
ONTECTAS: Bridging the Gap Between
Collaborative Tagging Systems and Structured

Data

Ali Moosavi, Tianyu Li, Laks V.S. Lakshmanan, and Rachel Pottinger

University of British Columbia, Vancouver, BC, Canada
{amoosavi,lty419,laks,rap}@cs.ubc.ca

Abstract. Ontologies define a set of terms and the relationships (e.g.,
is-a and has-a) between them. An ontology relating the tags in a collab-
orative tagging system (CTS) makes the CTS easier to understand. We
propose an algorithm to automatically construct an ontology from CTS
data and empirically compare with related work on four real data sets
– Del.icio.us, LibraryThing, CiteULike, and IMDb. We also verify the
effectiveness of our algorithm in detecting is-a and has-a relationships.

Keywords: ontology, taxonomy, tag, collaborative tagging systems

1 Introduction

Ontologies organize information in content management systems and are the
core building blocks of the emerging Semantic Web. Substantial work has been
done in extracting ontologies automatically from large repositories like text cor-
pora, databases, and the web. This paper focuses on collaborative social tagging
systems (CTSs) such as Del.icio.us (for tagging bookmarks), Flickr (for tagging
photos), IMDb (for tagging movies), LibraryThing (for tagging books) and Ci-
teULike (for tagging publications). These systems permit users to tag and share
resources (documents, photos, videos, etc.). Our goal is to create a generic on-
tology of the tags from a CTS. By ontology, we mean a set of concepts from a
domain, represented by the tags, and their (is-a and has-a) relationships.

Learning an ontology from a CTS can help make the CTS more useful. For
example, browsing an ontology of tags from a CTS can help users better refine
their queries, either to find more items by using a more general term or to find
fewer items by using a more specific term. This is especially important in a
CTS since the resources are typically labeled by a small, sparse, set of tags —
so discovering content in CTSs by simple keyword search is much harder than
in document and web search. Another application of domain specific ontology
builders is to enhance search engines with ontologies. E.g., the prototype Clever
Search system [?] merges words and their word senses in the general ontology,
WordNet 1, and returns more relevant result items to the user.

1 http://wordnet.princeton.edu

II

In principle, we could use a general purpose ontology such as WordNet to
browse a CTS; there are two disadvantages. First, tags in CTSs are not based on
a fixed vocabulary but constantly evolve. Thus, one cannot expect WordNet (or
similar systems) to capture the vocabulary in a dynamic CTS, e.g., “Mac OS X”.
Secondly, as we demonstrate in Section 7, even when terms corresponding to tags
in a CTS are present in WordNet, in many cases, valid is-a relationships between
them that are found by our algorithm are missing in WordNet. This mirrors a
similar finding for the ontology extracted from Wikipedia using YAGO [?]; using
a combination of WordNet and Wikipedia found significantly more ontological
relationships (including is-a) that were absent in WordNet.

This paper studies the following problem: given a collaborative tagging sys-
tem consisting of users, resources (also called items), and tags assigned by users
to items, extract an ontology consisting of tags in the CTS and is-a and has-a
relationships between the tags. We consider has-a relationships in addition to
is-a: indeed, is-a and has-a relationships are among those most used in ontolo-
gies with rich relationships, such as WordNet.

Our algorithm for ontology extraction from CTSs is predicated on the hy-
pothesis that tags assigned to a resource by a group of users tend to contain
both child and parent tags. A possible explanation for this phenomenon is that
different users may use tags at different levels of abstraction (from an underlying
ontology in their mind); thus tags for the same item may include more abstract
or more specific terms as an aggregation effect of various tagging behaviors. We
leverage this hypothesis using association rules [?] and lexico-syntactic patterns
to find relationships between tags. Our approach accounts for bi-grams (which
can affect the precision of detected relationships), multi-word tags, and also
infer non-trivial is-a relationships from detected ones. We make the following
contributions:

– We propose (Sections 4 through 6) an algorithm for ontology extraction from
a CTS, called ONTECTAS (for ONTology Extraction from Collaborative
TAgging Systems). The highlights of the algorithm include:

– We thoroughly explore how to use association rule mining over CTS tags to
extract an ontology and show that one form of association mining signifi-
cantly outperforms the others.
• Candidate is-a relationships are mined using association rules, making

use of both forward and reverse confidence (Section 4.2).
• Invalid tuples are pruned based on discovering bi-grams (Section 4.3).
• Headword detection is leveraged for discovering relationships between

multi-word tags (Section 4.4).
• Lexico-syntactic patterns are used for detecting is-a and has-a rela-

tionships. To our knowledge, we are the first to explicitly extract has-a
relationships from CTSs (Section 5).

• Based on items in the ontology having a common (is-a) child, additional
is-a relationships are inferred (Section 6).

– We demonstrate via a comprehensive set of experiments on four real datasets
that our algorithm outperforms previous algorithms w.r.t. quality and rich-
ness of the extracted ontology (Section 7).

