mapping 7 on the variables of a query, we extend it in the obvious manner to
apply to sets of variables and to subgoals of the query (when all the variables of the subgoal are in
the domain of 7).

Answering queries using views: Given a query ) and a set of view definitions V = Vi,..., Vi,
a rewriting of the query using the views is a query expression @' whose body predicates are either
Vi,...,Vy or comparison predicates.

We distinguish between two types of query rewritings: equivalent rewritings, that are used
in the contexts of query optimization and the maintenance of physical data independence, and
mazimally-contained rewritings, that are used in the context of data integration.

Definition 2.1 ((Equivalent rewriting)) Let Q) be a query, and V = V1, ..., V,, be a set of views,
both over the same database schema. The query @’ is an equivalent rewriting of ) using V if for
any database D, the result of evaluating @' over Vi(D),...,V,(D) is the same as Q(D). O

Example 2.2 : Consider the query from Example 2.1 and the following views. The view V1 stores
pairs of papers that cite each other, and V2 stores pairs of papers on the same topic and each of
which cites at least one other paper.

Q(x,y):- sameTopic(x,y), cites(x,y), cites(y,x)
V1(a,b):- cites(a,b), cites(b,a)
V2(c,d) :- sameTopic(c,d), cites(c,c1), cites(d,d1)

The following is an equivalent rewriting of Q:
Q'(xy)- V1(xy), V2(xy) .

To check that Q' is an equivalent rewriting, we unfold the view definitions to obtain Q”, and show
that Q is equivalent to Q" using a containment mapping (in this case it’s the identity on x and y
and x1 — vy, yl — x).

Q" (x,y):- cites(x,y), cites(y,x), sameTopic(x,y), cites(x,x1), cites(y,y1)

a

Data Integration: One of the main uses of algorithms for answering queries using views is in the
context of data integration systems that provide their users with a uniform interface to a multitude
of data sources [LRO96, KW96, FW97, U197, LKG99]. Users pose queries in terms of a mediated
schema, which is a set of relations designed to capture the salient aspects of the application. The
data, however, is stored in the sources. In order to be able to translate users’ queries into queries
on the data sources, the data integration system needs a description of the contents of the sources.
One of the approaches to specifying such descriptions is to describe a data source as a view over the
mediated schema, specifying which tuples can be found in the source. For example, in our domain,
we may have two data sources, S1 and S2, containing pairs of SIGMOD (respectively VLDB) papers
that cite each other. The sources can be described as follows:

S1(a,b):- cites(a,b), cites(b,a), inSIGMOD(a), inSIGMOD(b)
S2(a,b):- cites(a,b), cites(b,a), inVLDB(a), inVLDB(b)



Given a query (), the data integration system first needs to reformulate @) to refer to the
data sources, i.e., the views. There are two differences between this application of answering
queries using views and that considered in the context of query optimization. First, the views here
are not assumed to contain all the tuples in their definition since the data sources are managed
autonomously. For example, the source S1 may not contain all the pairs of SIGMOD papers that
cite each other. Second, we cannot always find an equivalent rewriting of the query using the views
because there may be no data sources that contain all of the information the query needs. Instead,
we consider the problem of finding a maximally-contained rewriting, as illustrated below.

Example 2.3 : Continuing with our example, assuming we have the data sources described by
S1, S2 and V2 and the same query Q, the best rewriting we can generate is:

Q'(xy)- S1(xy), V2(xy)
Q'(xy)- S2(xy), V2(xy)

Note that this rewriting is a union of conjunctive queries, describing multiple ways of obtaining
answer to the query from the available sources. The rewriting is not an equivalent rewriting, since
it misses any pair of papers that is not both in SIGMOD or both in VLDB, but we don’t have data
sources to provide us such pairs. Furthermore, since the sources are not guaranteed to have all the
tuples in the definition of the view, our rewritings need to consider different views that may have
similar definitions. For example, suppose we have the following source S3:

S3(a,b):- cites(a,b), cites(b,a), inSIGMOD(a), inSIGMOD(b)

The definition of S3 is identical to that of S1, however, because of source incompleteness, it
may contain different tuples than S1. Hence, our rewriting will also have to include the following
in addition to the other two rewritings.

Q'(xy)- S3(x.y), V2(xy)

a

Maximally-contained rewritings are defined with respect to a particular query language in which
we express rewritings. Intuitively, the maximally-contained rewriting is one that provides all the
answers possible from a given set of sources. Formally, they are defined as follows.

Definition 2.2 ((Maximally-contained rewriting)) The query @' is a maximally-contained
rewriting of a query () using the views V = Vi,...,V,, w.r.t. a query language L if

1. for any database D, and extensions v1, ..., v, of the views such that v; C V;(D), for 1 <34 < n,
then Q' (vy,...,v,) C Q(D) for all i,

2. there is no other query @1 in the language L, such for every database D and extensions
V1,...,0, as above (1) Q' (v1,...,v,) C Q1(v1,...,v,) and (2) Q1(v1,--.,v,) C Q(D), and
there exists at least one database for which (1) is a strict set inclusion.

a

Given a conjunctive query () and a set of conjunctive views V, the maximally-contained rewriting
of a conjunctive query may be a union of conjunctive queries (we refer to the individual conjunctive
queries as conjunctive rewritings). When the queries and the views are conjunctive and do not



contain comparison predicates, it follows from [LMSS95] that we need only consider conjunctive
rewritings Q' that have at most the number of subgoals in the query Q.

The ability to find a maximally-contained rewriting depends in subtle ways on other properties
of the problem. It follows from [AD98] that if (1) the query contains comparison subgoals, or (2)
the views are assumed to be complete, then there may not be a maximally-contained rewriting if
we consider £ to be the language of unions of conjunctive queries or even if we consider datalog
with recursion.

Remark 1 : It is important to emphasize at this point that the definitions considered in this
section only ensure that the rewriting of the query obtains as many answers as possible from a
set of views, which is the main concern in the context of data integration. We are not considering
here the problem of finding the rewriting that yields the cheapest query execution plan over the
views, which would be the main concern when using algorithms for answering queries using views
for query optimization and maintenance of physical data independence. In the concluding section
we revisit this issue. In addition, we do not consider here the issue of ordering the results from the
sources. O

3 Previous Algorithms

The theoretical results on answering queries using views [LMSS95] showed that when there are no
comparison predicates in the query, the search for a maximally-contained rewriting can be confined
to a finite space: an algorithm needs to consider every possible conjunction of n or less view atoms,
where n is the number of subgoals in the query. Two previous algorithms, the bucket algorithm
and the inverse-rules algorithm, attempted to find more effective methods to produce rewritings
that do not require such exhaustive search. In this section we briefly describe these algorithms and
point out their limitations. In Section 5 we compare these algorithms to our MiniCon algorithm
and show that the MiniCon algorithm significantly outperforms them. We describe the algorithms
for queries and views without comparison subgoals.

3.1 The Bucket Algorithm

The bucket algorithm was developed as part of the Information Manifold System [LRO96]. The
key idea underlying the bucket algorithm is that the number of query rewritings that need to be
considered can be drastically reduced if we first consider each subgoal in the query in isolation
and determine which views may be relevant to a particular subgoal. The bucket algorithm is even
more effective in the presence of comparison subgoals because comparison subgoals often enable
the bucket algorithm to deem many views as being irrelevant to a query.

We illustrate the bucket algorithm with the following query and views. Note that the query
now only asks for a set of papers, rather than pairs of papers.

Q1(x) :- cites(x,y),cites(y,x),sameTopic(x,y)
V4(a) :- cites(a,b), cites(b,a)

V5(c,d) :- sameTopic(c,d)

V6(f,h) :- cites(f,g),cites(g,h),sameTopic(f,g)

In the first step, the bucket algorithm creates a bucket for each subgoal in Q1. The bucket for
a subgoal g contains the views that include subgoals to which g can be mapped in a rewriting of



the query. If a subgoal g unifies with more than one subgoal in a view V, then the bucket of g will
contain multiple occurrences of V. ! The bucket algorithm would create the following buckets:

cites(x,y) | cites(y,x) | sameTopic(x,y)
V4(x) ‘ V4(x) ‘ V5(x,y)
V6(x,y) | V6(xy) V6(xy)

Note that it is possible to unify the subgoal cites(x,y) in the query with the subgoal cites(b,a) in
V4, with the mapping x — b, y — a. However, the algorithm did not include the entry V4(y)
in the bucket because it requires that every distinguished variable in the query be mapped to a
distinguished variable in the view.

In the second step, the algorithm considers conjunctive query rewritings, each consisting of one
conjunct from every bucket. Specifically, for each element of the Cartesian product of the buckets,
the algorithm constructs a conjunctive rewriting and checks whether it is contained (or can be
made to be contained by adding join predicates) in the query. If so, the rewriting is added to the
answer. Hence, the result of the bucket algorithm is a union of conjunctive rewritings.

In our example, the algorithm will try to combine V4 with the other views and fail (as we
explain below). Then it will consider the rewritings involving V6, and note that by equating the
variables in the head of V6 a contained rewriting is obtained. Finally, the algorithm will also note
that V6 and V5 can be combined. Though not originally described as part of the bucket algorithm,
it is possible to add an additional simple check that will determine that the resulting rewriting will
be redundant (because V5 can be removed). Hence, the only rewriting in this example (which also
turns out to be an equivalent rewriting) is:

Q1'(x) :- V6(x,x)

The main inefficiency of the bucket algorithm is that it misses some important interactions
between view subgoals by considering each subgoal in isolation. As a result, the buckets contain
irrelevant views, and hence the second step of the algorithm becomes very expensive. We illustrate
this point on our example.

Consider the view V4, and suppose that we decide to use V4 in such a way that the subgoal
cites(x,y) is mapped to the subgoal cites(a,b) in the view, as shown below:

Q1(x) - cites(x,y),cites(y,x), SameTopic(x,y

1 l ?
V4(a) :- cites(a,b)cites( b,a)

We can map y to b and be able to satisfy both cites predicates. However, since b does not
appear in the head of V4, if we use V4, then we will not be able to apply the join predicate between
cites(x,y) and SameTopic(x,y) in the query. Therefore, V4 is not usable for the query, but the bucket
algorithm would not discover this.

Furthermore, even if the query did not contain SameTopic(x,y), the bucket algorithm would not
realize that if it uses V4, then it has to use it for both of the query subgoals. Realizing this would
save the algorithm exploring useless combinations in the second phase.

LIf we have knowledge of functional dependencies in the schema, then it is often possible to recover an attribute
that has been projected away, but we do not consider this case here.



As we explain later, the MiniCon algorithm discovers these interactions. In this example,
MiniCon will determine that V4 is irrelevant to the query. In the case in which the query does not
contain the subgoal SameTopic(x,y), the MiniCon algorithm will discover that the two cite subgoals
need to be treated atomically.

3.2 The Inverse-Rules Algorithm

Like the bucket algorithm, the inverse-rules algorithm [Qia96, DG97a] was also developed in the
context of a data integration system. The key idea underlying the algorithm is to construct a set of
rules that invert the view definitions, i.e., rules that show how to compute tuples for the database
relations from tuples of the views. Given the views in the previous example, the algorithm would
construct the following inverse rules:

R1: cites(a, f1(a)) :- V4(a)

R2: cites(fl(a), a) :- V4(a)

R3: sameTopic(c,d) :- V5(c,d)

R4: cites(f, f2(f,h)) = V6(f,h)

R5: cites(f2(f,h), h) :- V6(f,h)

R6: sameTopic(f, f2(f,h)) :- V6(f,h)

Consider the rules R1 and R2; intuitively, their meaning is the following. A tuple of the form
(pl) in the extension of the view V4 is a witness of two tuples in the relation cites. It is a witness
in the sense that it tells that the relation cites contains a tuple of the form (pl, Z), for some value
of Z, and that the relation also contains a tuple of the form (Z, pl), for the same value of Z.

In order to express the information that the unknown value of Z is the same in the two atoms,
we refer to it using the functional Skolem term f1(Z). Note that there may be several values of Z
in the database that cause the tuple (pl) to be in the self-join of cites, but all that we know is that
there exists at least one such value.

The rewriting of a query () using the set of views V is simply the composition of () and the
inverse rules for V. Hence, one of the important advantages of the algorithm is that the inverse
rules can be constructed ahead of time in polynomial time, independent of a particular query.

The rewritings produced by the inverse-rules algorithm, as originally described in [DG97a,
are not appropriate for query evaluation for two reasons. First, applying the inverse rules to the
extension of the views may invert some of the useful computation done to produce the view. Second,
we may end up accessing views that are irrelevant to the query. To illustrate the first point, suppose
we use the rewriting produced by the inverse-rules algorithm in the case where the view V6 has the
extension { (p1, pl), (p2,p2) }.

First, we would apply the inverse rules to the extensions of the views. Applying R4 would yield
cites(pl, f2(p1,pl)), cites(p2, f2(p2,p2)), and similarly applying R5 and R6 would yield the following
tuples:

cites(pl, f2(p1,pl)),
cites(f2(p1,pl),pl),
cites(f2(p2,p2),p2),
sameTopic(pl,pl),
sameTopic(p2,p2).