III

– In addition to showing the effectiveness of ONTECTAS compared to previous
works, our experiments confirm the following: (i) general purpose ontologies
like WordNet miss many valid is-a relationships (ii) the hypothesis that the
population of users tend to use both parent and child tags (from an ontology
in their mind) when tagging resources.

Section 2 discusses related work. Section 3 formalizes the problem studied in
this paper. Section 8 concludes and discusses future work.

2 Related Work

A number of works focus on extracting ontologies from the web, e.g., in [?,?], the
authors learn non-taxonomic relationships (e.g., “cures”) from web documents.
In [?], the authors complement general purpose ontologies such as WordNet by
leveraging Wikipedia. In contrast, this paper focuses on CTSs and on extracting
is-a and has-a relationships.

Some other works have studied extracting ontologies from CTSs. Some ap-
proaches [?,?,?] match CTS tags to concepts in general purpose ontologies such
as WordNet, resulting in a graph of tags. Because existing ontologies are made
by experts, these methods have high accuracy; however, because CTSs are adhoc
and use terms dynamically, general purpose ontologies miss many terms as well
as edges (i.e., relationships). For example, our experiments show that Word-
Net misses more than 25% of correct edges between concepts extracted from
Del.icio.us, even when both parent and child concepts are in WordNet.

Schmitz [?] uses conditional probabilities between pairs of tags, the number of
users using each tag, and the number of resources containing each tag to find tag
pairs. Constructed pairs are then added to a weighted graph where edge weights
represent how often paths from the leaves to the root go through that edge. For
each leaf, the path to the root with the highest average weight is chosen. The
final tree is built by integrating these paths.Schmitz’s algorithm cannot identify
the exact relationship (e.g., is-a and has-a) between terms — it simply says
they are related, not how. By contrast, our algorithm pinpoints is-a and has-a
relationships between terms.

Heymann and Garcia-Molina [?] create an ontology tree by building a series
of vectors, where each vector’s dimension is the number of tagged URLs in
the dataset. They use cosine similarity to find distance between tags, and then
calculate centrality for each tag in the tag graph. Their method has following
limitations: (i) sparseness of tag vectors causes tags around the leaves to be far
from the topic of the root; (ii) they assume all tags are part of the ontology,
which is invalid in the context of CTS since users tend to use tags in an ad-
hoc manner, resulting in a substantial noise; (iii) There is no evaluation. Our
approach addresses all these issues.

Schmitz et al. [?] use association rule mining to build a tree of related tags
from a CTS; however, they do not explain how the edges are built or what types
of relationships they model. We explain this in depth and also use lexico-syntactic
patterns and a search engine to detect accurate is-a and has-a relationships.
[?] extends [?] and [?] by considering the tag’s context. Barla and Bieliková [?]

IV

consider tag context similarly to [?]. For each tag, [?] finds the tag that co-occurs
most frequently with it and creates a child-parent or sibling relationship between
the two depending on the frequencies of the two tags. [?] assumes that each tag
has at most one parent.

In [?], the authors distinguish between subjective tags (e.g., “neat”) and ob-
jective tags (e.g., “Mac”). The authors calculate feature vectors for each objective
tag by Probabilistic Latent Semantic Indexing [?]. Then, their DAG algorithm
calculates entropy values for each tag from feature vectors. The tags form a di-
rected graph where tags with higher entropies are in higher levels of abstraction.
The DAG algorithm also assumes that all objective tags are part of the ontology;
this may not be valid for all domains. They consider an edge to be correct if
there exists any relationship between concepts. Note that this definition yields
an artificially higher precision compared to defining correctness of edges w.r.t.
specific relationships (e.g., is-a and has-a).

Lin et al. [?] build a subsumption graph from the folksonomy and use a
random walk to sort tags by generality ranking. They put tags in the taxonomy
based on support and confidence between candidate nodes from the graph. They
only consider a single sense for each tag, which leads to missed relationships. The
authors claim building transactions for tags associated to items by specific users
will lead to the best taxonomy because it preserves most of the information. In
contrast, we found that user information does not improve taxonomy quality.

Körner et al. [?] categorize users by the kind of tags they use. They show that
excluding some users can reduce noise and improve precision. This improvement
is orthogonal to the contribution we make in this paper and is applicable in our
context as well. We leave adapting ONTECTAS to this as future work.

Hearst [?] defines a set of patterns that indicate is-a relationships between
words in text documents. [?,?] find patterns for detecting has-a relationships
from text corpora. To our knowledge, our work is the first to extend the lexico-
syntactic patterns to find relationships of any type between tags in CTSs.

In sum, in contrast to previous works on ontology extraction from CTSs,
our method is capable of detecting both has-a and is-a relationships and ex-
plicitly identifying each. Our multi-stage algorithm also extracts high quality
relationships between multi-word tags.

3 Problem Statement

A collaborative tagging system [?] is a 4-tuple C = (U, T, I, Y) where U is a set
of users, T is the set of tags used by the users, I is the set of items (resources) to
which tags are assigned by users, and Y , the set of tag assignments, is a ternary
relation on tags, users, and items, i.e., Y ⊆ U × T × I.