Applying the query Q1 to the tuples computed above obtains the answers pl and p2. However,
this computation is highly inefficient. Instead of directly using the tuples of V6 for the answer, the



inverse-rules algorithm first computed tuples for the relation cites, and then had to recompute the
self-join of cites that was already computed for V6. Furthermore, if the extensions of the views V4
and V5 are not empty, then applying the inverse rules would produce useless tuples as explained in
Section 3.1.

Hence, before we can fairly compare the inverse-rules algorithm to the others, we need to further
process the rules. Specifically, we need to expand the query with every possible combination of
inverse rules. However, expanding the query with the inverse rules turns out to repeat much of the
work done in the second phase of the bucket algorithm. In our example, since we have four rules
for cites and two rules for sameTopic, we may need to consider 32 such expansions in the worst case.

In the experiments described in Section 5 we consider an extended version of the inverse-rules
algorithm that produces a union of conjunctive queries by expanding the definitions of the inverse
rules. We expanded the subgoals of the query one at a time, so we could stop an expansion of the
query at the moment when we detect that a unification for a subset of the subgoals will not yield
a rewriting (thereby optimizing the performance of the inverse-rules algorithm). We show that
the inverse-rules algorithm can perform much better than the bucket algorithm, but the MiniCon
algorithm scales up significantly better than either algorithm.

4 The MiniCon Algorithm

The MiniCon algorithm begins like the bucket algorithm, considering which views contain subgoals
that correspond to subgoals in the query. However, once the algorithm finds a partial mapping
from a subgoal ¢ in the query to a subgoal g; in a view V, it changes perspective and looks at
the variables in the query. The algorithm considers the join predicates in the query (which are
specified by multiple occurrences of the same variable) and finds the minimal additional set of
subgoals that need to be mapped to subgoals in V', given that g will be mapped to g;. This set of
subgoals and mapping information is called a MiniCon Description (MCD), and can be viewed as
a generalization of buckets. In the second phase, the algorithm combines the MCDs to produce the
rewritings. It is important to note that because of the way we construct the MCDs, the MiniCon
algorithm does not require containment checks in the second phase, giving it an additional speedup
compared to the bucket algorithm. Section 4.1 describes the construction of MCDs, and Section 4.2
describes the combination step. The proof of correctness of the MiniCon algorithm can be found
in Appendix A.

4.1 Forming the MCDs

We begin by introducing a few terms that are used in the description of the algorithm. Given a
mapping 7 from Vars(Q) to Vars(V), we say that a view subgoal g1 covers a query subgoal g if
7(9) = g1.

A MCD is a mapping from a subset of the variables in the query to variables in one of the
views. Intuitively, a MCD represents a fragment of a containment mapping from the query to the
rewriting of the query. The way in which we construct the MCDs guarantees that these fragments
can later be combined seamlessly.

As seen in our example, we need to consider mappings from the query to specializations of the
views, where some of the head variables may have been equated (e.g., V6(x,x) instead of V6(x,y) in
our example). Hence, every MCD has an associated head homomorphism. A head homomorphism
h on a view V is a mapping h from Vars(V) to Vars(V) that is the identity on the existential



variables, but may equate distinguished variables, i.e., for every distinguished variable z, h(z) is
distinguished, and h(z) = h(h(z)). Formally, we define MCDs as follows.

Definition 4.1 ((MiniCon Descriptions)) A MCD C for a query @ over a view V is a tuple of

the form (he, V(Y)e, pc, Go) where:

e h¢ is a head homomorphism on V,

e V(Y)c is the result of applying hc to V, i.e., Y = ho(A), where A are the head variables of
v,

e ¢ is a partial mapping from Vars(Q) to he(Vars(V))

e G is a subset of the subgoals in Q which are covered by some subgoal in hc(V) and the
mapping @c (note: not all such subgoals are necessarily included in G¢).

a

In words, ¢ is a mapping from @ to the specialization of V obtained by the head homomor-
phism heo. Ge is a set of subgoals of () that we cover by the mapping ¢c. Property 1 below
specifies the exact conditions we need to consider when we decide which subgoals to include in G¢.
Note that V(Y)¢ is uniquely determined by the other elements of a MCD, but is part of a MCD
specification for clarity in our subsequent discussions. Furthermore, the algorithm will not consider
all the possible MCDs but only those in which h¢ is the least restrictive head homomorphism
necessary in order to unify subgoals of the query with subgoals in a view.

The mapping ¢ of a MCD C may map a set of variables in @) to the same variable in Ao (V).
In our discussion, we sometimes need to refer to a representative variable of such a set. For each
such set of variables in () we choose a representative variable arbitrarily, except that we choose a
distinguished variable whenever possible. For a variable z in ), EC,(z) denotes the representative
variable of the set to which z belongs. EC,(z) is defined to be the identity on any variable that
is not in Q.

The construction of the MCDs is based on the following observation on the properties of query
rewritings. The proof of this property is a corollary of the correctness proof of the MiniCon
algorithm.

Property 1 Let C be a MCD for QQ over V.. Then C can only be used in a non-redundant rewriting
of @ if the following conditions hold:

C1. For each head variable x of Q which is in the domain of vc, pc(x) is a head variable in
he(V).

C2. If po(x) is an existential variable in hco(V'), then for every g, subgoal of Q, that includes x
(1) all the variables in g are in the domain of pc, and (2) c(g) € he(V)

Clause C1 is the same as in the bucket algorithm. Clause C2 captures the intuition we illustrated
in our example, where if a variable z is part of a join predicate which is not enforced by the view,
then x must be in the head of the view so the join predicate can be applied by another subgoal in
the rewriting. In our example, clause C2 would rule out the use of V4 for query Q1 because the
variable b is not in the head of V4, but the join predicate with SameTopic(x,y) has not been applied
in V4.
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procedure formMCDs(Q, V)
/* @ and V are conjunctive queries. x/
c=0.
For each subgoal g € Q
For view V € V and every subgoal v € V
Let h be the least restrictive head homomorphism on V' such that there exists a mapping ¢,
s.t. o(g) = h(v).
If h and ¢ exist, then add to C any new MCD C' that can be constructed where:
(a) po (resp. he) is an extension of ¢ (resp. h),
(b) G¢ is the minimal subset of subgoals of @) such that G¢, ¢¢ and he satisfy Property 1, and
(c) it is not possible to extend ¢ and h to a MCD that covers fewer subgoals than G¢.
Return C

Figure 1: First phase of the MiniCon algorithm: Forming MCDs. Note that condition (b) minimizes G,
given a choice of h¢e and ¢¢, and is therefore not redundant with condition (c).

V(Y) |h | ¢ | G
V5(cd) |[c > ¢, d—d|x—cy—d|3
V6(ff) |[f—=fh—=f |x—>fy—f |123

Figure 2: MCDs formed as part of our example of the MiniCon algorithm.

The algorithm for creating the MCDs is shown in Figure 1. Consider the application of the
algorithm to our example with the query Q1 and the views V4, V5, and V6. The MCDs that will
be created are shown in Figure 2.