Specific CTSs may vary in detail from our definition above, e.g., IMDb does
not have user information. We can model such CTSs by dropping U and defin-
ing Y ⊆ T × I as a binary relation. CTSs such as [?] allow users to declare
their own is-a relationships. User-supplied is-a relationships can augment those
automatically extracted but cannot supplant them because of the scale.

This paper studies how to efficiently extract is-a and has-a relationships
between tags in a given CTS. The output ontology consists 〈tag1, tag2, label〉

V

tuples where tag1 is the super class and label is either is-a or has-a.2 E.g., the
tuple 〈OS, Windows, is-a〉 indicates that Windows a kind of OS.

We want our algorithm to achieve a high precision. An absolute notion of
recall is hard to measure for large CTSs having tens of thousands of tags since
the set of true relationships is not available beforehand and are too many to
find manually. Thus, we want to use a “relative” notion of recall (defined in
Section 7) and want to achieve a high score on it. Finally, we would like the
extracted ontology’s richness in terms of maximum depth, average number of
children, and average depth to be high.

4 Ontology Extraction from Collaborative TAgging
Systems (ONTECTAS) Algorithm

Algorithm 1 ONTECTAS
Input: (D) A set of 〈item, tag〉 2-tuples or 〈user, item, tag〉 3-tuples
Output: (O) Ontology of tags with is-a and has-a relationships
1: D′ ← Preprocess D. /*D′ is a set of 〈item, tag〉 tuples*/
2: 〈Tbasic, F 〉 ← Association Rule Tuple Detection(D′) /*Algorithm 2*/
3: Tpruned ← Bigram Filtering(Tbasic) /*Algorithm 3*/
4: 〈Theadword, O〉 ← Headword Detection(Tpruned) /*Algorithm 4*/
5: O ← O ∪ is-a Relationship Detection(Theadword, is-a-patterns,

is-a− threshold) /*Algorithm 5*/
6: O ← O ∪ has-a Relationship Detection(Theadword, has-a-patterns,

has-a− threshold) /*Algorithm ??*/
7: Tco parent ← Co Parent Pruning(Theadword, F) /*Algorithm 6*/
8: Return O ∪ is-a Relationship Detection(Tco parent, is-a− patterns,

is-a− threshold) /*Algorithm 5*/

Our ONTECTAS algorithm for ontology extraction (Algorithm 1) consists of six
phases. First, data is preprocessed and cleaned. Next, we extract candidate tag
tuples via association rule mining using forward and reverse confidence. We then
remove tuples corresponding to bigrams. Next, we detect headwords of multi-
word tags and use this to infer additional is-a relationships. We then use lexico-
syntactic patterns to extract additional is-a and has-a relationships. Finally,
we leverage pairs of tags sharing a common child in the extracted ontology to
infer additional is-a relationships. The next three sections describe the phases.

4.1 Preprocessing

The preprocessing step takes as input the CTS i.e., a set 〈user, item, tag〉 tuples,
or a set 〈item, tag〉 tuples if user information is unavailable. Since ONTECTAS
does not use user information, any provided user information is projected away
to form 〈item, tag〉 tuples.

2 In both relationships tag2 is-a tag1 and tag1 has-a tag2, we refer to tag1 as the
super class label or the parent label for convenience, by abusing terminology.

VI

Next, non-English keywords are removed from the input data. This prepro-
cessing step is the same as as [?]. Words that contain any non-English character
are considered as non-English words. This was adequate to remove non-English
words from all of our datasets; other datasets may require more complex pre-
processing.

The next step performs basic stemming, such as substituting singular nouns
for their plural forms. If tags or items occur only a small number of times,
extracting relationships for those tags is not statistically reliable; hence, we re-
move tags or items that occur less than a threshold. We empirically set 5 as the
threshold for removing rare tags and items.

Finally, tags in the form of verbs or verb phrases (e.g., “read”, “read but not
owned”) are detected by applying the Stanford parser3 to each tag. Verbs and
verse phrases are removed because the ontology only consists of concepts. Thus
tags for task organizing [?] which occur frequently but convey no meaning about
the item being tagged, can be pruned effectively.

The preprocessing phase outputs a set of 2-tuples in form of 〈item, tag〉. It
is possible for tuples to occur more than once, which means that different users
have applied the same tag to an item.

4.2 Exploring Association Rule Mining Possibilities

Adapting tagged data to market basket analysis requires defining how to build
transactions from tags, which in turn requires defining “co-occurrence”. We ex-
plored three different definitions of co-occurrence:

Definition 1. Tags t and t′ co-occur if the same user used both t and t′ (possibly
on different items). freq(t, t′) is the number of distinct users who used both t
and t′.

Definition 2. Tags t and t′ co-occur if both were used to tag the same item (by
possibly different users). freq(t, t′) equals the number of distinct items which
were assigned both tags of t and t′.

Definition 3. Tags t and t′ co-occur if the same user used them on the same
item. freq(t, t′) is the number of distinct 〈user, item〉 pairs such that t and t′

were assigned to that item by the user.