We first consider the subgoal cites(x,y) in the query. As discussed above, the algorithm does
not create a MCD for V4 because clause C2 of Property 1 would be violated (the property would
require that V4 also cover the subgoal sameTopic(x,y) since b is existential in V4 ). For the same
reason, no MCD will be created for V4 even when we consider the other subgoals in the query.

In a sense, the MiniCon algorithm shifts some of the work done by the combination step of the
bucket algorithm to the phase of creating the MCDs. The bucket algorithm will discover that V4
is not usable for the query when combining the buckets. However, the bucket algorithm needs to
discover this many times (each time it considers V4 in conjunction with another view), and every
time it does so, it uses a containment check, which is much more expensive. Hence, as we show in
the next section, with a little more effort spent in the first phase, the overall performance of the
MiniCon algorithm outperforms the bucket algorithm and the inverse-rules algorithm.

Another interesting observation is the difference in performance in the presence of repeated
occurrences of the same predicate in the views or the query. For the bucket algorithm repeated
occurrences lead to larger buckets, and hence more combinations to check in the second phase. For
the inverse-rules algorithm, repeated occurrences mean there are more expansions to check in the
second phase. In contrast, the MiniCon algorithm can more often rule out the consideration of
certain occurrences of a predicate due to violations of Property 1.

Remark 2 (covered subgoals) : When we construct a MCD C, we must determine the set of
subgoals of the query G¢ that are covered by the MCD. The algorithm includes in G¢ only the
minimal set of subgoals that are necessary in order to satisfy Property 1. To see why this is not
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an obvious choice, suppose we have the following query and views:

Q1'(x) :- cites(x,y),cites(z,x), inSIGMOD(x)
V7(a) :- cites(a,b), inSIGMOD(a)
V8(c) :- cites(d,c), inSIGMOD(c)

One can also consider including the subgoal inSIGMOD(x) in the set of covered subgoals for the
MCD for both V7 and V8, because x is in the domain of their respective variable mappings anyway.
However, our algorithm will not include inSIGMOD(x), and will instead create a special MCD for
it.

The reason for our choice is that it enables us to focus in the second phase only on rewritings
where the MCD cover mutually ezclusive sets of subgoals in the query, rather than overlapping
subsets. This yields a more efficient second phase. O

4.2 Combining the MCDs

Our method for constructing MCDs pays off in the second phase of the algorithm, where we combine
MCDs to build the conjunctive rewritings. In this phase we consider combinations of MCDs, and
for each valid combination we create a conjunctive rewriting of the query. The final rewriting is a
union of conjunctive queries.

The following property states that the MiniCon algorithm need only consider combinations of
MCDs that cover pairwise disjoint subsets of subgoals of the query. The proof of the property
follows from the correctness proof of the MiniCon algorithm.

Property 2 Given a query @, a set of views V, and the set of MCDs C for @ over the views in V,
the only combinations of MCDs that can result in non-redundant rewritings of Q are of the form
Ci,...,C;, where

D1. Gg, U...UG¢, = Subgoals(Q), and
D2. for everyi# j, Go,NGg; = 0.

The fact that we only need to consider sets of MCDs that provide partitions of the subgoals
in the query drastically reduces the search space of the algorithm. Furthermore, even though we
do not discuss it here, the algorithm can also be extended to output the rewriting in a compact
encoding that identifies the common subexpressions of the conjunctive rewritings, and therefore
leads to more efficient query evaluation. We note that had we chosen the alternate strategy in
Remark 2, clause D2 would not hold.

Given a combination of MCDs that satisfies Property 2, the actual rewriting is constructed as
shown in Figure 3.

In the final step of the algorithm we tighten up the rewritings by removing redundant subgoals
as follows. Suppose a rewriting Q' includes two atoms A; and A, of the same view V, whose
MCDs were Cy and Cy, and the following conditions are satisfied: (1) whenever A; (resp. As2)
has a variable from @ in position 4, then Ay (resp. A;) either has the same variable or a variable
that does not appear in @ in that position, and (2) the ranges of ¢, and ¢¢, do not overlap on
existential variables of V. In this case we can remove one of the two atoms by applying to Q' the
homomorphism 7 that is (1) the identity on the variables of @ and (2) is the most general unifier
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procedure combineMCDs(C)
/* C are MCDs formed by the first step of the algorithm. */
/* Each MCD has the form (hc,V(Y),9c,Gc, ECc). x/
Given a set of MCDs, C4,...,C,, we define the function EC on Vars(Q) as follows:
If for i # j, EC,,(x) # EC,,(x), define EC¢(x) to be one of them arbitrarily but consistently across
all y for which EC,,(y) = ECy,(x)
Let Answer =0
For every subset Cy,...,C, of C such that Go, U G¢, U...UGe, = subgoals(Q) and for every i # j,
Go, N ch =0 _
Define a mapping ¥; on the Y;’s as follows:
If there exists a variable x € @ such that ¢;(z) =y
¥i(y) ==
Else
¥, is a fresh copy of y
Create the conjunctive rewriting Q'(EC(X)) - Vo, (EC(¥1(Yc,))),---» Vo, (EC(¥,(Ye,)))
Add Q' to Answer.
Return Answer.

Figure 3: Phase 2: combining the MCDs.

of A; and Ay. The underlying justification for this optimization is discussed in [LMSS95], and it
can also be applied to the bucket algorithm and the inverse-rules algorithm.

We note that even after this step, the rewritings may still contain redundant subgoals. However,
removing them involves several tests for query containment; both inverse-rules algorithm and the
bucket algorithm require these removal steps as well.

In our example, the algorithm will consider using V5 to cover subgoal 3, but when it realizes
that there are no MCDs that cover either subgoal 1 or 2 without covering subgoal 3, it will discard
V5. Thus the only rewriting that will be considered is

Q1'(x) - V6(x,x).

The following theorem summarizes the properties of the MiniCon algorithm. Its full proof is
given in the appendix.

Theorem 4.1 Given a conjunctive query Q and conjunctive views V, both without comparison
predicates, the MiniCon algorithm produces the union of conjunctive queries that is a maximally-
contained rewriting of Q using V. O

It should be noted that the worst-case asymptotic running time of the MiniCon algorithm is
the same as that of the bucket algorithm and of the inverse-rules algorithm after the modification
described in Section 3.2. In all cases, the running time is O(nm M)", where n is the number of
subgoals in the query, m is the maximal number of subgoals in a view, and M is the number of
views.

The next section describes experimental results showing the differences between the three algo-
rithms in practice.