In each of these three definitions, transactions are built differently. Next, we
define a notion of tag frequency which is simply transactions containing the tag,
under each notion of transaction. For Definition 1, freq(t) = # distinct users
who used tag t; for Definition 2, freq(t) = # distinct items which received tag t;
for Definition 3, freq(t) = # 〈user, item〉 pairs such that user tagged item with
tag t. Using these notions, all other measures such as support, confidence, etc.
can be derived for each definition.

Empirical analysis revealed that Definition 1 is too tolerant — too many
pairs of tags are labeled as in is-a relationships, so it suffers from poor precision.
3 http://nlp.stanford.edu/software/lex-parser.shtml

VII

Definition 3 is too conservative. By insisting that the same user tag the same item
with both tags, too few genuine tag pairs are labeled as in an is-a relationship,
so it suffers from poor recall. Therefore, ONTECTAS uses Definition 2.

ONTECTAS’s Use of Association Rule Mining Algorithm 2. generates a
set of possible edges by using tag co-occurrences.

While tag co-occurrences have previously been used to derive concept hier-
archies from text [?], induce an ontology from tag space [?] and cluster tags [?].
Our work is the first to consider the different kinds of co-occurrence and thus
optimally use association rules to create an ontology from user tags. We use the
FP-tree association rule mining algorithm [?] to extract frequent tag sets4 and
interesting rules from the set of transactions. The support of a tag set X is the
proportion of transactions containing tag set X and the confidence of a rule is
defined as confidence(X ⇒ Y) = support(X ∪ Y)/support(X) — i.e., the pro-
portion of transactions in which X and Y occur together among those in which
X appears. In this paper, we refer to the well-known definition of confidence
as forward confidence (FC). We also introduce a new notion, reverse confidence
(RC) as follows: reverse confidence(X ⇒ Y) := support(X ∪ Y)/support(Y).

Algorithm 2 Association Rule Tuple Detection
Input: (D) A set of 2-tuples in form of 〈item, tag〉
Output: (T) Preliminary tag tuples, (F) Set of frequent itemsets
1: Group D by item. /*create: 〈item, {tag1, ..., tagk}〉*/
2: S ← Union of tags associated with each item (i.e., S is set of transactions)
3: F ← Frequent itemsets of size two from S where support > min support

/*FCi and RCi are forward and reverse confidence respectively*/
4: for all Fi ∈ F do
5: if ((FCi ≥ min conf.) and (RCi ≤ 1 −min conf.)) OR ((RCi ≥ min conf.)

and (FCi ≤ 1−min conf.)) then
6: Add Fi to T
7: end if
8: end for
9: Return 〈T, F 〉

We assume users tend to tag an item with both a term in the ontology
and another term that has relationship with it; we validate this assumption
in Section 7.2. Therefore, if two keywords co-occur frequently, they are likely
to be related. We use support to filter sets of tags with a cardinality of two.
However, popular unrelated terms may occur together frequently, so we use
confidence to remove tuples containing unrelated tags. Because terms which co-
occur with high confidence are sometimes synonyms (e.g., “os” and “operating
system”), we use confidence in the reverse direction to ensure that terms are

4 Tag sets correspond to itemsets in the context of frequent itemset mining.

VIII

related with is-a or has-a relationships. Different values for min support and
min conf. can drastically change the size of the ontology; in our experiments
these values were chosen empirically. At the end of this step, we have not yet
classified the relationships into is-a and has-a.

4.3 Pruning Edges Between Bi-gram Elements

In this phase, bi-gram tuples which are common phrases are automatically
pruned using a search engine. Usually bi-grams are compound nouns in the
form of “adjective + noun” (e.g., free software) or “noun + noun” (e.g., web
browser). Bi-grams do not contain is-a or has-a relationships but sometimes
are incorrectly detected as edges of an ontology since they co-occur frequently.

Finding bigrams by using a search engine [?,?,?] has not previously been
applied to extracting relationships between CTS tags. ONTECTAS sends two
keyword queries to a search engine for each relationship tuple (Algorithm 3).
The queries are the quoted permutations of the terms in the tuple. If the ratio of
the number of results returned for the two queries is larger than a threshold, the
terms in the relationship tuple are regarded as bi-grams. E.g., if the relationship
tuple is 〈software, free〉, the queries are “free software” and “software free”.
Since the ratio is higher than the threshold for this tuple, it is detected as
a bi-gram and pruned. We experimentally found that the optimal threshold for
detecting bi-grams is between 50 and 100. Because words in text documents have
Zipfian distribution, [?] suggests using a logarithmic transformation of returned
result counts. We found that the logarithmic transformation is also more accurate
in detecting bi-grams.

Algorithm 3 Bi-gram Filtering
Input: (T) A set of 2-tuples of the form 〈tag1, tag2〉
Output: (T ′) A reduced set of 2-tuples
1: T ′ ← T
2: for all T ′i ∈ T ′ do
3: ratio1← # of hits of querying “tag1 tag2” as a phrase
4: ratio2← # of hits of querying “tag2 tag1” as a phrase
5: ratio← log(max(ratio1,ratio2))

log(min(ratio1,ratio2))

6: if ratio ≥ bi− gram threshold then
7: remove T ′i from T ′

8: end if
9: end for

10: Return T ′

At the end of bigram filtering, clearly the precision will be improved. A
natural question is what is the price paid in terms of drop in recall. As shown
in Section 7.5, we found that the decrease in recall in negligible compared to
increase in precision.

IX

4.4 Detecting Headwords in Multi-Word Tags

Since many CTS tags are multi-word tags in form of compound phrases such as
“science-fiction” and “object-oriented-data-model”, we use headword detection
to extract additional is-a relationships (Algorithm 4). First, the Stanford parser
detects the headwords for each phrase. A headword is a phrase’s grammatically
most important word; it determines the phrase’s syntactic type. We then extract
an is-a relationship for each multi-word tag by putting the headword as the
parent of the whole phrase. E.g., we can infer “object-oriented data model” is-a
“model”. In this phase, more candidate tuples are produced by using either whole
phrases or their headwords as the tags in tuples.

Algorithm 4 Headword Detection
Input: (T) A set of 2-tuples of the form 〈tag1, tag2〉
Output: (T ′) A set of enhanced 2-tuples, (O) Ontology with is-a relationships
1: T ′ ← T
2: for all Ti ∈ T do
3: if Ti contains multi-tags then
4: head1←headword in tag1
5: head2←headword in tag2
6: O ← O ∪{〈head1, tag1, is-a〉}
7: O ← O ∪{〈head2, tag2, is-a〉}
8: T ′ ← T ′ ∪ {〈head1, tag2〉, 〈head2, tag1〉, 〈head1, head2〉}
9: end if

10: end for
11: Return 〈T ′, O〉

5 Using Lexico-Syntactic Patterns

Finally, we analyze occurrences of lexico-syntactic patterns to detecting is-a
and has-a relationships. Due to data sparsity, lexico-syntactic patterns do not
occur frequently enough to accurately detect relationships between terms [?].
Previous work [?] has shown that by using large amount of text, accuracy of
statistical methods will be improved. Hence, we build on [?] and query the web
for more occurrences of the patterns. Even though statistics from the web are
only based on indexed resources, [?] claim to gain robust statistics by using web
search engines.

The core of our lexico-syntactic search is shown in lines 3-6 of Algorithm 5:
given two tags and a pattern, we generate two keyword queries by considering
the two possible permutations of the tags in the pattern. E.g., given (“human”,
“body”, “’s”), the two generated queries will be “human’s body” and “body’s
human”. Then, the ratios for both forward and reverse occurrences direction are
calculated. It is clear that given any set of patterns for any relationship, this
algorithm can be applied. We use the following patterns from [?] to identify is-a

X

Algorithm 5 is-a Relationship Detection
Input: (T , P , threshold) Where T is a set of 〈tag1, tag2〉 tuples , P is a set of patterns
Output: (I) A set of 2-tuples in form of 〈parent tag, child tag〉
1: for all ti ∈ T do
2: for all pj ∈ P do
3: hits1← # of hits of querying “ti.tag1 pj ti.tag2” as a phrase
4: hits2← # of hits of querying “ti.tag2 pj ti.tag1” as a phrase
5: ratioj .F ← hits1

hits2

6: ratioj .R← hits2
hits1

7: end for
8: maximumF ← max(ratioj .F) over all j
9: maximumR ← max(ratioj .R) over all j

10: maximum← max(maximumF , maximumR)
11: if ((maximum = maximumF) and (maximumF ≥ threshold)) then
12: I ← I ∪{〈tag1, tag2, is-a〉}
13: else
14: if ((maximum = maximumR) and (maximumR ≥ threshold)) then
15: I ← I ∪{〈tag2, tag1, is-a〉}
16: end if
17: end if
18: end for
19: Return I

relationships: (1) Pattern 1: NP1 such as NP2; (2) Pattern 2: NP1 including
NP2; (3) Pattern 3: NP1 especially NP2.

Our has-a relationships are supersets of meronymy (part-of relationships),
and are not limited to the physical perspective. We consider two noun phrases
NP1 and NP2 to have a has-a relationship (with NP1 as the parent) if one
of the following statements is true: (1) NP2 is a part of NP1. E.g., “body” is
a part of “human”; or (2) NP1 has/have NP2. E.g., “human” has “mind” and
“google” has “googleMaps”; or (3) NP1 may have NP2. E.g., “human” may have
“disease”.

From the existing lexico-syntactic patterns mentioned in the literature such
as [?,?], we use three following patterns to detect has-a relationships:(1) Pattern
1: NP1’s NP2; (2) Pattern 2: NP2 of the NP1; (3) Pattern 3: NP2 of NP1.

While patterns 1 and 2 are among the most common English patterns [?],
pattern 3 is not. However, pattern 3 can be used to detect has-a relationship
between tags such as the tuple 〈Coffee, Caffeine〉.