5 Experimental Results

The goal of our experiments was twofold. First, we wanted to compare the performance of the
bucket algorithm, the inverse-rules algorithm, and MiniCon algorithm in different circumstances.
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Figure 4: This graph considers chain queries with two distinguished variables in the views, and shows that
the MiniCon algorithm and the inverse-rules algorithms both scale up to hundreds of views. The MiniCon
algorithm outperforms the inverse-rules algorithm by a factor of 5.

Second, we wanted to validate that MiniCon can scale up to large number of views and large
queries. Our experiments considered three classes of queries and views: (1) chain queries, (2) star
queries and (3) complete queries, all of which are well known in the literature [MGA97].

To facilitate the experiments, we implemented a random query generator which enables us to
control the following parameters (1) the number of subgoals in the queries and views, (2) the number
of variables per subgoal, (3) the number of distinguished variables, and (4) the degree to which
predicate names are duplicated in the queries and views. The results are averaged over multiple
runs generated with the same parameters (at least 40, and usually more than 100). An important
variable to keep in mind throughout the experiments is the number of rewritings that can actually
be obtained.

In most experiments we considered queries and views that had the same query shape and size.
Our experiments were all run on a dual Pentium II 450 MHz running Windows NT 4.0 with 512MB
RAM. All of the algorithms were implemented in Java and compiled to an executable.

5.1 Chain queries

In the context of chain queries we consider several cases. In the first case, shown in Figure 4, only
the first and last variables of the query and the view are distinguished. Therefore, in order to be
usable, a view has to be identical to the query, and as a result there are very few rewritings. The
bucket algorithm performs the worst, because of the number and cost of the query containment
checks it needs to perform (it took on the order of 20 seconds for 5 views of size 10 subgoals,
and hence we do not even show it on the graph). The inverse-rules algorithm and the MiniCon
algorithm scale linearly in the number of views, but the MiniCon algorithm outperforms the inverse-
rules algorithm by a factor of about 5 (and this factor is independent of query and view size). In
fact, the MiniCon algorithm can handle more than 1000 views with 10 subgoals each in less than
one second.

The difference in the performance between the inverse-rules algorithm and the MiniCon algo-
rithm in this context and in others is due to the second phases of the algorithms. In this phase,
the inverse-rules algorithm is searching for a unification of the subgoals of the query with heads
of inverse rules. The MiniCon algorithm is searching for sets of MCDs that cover all the subgoals
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Figure 5: This graph shows chain queries where the views are of lengths 2, 3 and 4, and the query has 12
subgoals. In this case the MiniCon algorithm still scales linearly, while the inverse-rules algorithm does not.

in the query, but cover pairwise disjoint subsets. Hence, the MiniCon algorithm is searching a
much smaller space, because the number of subgoals is smaller than the number of variables in
the query. Moreover the MiniCon algorithm is performing better because in the first phase of the
algorithm it already removed from consideration views that may not be usable due to violations of
Property 1. In contrast, the inverse-rules algorithm must try unifications that include such views
and then backtrack. The amount of work that the inverse-rules algorithm will waste depends on
the order in which it considers the subgoals in the query when it unifies them with the correspond-
ing inverse rules. If a failure appears late in the ordering, more work is wasted. The important
point to note is that the optimal order in which to consider the subgoals depends heavily on the
specific views available and is, in general, very hard to find. Hence, it would be hard to extend the
inverse-rules algorithm such that its second phase would compare in performance to that of the
MiniCon algorithm.

In the second case we consider, shown in Figure 5, the views are shorter than the query (of
lengths 2, 3 and 4, while the query has 12 subgoals). In this case the MiniCon algorithm stills scales
linearly while the inverse-rules algorithm grows faster. For example, for 90 views, the MiniCon
algorithm runs 3 times faster than the inverse-rules algorithm, and for 180 views it runs 6 times
faster.

Finally, as shown in Figure 6, we also considered another case in which all the variables in
the views are distinguished. In this case, there are many rewritings (often more than 1000), and
hence the performance of the algorithms is limited because of the sheer number of rewritings. Since
virtually all combinations produce contained rewritings, any complete algorithm is forced to form
a possibly exponential number of rewritings. The MiniCon algorithm still performs better than
the inverse-rules algorithm by anywhere between 10% better and a factor of 2, but with queries
and views with 5 subgoals, the algorithms take on the order of 10 seconds for 10 views. It should
be emphasized that the difference in performance between the MiniCon algorithm and the inverse-
rules algorithm in this case is only due to the smaller search space being considered by the MiniCon
algorithm.
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Figure 6: Chain queries where all variables in the views are distinguished. Note that the containment check
required by the bucket algorithm causes it to be roughly twice as slow as either the MiniCon algorithm or
inverse-rules algorithm.

5.2 Star and complete queries

In star queries, there exists a unique subgoal in the query that is joined with every other subgoal,
and there are no joins between the other subgoals. In the cases of two distinguished variables in
the views or all view variables being distinguished, the performance of the algorithms mirrors the
corresponding cases of chain queries. Hence, we omit the details of these experiments. Figure 7
shows the running times of the inverse-rules algorithm and the MiniCon algorithm in the case where
the distinguished variables in the views are the ones that do not participate in the joins. In this
case, there are relatively few rewritings. We see that the MiniCon algorithm scales up much better
than the inverse-rules algorithm. For 20 views with 10 subgoals each, the MiniCon algorithm runs
20 times faster than the inverse-rules algorithm. Here the explanation is that the first phase of
the MiniCon algorithm is able to prune many of the irrelevant views, whereas the inverse-rules
algorithm discovers that the views are irrelevant only in the second phase, and often it must be
discovered multiple times.

An experiment with similar settings but for complete queries is shown in Figure 8. In complete
queries every subgoal is joined with every other subgoal in the query. As the figure shows, the
MiniCon algorithm outperforms the inverse-rules algorithm by a factor of 4 for 20 views, and by a
factor of 6 for 50 views, which is less of a speedup than with of star queries. The explanation for
this is that there are more joins in the query, and thus the inverse-rules algorithm is able to detect
useless views earlier in its search because failures to unify occur more frequently. Finally, we also ran
some experiments on queries and views that were generated randomly with no specific pattern. The
results showed that the MiniCon algorithm still scales up gracefully, but the behavior of the inverse-
rules algorithm was too unpredictable (though always worse than the MiniCon algorithm), due to
the nature of when the algorithms discover that a rule cannot be unified. Additional experiments
are needed in order to draw any conclusion as to how the algorithms perform for completely random
queries.

5.3 Summary

In summary, our experiments showed the following points. First, the MiniCon algorithm scales up
to large numbers of views and significantly outperforms the other two algorithms. This point is
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Figure 7: This figure shows the running times for star queries, where the distinguished variables in the views
are those not participating in the joins. The MiniCon algorithm significantly outperforms the inverse-rules
algorithm.
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Figure 8: This figure shows running times for complete queries where three variables are distinguished. As
in Figure 7, the MiniCon algorithm significantly outperforms the inverse-rules algorithm.

emphasized by Table 1, where we tried to push the MiniCon algorithm to its limits. The table
considers number of subgoals and number of views that the MiniCon algorithm is able to process
given 10 seconds. In some cases, the algorithm can handle thousands of views, which is a magnitude
that was clearly out of reach of previous algorithms.