All patterns for a relationship are fed into a search engine. If the largest ratio
of a pattern is above a threshold, that tuple is labeled with the corresponding
relationship and added to the ontology. Algorithm 5 shows the is-a detection
algorithm. The has-a algorithm is similar, but requires that pattern 1 and
one of patterns 2 and 3 are above the threshold. Both thresholds were found
experimentally. In our experiments, the is-a threshold was 7 and has-a threshold
ranged from 20 to 50.

XI

6 Exploiting Co-parents to Find More is-a Relationships

Examining the ontology built thus far reveals an interesting property when pairs
of tags share the same child. Consider the following example: the ontology may
contain “fiction → urban-fantasy” and “fantasy → urban-fantasy”, where “fic-
tion” and “fantasy” are both parents for “urban-fantasy” w.r.t. the is-a re-
lationship.5 (Figure 1). However, the is-a relationship between “fiction” and
“fantasy” may be missing. One possible reason for this is that people tend to
use the more specific tags leading to “fiction → urban-fantasy” and “fantasy →
urban-fantasy”, so that “fiction → fantasy” does not occur above the relatively
high threshold needed to avoid noise.

Fig. 1. Concept of co-parents in an ontology

Hence we have the following hypothesis: in a co-parent structure (e.g., Fig-
ure 1) it is more likely than usual that the two parents are in an is-a relationship.
Hence, we include the following additional step (Algorithm 6) to ONTECTAS:
for such co-parent pairs, we re-examine the pair’s confidences under a lower
threshold and extract candidate tuples for an is-a relationship.

As a final step of the ONTECTAS algorithm, following standard practice in
ontology extraction algorithms, if the graph of relationships is disconnected, we
add a generic “Entity” root node and make it the parent of all orphan nodes.

7 Experiments

7.1 Datasets and Assumptions

Our experiments used four real datasets: Del.icio.us (a social bookmarking web
service), IMDb (the Internet Movie Database), LibraryThing (for tagging books)
and CiteULike (a service for storing, organizing, and sharing scholarly papers).
Table 1 shows the characteristics of the datasets. User information is not avail-
able in the IMDb dataset, so competing algorithms were unable to create on-
tologies from it.

To show that general purpose ontologies are insufficient, we validated that
WordNet misses many relationships between terms even when it contains both
terms. To show this, we evaluated a sample ontology (from Del.icio.us) both

5 Here, —fiction” → “urban-fantasy” means “urban-fantasy” is-a “fiction”.

XII

Algorithm 6 Co Parent Pruning
Input: (T) A set of tuples with is-a relationships in form 〈parentTag, childTag〉; (F)

A set of frequent itemsets
Output: (T ′) An enhanced set of tuples with is-a relationships
1: T ′ ← T
2: G ← A graph where each tuple in T corresponds to an edge from parentTag to

childTag.
3: S ← All tuples of tags 〈parent1, parent2, child〉

s.t. (1) edge(parent1 → child) ∈ G and (2) edge(parent2 → child) ∈ G and
(3) edge(parent1 → parent2) /∈ G and (4) edge(parent2 → parent1) /∈ G.

4: for all 〈parent1, parent2, child〉 ∈ S do
5: if {parent1, parent2} is frequent and if it satisfies lower forward and reverse

confidence thresholds then
6: Add 〈parent1, parent2〉 to T ′ with the more frequent tag as the parent.
7: end if
8: end for
9: Return T ′

Table 1. Corpus Details in Some Collaborative Tagging Systems

Del.icio.us CiteULike IMDb LibraryThing
(Dec. 2007) (Jan. 2010) (Nov. 2009) (corpus from Delft∗)

Number of Tags 6,933,179 431,160 2,593,747 10,469

Number of Items 54,401,067 2,081,799 356,162 37,232

Number of Users 978,979 60,220 N/A 7,279

Number of Tag Assignments 450,113,886 7,922,454 2,625,237 2,415,517
∗ http://homepage.tudelft.nl/5q88p/LT

manually and by using all parent-child senses (meanings) in WordNet. For each
sense, all the parents of the child are checked recursively and added to the pool
of parents for that child. Finally, for each child, if the parent term detected by
ONTECTAS is in the pool of parents for that child, that relationship is labeled as
correct. We limited our experiments to relationships where both parent and child
term exist in WordNet. This gives WordNet an advantage since many tags do
not appear in WordNet at all. In this case, we found WordNet is missing 26.9%
of manually validated relationships discovered by ONTECTAS. For example,
WordNet contains 3 senses for “python”, but none of these senses is related to
programming; as a result, “programming → python” is missing in WordNet.

Table 2 shows the results of validating all the relationships extracted by
ONTECTAS on the Del.icio.us dataset. Next, we considered only relationships
detected by ONTECTAS where both terms in the relationship existed in Word-
Net. Table 3 shows that there are many relationships between terms in WordNet
that WordNet will not find.

Using Tables 2 and 3, the percentage of missing relationships in WordNet
is calculated in Table 4. In this table, the percentage of missing edges for all
relations validates the fact that WordNet does not contain all the terms used in
Del.icio.us. The percentage where both terms are available in WordNet shows

XIII

that WordNet not only misses many terms in its database, but also misses many
edges between the terms that are available in its database.

Table 2. Precision for all relationships

Del.icio.us (Aug. 2005)

Precision Examined by WordNet 0.25

Precision Examined Manually 0.66

Table 3. Precision for relationships with both terms in WordNet

Del.icio.us (Aug. 2005)

Precision Examined by WordNet 0.46

Precision Examined Manually 0.63

Table 4. Percentage of missing relationships in WordNet

Del.icio.us (Aug. 2005)

all relationships 62.12%

relationships with 26.98%
both terms in WordNet

7.2 Validating Assumption for User’s Tagging Behavior

ONTECTAS is built on the hypothesis that tags assigned by a group of users
to tag the same item tend to contain both a term and its parent. To verify this
hypothesis, we looked at the tagging behavior of users throughout our datasets.
Because it is impossible to manually validate millions of tag assignments, we
needed to automate the process. We did so by checking for each tag t that has
parents in the dataset, what percentage of times does t occur with one of its
parents?

Next we must define the possible parents; if we define parents based only
on what the algorithms have found, then we will miss those cases where there
are parents that the algorithms have missed — which are likely to be the cases
where the tags did not occur with their parents.

Therefore, for a given tag t, we used two metrics: St is the set formed by the
union of the validated parent tags of t discovered by any of the algorithms. We

XIV

0 1

0.15

0.2

0.25

0.3

0.35

Pe
rc
en
ta
ge
 o
f t
ag
s

Closed World Open World

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0 ‐
0.1

0.1 ‐
0.2

0.2 ‐
0.3

0.3 ‐
0.4

0.4 ‐
0.5

0.5 ‐
0.6

0.6 ‐
0.7

0.7 ‐
0.8

0.8 ‐
0.9

0.9 ‐ 1

Pe
rc
en
ta
ge
 o
f t
ag
s

HitRate

Closed World Open World

Fig. 2. Histogram of HitRate values

refer to St as the closed world parent set . Wt is the set of tags such that each
tag w in Wt is a parent of t according to WordNet, and w and t appear in the
same dataset. The open world parent set is St ∪Wt. These terms indicate our
belief that in St, the only parents that exist are those that have been found by
some algorithm (hence it is a closed world) and that in Wt there may be other
parent relationships that were not found (hence St ∪Wt is an open world).

We use the term “HitRate” to define how often tag t occurs with a mem-
ber of its parent set divided by the total number of transactions containing t.
Figure 2 shows a histogram of HitRate values; each histogram bucket shows the
percentage of tags with this HitRate in both the closed and open worlds.

Figure 2 validates that people use parent and child tags together. In the closed
world, more than 83% of child tags have a hit rate larger than 0.5, which means
tags are usually accompanied with their parent tags in the same transaction. In
the open world, we notice that 24% of tags have a hit rate of 0, which is also
expected. We include parent words from WordNet for any semantic senses of a
tag. It is highly possible that in the dataset the parent word does not have the
corresponding meaning as it has in the is-arelationship discovered by WordNet.
It is worth noting two factors in this open world that strengthen our hypothesis:
(1) more than 75% of tags occur with some parent and (2) more than 31% of
child tags have a hit rate larger than 0.5. This is quite high, which validates our
hypothesis that a group of people tag items with both a tag and its parent, and
explains why our recall is so high (as will be shown in Section 7.5).

7.3 Evaluation of ONTECTAS in Detecting has-a Relationships

Table 5 shows the precision of ONTECTAS in detecting has-a relationships.
None of the other competing algorithms address has-a relationships from CTSs.

XV

Table 5 only reports precision for ONTECTAS, the first algorithm to detect
has-a from CTS data.

One challenge in detecting has-a relationships was that pattern-based search
engine queries such as “human’s middle” and “middle of human” are frequently
part of phrases such as “human’s middle finger” and “middle of human history”.
Clearly, there is room for improvement in ONTECTAS’ precision in has-a de-
tection, which we plan to address in future work.

Table 5. Precision in detecting has-a relationships

Del.icio.us CiteULike LibraryThing IMDb

Precision 51.6% 61.9% 55.5% 33.3%

7.4 Evaluation of ONTECTAS in Detecting is-a Relationships

In the following, we focus on is-a relationships. All competing algorithms do not
distinguish between is-a and other relationships such as synonyms, whereas we
clearly isolate is-a relationships. We lump all other relationships into any and
compare the performance of ONTECTAS on is-a with that of other algorithms
on is-a and any, giving them an advantage, since in this evaluation, we do
not give credit to ONTECTAS for correctly finding has-a relationships. We use
the following standard performance measures: (1) Precision: We consider the
precision of ONTECTAS on is-a with that of other algorithms on is-a+ any.
Precision for both is the number of correct edges over the number of all edges. (2)
Maximum depth and average depth of the is-a taxonomy. (3) Average number
of children. A higher value of the last two measures implies richer ontology is
extracted. In addition, following [?], we compare all algorithms with a gold
standard to see how they fare in trying to recreate manually-curated ontologies.