Second, the experiments showed that the bucket algorithm performed much worse than the
other two algorithms in all cases. More interesting was the comparison between the MiniCon
algorithm and the inverse-rules algorithm. In all cases the MiniCon algorithm outperformed the
inverse-rules algorithm, though by differing factors. In particular, the performance of the inverse-
rules algorithm was very unpredictable. The problem with the inverse-rules algorithm is that it
discovers many of the interactions between the views in its second phase, and the performance in
that phase is heavily dependent on the order in which it considers the query subgoals. However,
since the optimal order depends heavily on the interaction with the views, a general method for
ordering the subgoals in the query is hard to find. Finally, all three algorithms are limited in
cases where the number of resulting rewritings is especially large since a complete algorithm must
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‘ Query type ‘ Distinguished ‘ # of subgoals ‘ # of views ‘

Chain All 3 45
Chain All 12 3
Chain Two 5 9225
Chain Two 99 115
Star Non Joined 5 12235
Star Non Joined 99 35
Star Joined 10 4520
Star Joined 99 75

Table 1: The number of views that the MiniCon algorithm can process in under 10 seconds in various
situations

produce a possibly exponential number of rewritings.

6 Comparison predicates

The effect of comparison predicates on the problem of answering queries using views is quite subtle.
If the views contain comparison predicates but the query does not, then the MiniCon algorithm
without any changes still yields the maximally-contained query rewriting. On the other hand, if the
query contains comparison predicates, then it follows from [AD98] that there can be no algorithm
that returns a maximally-contained rewriting, even if we consider rewritings that are recursive
datalog programs (let alone unions of conjunctive queries).

In this section we present an extension to the MiniCon algorithm that would (1) always find
only correct rewritings (2) find the maximally-contained rewriting in many of the common cases in
which comparison predicates are used, and (3) is guaranteed to produce the maximally-contained
rewriting when the query contains only semi-interval constraints, i.e., when all the comparison
predicates in the query are of the form z < ¢ or z < ¢, where z is a variable and ¢ is a constant (or
they are all of the form z > ¢ or z > ¢). We show experiments demonstrating the scale up of the
extended algorithm. Finally, we show an example that provides an intuition for which cases the
algorithm will not capture.

In our discussion, we refer to the set of comparison subgoals in a query @ as I(Q). Given a
set of variables X, we denote by I(Q) the subset of the subgoals in I(Q) that includes (1) only
variables in X or constants and (2) contains at least one existential variable of Q. Intuitively,
I+(Q) denotes the set of comparison subgoals in the query that must be satisfied by the view if X
is the domain of a MCD. We assume without loss of generality that I(Q) is logically closed, i.e.,
that if I(Q) = g, then g € I(Q). We can always compute the logical closure of I(Q) in time that
is quadratic in the size of @ [UlI89].

We make three changes to the MiniCon algorithm to handle comparison predicates. First, we
only consider MCDs C that satisfy the following conditions:

1. If z € Vars(Q), pc(z) is an existential variable in hc(V') and y appears in the same com-
parison atom as x, then y must be in the domain of ¢¢.

2. If X is the set of variables in the domain of the mapping ¢¢, then I(hc(V)) | oc(Ig)-
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The first condition is an extension of Property 1, and the second condition guarantees the
comparison subgoals in the view logically entail the relevant comparison subgoals in the query.
Note that because of the second condition, the only subgoals in (@) that may not be satisfied
by V must include only variables that ¢ maps to distinguished variables of V. As a result, such
a subgoal can simply be added to the rewriting after the MCDs are combined.

The second change is that we disallow all MCDs that constrain variables to be incompatible
with the variables they map in the query. For example, if a query has a subgoal x > 17 and a MCD
maps x to a view variable a, and a < 5 is in the view, then we can ignore the MCD.

The third change we make to the MiniCon algorithm is the following: after forming a rewriting
Q@' by combining a set of MCDs, we add the subgoal EC(g) for any subgoal of I(Q) that is not
satisfied by @'.

Example 6.1 : Consider a variation on our running example, where the predicate year denotes
the year of publication of a paper.

Q2(x) - inSIGMOD(x), cites(x,y), year(x,rl), year(y,r2), r1 > 1990, r2 < 1985
V7(a,sl) :- inSIGMOD(a), cites(a,b), year(a,s1), year(b,s2), s2 < 1983
V8(a,sl) :- inSIGMOD(a), cites(a,b), year(a,s1), year(b,s2), s2 < 1987

Our algorithm would first consider V7 with the mapping {x — a,y — b, r1 — s1,r2 — s2}. In
this case, the subgoal r2 < 1985 is satisfied by the view, but r1 > 1990 is not. However, since sl is
a distinguished variable in V7, the algorithm can create the rewriting:

Q2'(x) - V7(x,r1), r1 > 1990

When the algorithm considers a similar variable mapping to V8, it will notice that the constraint
on r2 is not satisfied, and since it is mapped to an existential variable in V8, no MCD is created. O

Example 6.2 : The following example provides an intuition for which rewritings our extended
algorithm will not discover. Consider the following query and view:

Q(u) - e(u,v), u <v
V1(a) :- e(a,b), e(b,a)

The algorithm will not create any MCD because the subgoal u < v in the query is not implied
by the view. However, the following is a contained rewriting of ).

Q’'(u) :- V1(u)

In general, in order to find a containment mapping in the presence of comparison predicates,
[K1u88] shows that we must find a mapping for every ordering of the variables. For example, we
must consider two different containment mappings, depending on whether ¢ < b or a¢ > b. In each
of these mappings, the subgoal e(u,v) may be mapped to a different subgoal. Our algorithm will
only find rewritings in which the target of the mapping for a subgoal in the query is the same for
any possible order on the variables.

O

Figures 9 and 10 show sample experiments that we ran on the extended algorithm in the case

of chain queries. In the experiments, we added to the queries and views a number of comparison
subgoals of the form x < cor z > c.
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Figure 9: Experiments with the MiniCon algorithm and comparison predicates. The query and view shapes
are the same as in Figure 4. The graph shows that adding comparison predicates only slows down the
running time by a factor of 4.
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Figure 10: Running times for the MiniCon algorithm and comparison predicates when all of the variables
in the views are distinguished.

The experiments show that the same trends we saw without comparison predicates appear here
as well. In general, the addition of comparison predicates reduces the number of rewritings because
more views can be deemed irrelevant. This is illustrated in Figure 10 where all of the variables
in the views are distinguished and therefore without comparison predicates there would be many
more rewritings. However, since the comparison predicates reduce the number of relevant views,
the algorithm with comparison predicates scales up to a larger number of views. In Figure 9, the
number of rewritings is very small, and the extra overhead of processing the comparison predicates
causes slow down of a factor of 4. This factor can be decreased with further optimizations of our
comparison predicate code that we did not explore.

7 Related Work

Algorithms for rewriting queries using views are surveyed in [Hal01]. Most of the previous work
on the problem focused on developing algorithms for the problem, rather that on studying their
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performance. In addition to the algorithms mentioned previously, algorithms have been developed
for conjunctive queries with comparison predicates [YL87], queries and views with grouping and
aggregation [GHQ95, SDJLI6, CNS99, GRT99], queries over semi-structured data [PV99, CGLV99],
and OQL queries [FRV96]. The problem of answering queries using views has been considered for
schemas with functional and inclusion dependencies [DL97, Gry98], languages that query both data
and schema [Mil98], and disjunctive views [AGK99]. Clearly, each of the above extensions to the
basic problem represents an opportunity for a possible extension of the MiniCon algorithm. Two
works [AD98, GM99] examine the complexity of finding all the possible answers from a set of view
extensions. They show that if the views are assumed to be complete, then finding the maximal set
of answers is NP-hard in the size of the data. Hence, finding a maximally-contained rewriting may
not be possible if we consider query languages with polynomial data complexity. Mitra [Mit99]
developed a rewriting algorithm that also captures the intuition of Property 1, and thus would
likely lead to better performance than the bucket algorithm and the inverse-rules algorithm. He
also considered an optimization similar to our method for removing redundant view subgoals.

Several works discussed extensions to query optimizers that try to make use of materialized views
in query processing [TSI96, CKPS95, BDD198, PDST00, ZCL*00]. In some cases, they modified
the System-R style join enumeration component [TS196, CKPS95|, and in others they incorporated
view rewritings into the rewrite phase of the optimizer [ZCLT00, PDST00]. These works showed
that considering the presence of materialized views did not negatively impact the performance of the
optimizer. However, in these works the number of views tended to be relatively small. In [PDST00],
the authors consider a more general setting where they use a constraint language to describe views,
physical structures and standard types of constraints. Unlike our algorithm, the above works are
designed to produce a single conjunctive rewriting that is equivalent to the query and has the least
cost, whereas we search for the maximally-contained rewriting.

A commercial implementation of answering queries using views is described for Oracle 8i
in [BDD"98]. Their algorithm works in two phases. In the first phase, the algorithm applies
a set of rewrite rules that attempt to replace parts of the query with references to existing mate-
rialized views. The result of the rewrite phase is a query that refers to the views. In the second
phase, the algorithm compares the estimated cost of two plans: the cost of the result of the first
phase, and the cost of the best plan found by the optimizer that does mot consider the use of
materialized views. The optimizer chooses to execute the cheaper of these two plans. The main
advantage of this approach is its ease of implementation, since the capability of using views is added
to the optimizer without changing the join enumeration module. On the other hand, the algorithm
considers the cost of only one possible rewriting of the query using the views, and hence may miss
the cheapest use of the materialized views.

8 Conclusions

This paper makes two important contributions. First, we present a new algorithm for answering
queries using views, and second, we present the first experimental evaluation of such algorithms.
We began by analyzing the two existing algorithms, the bucket algorithm and the inverse-rules
algorithm, and found that they have significant limitations. We developed the MiniCon algorithm,
a novel algorithm for answering queries using views, and showed that it scales gracefully and
outperforms both existing algorithms. As a result of our work, we have established that answering
queries using views can be done efficiently for large-scale problems. Finally, we described an
extension of our algorithm to handle comparison predicates.
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8.1 Extensions

We mention here two important extensions to the MiniCon algorithm.

Binding Patterns

In data integration applications, where views represent data sources, we often have limited access
patterns to the data. For example, if Amazon.com has a relation Book(title, price), we cannot
ask for all tuples in the relation. Instead, we need to provide a value for the title in order to
get a price. The problem of answering queries using views in this context has been considered
in [RSU95, KW96, DL97, LKG99]. In [RSU95] it is shown that when we consider equivalent
rewritings, the rewriting may be longer than the query. In [DL97] it is shown that if we are looking
for the maximally-contained rewriting, it may have to be a recursive datalog program over the
views.

The MiniCon algorithm can be adapted in a straightforward fashion to the presence of binding
patterns. Specifically, we can follow the same strategy of [DL97], where inverse rules were aug-
mented by domain rules. In our case we produce the rewriting by the MiniCon algorithm by first
ignoring the binding pattern limitations. Then we add domain rules, and augment the rewriting
by adding domain subgoals where necessary.

Cost-based query rewriting

An interesting direction of future research is to extend the MiniCon algorithm to the context of using
materialized views for query optimization and to consider bag semantics. In this context, we are
interested in the cheapest rewriting of the query. Conceivably, it is possible as in [T'SI96, CKPS95] to
modify the second phase of the MiniCon algorithm such that it combines the MCDs in a bottom-
up dynamic programming style, and hence saves only the cheapest rewriting. However, for the
algorithm to guarantee finding the cheapest rewriting, we now need to consider rewritings that
contain logically redundant subgoals.

Example 8.1 : Suppose we have the following query and views:

Q(xy) - el(xz), e2(zy)
V1(x,y) - el(xy)
V2(zy) - €2(zy)
V3(x) - el(x,z), e2(z,y)

If the join of el and e2 is very selective, the rewriting of the query that will yield the cheapest
query execution plan may be:

Q'(xy) = v3(x), vi(xy), v2(zy).

However, the MiniCon algorithm would not create a MCD that includes V3, because it would
violate Property 1, and would hence miss this rewriting. m|

Hence, to extend the MiniCon algorithm to this context we need to establish a bound on the
size of rewritings that need to be considered, and to relax the definition of MCDs.
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A Proof of Correctness of the MiniCon algorithm

A.1 Preliminaries

We consider conjunctive queries and views without built-in predicates. We assume the query has
the form

Q(X): —e1(X1),---,en(Xn)

Without loss of generality we assume that no variable appears in more than one view, and
the variables used in the views are disjoint from those in the query. Furthermore, we assume
that the heads of the views and the query do not contain multiple occurrences of any variable.

We apply variable mappings to tuples and to atoms with the obvious meaning, i.e., o(X) =
((p(xl)a QO(‘TZ)) e 790(]7n)) where X = ('7"17 s 7‘7771)'

Recall that a maximally-contained rewriting is, in general, a union of conjunctive rewritings. A
conjunctive rewriting has the form

QI(Y) = Vl(Yi)a Vv?(%)a .. 7Vk(Yk)

Note that for any 7 # j it is possible that V; = V.

Given a conjunctive rewriting @', the ezpansion of @', denoted by Q" is the query in which the
view atoms are replaced by their definitions (i.e., they are unfolded). Note that when expanding
the view definitions we need to create fresh variables for the existential variables in the views. We
assume we have a function f(z) that returns the jth fresh copy of a variable z. For a given subgoal
gi € @', we denote by exp(i) the set of subgoals in Q" obtained by expanding the definition of V.

Given two head homomorphisms hy and ho over the variables of a view V, we say that hs is
more restrictive than h; if whenever hy(z) = h1(y), then ho(z) = ha(y).

Recall that the MiniCon algorithm produces conjunctive rewritings of the form

Q(EC(X)) - Vo (EC(V1(Yy)))s- - -, Ve (BC(¥m(Ye,,)))

Remark 3 The following property will be used in the soundness proof. Suppose that a subgoal
g € Q is in Gy, i.e., pi(9) € hi(V;). The expansion Q" will contain an atom 7(g), where, for a
variable x:

e 7(z) = EC(x) if pi(x) is a head variable in h;(V;), and

o 7(x) = fi(z) otherwise.

A.2 Proof of Soundness

We need to show that every conjunctive rewriting @)’ that is obtained by the MiniCon algorithm is
contained in (). To show soundness, we show that there is a containment mapping Y, from @ to
QII.

We define an intermediate Y; for s = 0, ..., k by induction as follows. The containment mapping
T will be defined to be Y.

For all z where z € Vars(Q) and EC(z) € Vars(Q"), Yo(z) = EC(z).
T; is an extension of T;_1, defined as follows: for all z in the Domain(yp;), if & Domain(Y;_1)

then T;(z) = f/(EC(pi(2)))-

Now we show that T is a containment mapping.

SIS
[
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e Mapping of the head: we need to show that T(X) = EC(X). Because of Ul, it suffices to show
that for every variable in z € X, EC(z) appears in Q”. By Property 1, clause C1, we know
whenever z is in the domain of ¢ and is a head variable in ), ¢ maps = to a head variable in
h(V). By Property 2, clause D1, we know that given a MCD set, all the head variables in @) are
in the domain of some MCD in the set. From the definition of ¥;, we know that X is a subset
of the union of the ranges of the ¥;’s, and hence, EC(z) is in Q" for every = € X.

e Mapping of a subgoal g. We need to show that Q" includes Y(g). By Remark 3 we know that
Q" includes 7(g). It suffices to show that YT(g) = 7(g), which follows immediately from the
definition of Y.

A.3 Completeness

Let P be a maximally-contained rewriting of ) using V, and let R be the rewriting produced by
the MiniCon algorithm. The MiniCon algorithm is complete if R J P. Since both R and P are
unions of conjunctive queries, it suffices to show that if p’ is a conjunctive rewriting in P, then
there exists a conjunctive rewriting 7’ in R, such that »' J p’ [SY81].

Since p’ is part of a maximally-contained rewriting of @, there exists a containment mapping 6
from @ to the expansion p” of p' [CM77]. We will use 6 to show that there exists a set of MCDs
that are created by the MiniCon algorithm such that when the MCDs are combined, we obtain a
conjunctive rewriting 7’ that contains p'.

We proceed as follows:

e For each subgoal g; € p/, we define G; to be the set of subgoals g € Q, such that 8(g) € exp(7)
(i.e., G; includes the set of subgoals in @ that are mapped to the expansion of g; in p”). Note
that for 4 # j, the sets G; and G are disjoint.

e We denote by 6; the restriction of the containment mapping # to the variables appearing in G;.

e The mapping 6; is a mapping from Vars(G;) to Vars(exp(g;)). However, it can be written
as a composition of two mappings, one from Vars(G;) to hi(Vars(V;)) (where h; is a head
homomorphism on V;), and another from h;(Vars(V;)) to Vars(exp(g;)). Formally, there exist
a mapping 7; : Vars(G;) — hi(Vars(V;)) and a renaming « of the variables in h;(Vars(V;)),
such that 6;(z) = a(r;(hi(z))) for every variable z € G;.

We choose h; to be the least restrictive head homomorphism on Vars(V;) for which 7; and «
exist. Note that since we chose h; to be the least restrictive head homomorphism, then any
MCD created by the MiniCon algorithm for V; would at least as restrictive as 7; (hence, 7;
depends only on @ and the view V;, and not on how V; is used in the rewriting p').

e We show that we now have all the components of a MCD, which we will denote by C;:
— h; is a head homomorphism on Vars(V;),
— hi(V;(A)) is the result of applying h; to the head variables A of V;.
— 7; is a partial mapping from Vars(Q) to h;(Vars(V;)), and
— @ is a set of subgoals in () that are covered by 7;.
Furthermore, the MCD Cj satisfies the conditions of Property 1 which are enforced by the
MiniCon algorithm:

C1. For any head variable z of Q, 7;(z) is a head variable of h;(V;), because 6;(z) is a head variable
of p”.

C2. Tt follows from the fact that 6; is a restriction of a containment mapping from @ to p”, that
if 7;(x) is an existential variable in h;(V;), then for every subgoal ¢g; € @ that includes z (1)
all the variables in g; are in the domain of 7;, and (2) 7;(g1) € hi(V;).
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In addition, note that C4,...,C} satisfy Property 2, which is the condition that the MiniCon
algorithm checks before it combines a set of MCDs:

D1. Gy U...UGy = Subgoals(Q) because 6 is a containment mapping from @ to p”, and

D2. for every i # j, G; N G = () because of the way we constructed the G;’s.

e The only difference between the MCD C; and a MCD created by the MiniCon algorithm is that
7; may not be the minimal mapping necessary to satisfy Property 1. However, this is easy to
fix by simply decomposing the MCD C; into a set of MCDs that satisfy Property 1 exactly and
contain only minimal mappings for 7; and minimal sets of subgoals in their fourth component.
Note that even after decomposing the MCDs, the G;’s are still disjoint subsets of subgoals in
(@, and hence Property 2 is still satisfied.

e At this point we have shown that we have a set of MCDs C4, ..., (), that satisfy Properties 1
and 2. Furthermore, Each of the mappings 7; in the MCDs less restrictive than 6 in the following
sense: for any variables z,y, if 7;(z) = 7;(y) then 6(z) = 0(y).

As a result, when procedure combineMCDs creates the function FC), it will have the property
that EC(z) = EC(y) only if #(z) = 6(y). Consequently, the conjunctive rewriting ' that
is produced when Ci,...,C; are combined will have the same property: whenever the same
variable appears in two argument positions in 7', those two argument positions will have the
same variable in p/. Hence, there is a containment mapping from 7’ to p’, and therefore p’ C 7'.
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