For depth and breadth metrics, we calculate these metrics on an ontology
with only correct relationships to ensure algorithms cannot earn an artificially
and unfairly high score on these by finding many incorrect relationships!

Absolute recall for ontology extraction from a large CTS is very hard to
measure. Instead, we propose a new metric: relative recall. It is impossible to find
all of the is-a edges in the datasets that we tested, because there may be millions
of tag assignments. Therefore, we compute the recall relative to the validated
is-a edges found by all of the algorithms. Relative recall for an algorithm is the
number of valid is-a relationships found by the algorithm divided by the total
number of valid is-a relationships found by all algorithms.

7.5 Comparing ONTECTAS to Other Algorithms

We compare ONTECTAS with the four algorithms from Section 2: 1) the algo-
rithm from [?] (abbreviated “LFZ”) 2) the DAG algorithm [?] (“DAG-ALG”) 3)
Schmitz’s algorithm [?] (“Schmitz”), and 4) Barla and Bieliková’s algorithm [?]
(“BB”). Since these algorithms cannot process the IMDb dataset due to the

XVI

lack of user information, we only compare them on Del.icio.us, LibraryThing,
and CiteULike.

To have a fair comparison, we implemented the above algorithms as closely
as possible to the way their authors had implemented them; we used the param-
eters that were described in the papers and contacted the authors for additional
information about how to make their algorithms as competitive as possible.

Validating the edges manually required that each algorithm output a small
number of edges. To do so, we put another threshold on the number of times a
tag, an item, or a user must occur in order to be considered. To be fair, we used
the same threshold to ensure that each algorithm output fewer than 150 edges.

Figure 3(a) shows the algorithms’ precision for both is-a relationships (the
lower bars) and any relationships (the higher bars); for is-a relationships, the
precision of ONTECTAS is 0.50 for Del.icio.us, 0.48 for LibraryThing and 0.29
for CiteULike. ONTECTAS outperforms the precision of all other algorithms on
all datasets. We also compare our precision on is-a with that on is-a+ any for
the other algoritms since they do not distinguish is-a from non-is-a. Even then
ONTECTAS outperforms the other algorithms in del.icio.us and CiteULike. On
LibraryThing, the performance is close to the winner.

Figure 3(b) compares the algorithms’ relative recall for is-a relationships.
ONTECTAS is the best performer for all three datasets. One reason for DAG-
ALG’s bad relative recall is that it detected many popular tags such as “web”
and “software” as subjective tags, and pruned them before discovering the edges.
BB had relatively low precision and recall in CiteULike because it detected
many relationships with the tag “no-tag”, which is a popular tag rather than an
ontological tag. Figure 3(e) shows the relative recall for any relationships. As we
can see, ONTECTAS is still the best performer, though by a smaller margin.

Figures 3(c), 3(d), and 3(f) measure the depth of the validated ontology
detected by each algorithm for both is-a (lower bars) and any relationships
(higher bars). These measures quantify the richness of the ontology. If there
are multiple paths from the root to a node n, the depth is the longest path.
Because the other algorithms find just any relationship between elements in an
ontology, rather determining the types of relationships, like ONTECTAS does,
we measure both the is-a relationships and any relationships found. We do not
consider has-a since no other algorithms detect it. Notice that this gives an
advantage to the competing algorithms. For the depth metrics, other algorithms
usually find a long chain with combination of synonyms and is-a relationships.
Since ONTECTAS detects mostly is-a or has-a (and not synonyms), maximum
depth for any relationship in ONTECTAS is close to maximum depth of is-a
relationship because in general of chains containing is-a and has-a are rare.

For is-a relationships, ONTECTAS has the highest maximum depth for two
out of three datasets. For the average number of children, ONTECTAS has the
best performance for CiteULike, is roughly tied for Library thing, and is second
best for Del.icio.us.

The results for average number of children for is-a are similar to those for
average number depth. Even when competing algorithms are given credit for

XVII

any relationships and ONTECTAS only for finding is-a, ONTECTAS performs
fairly well. This is because there are so many is-a relationships detected as
compared to the other relationship types.

For all of the depth/children metrics, we note that all algorithms perform
markedly better using our removing verb phrases preprocessing step. This step
removed many non-ontological tags such as “to-read” in the Del.icio.us dataset.
By applying this to all algorithms, we have improved all algorithms’ performance,
not just ONTECTAS’s. Figure 3 also shows that most of the algorithms per-
formed better on most measures for the Deli.icio.us and LibraryThing datasets
than on CiteULike. This validates that the tags in these datasets are of better
quality than the ones in CiteULike. This shows that we can compare different
CTSs on the quality of tagging actions, using an ontology creation algorithm.

In summary, ONTECTAS outperforms the four other algorithms on precision
and relative recall for is-a relationships, and does well on the structural metrics
of maximum depth, average depth and average number of children.

7.6 Comparing with a Gold Standard

Following [?], we compared how the algorithms extracted is-a relationships
against a “gold standard” ontology — the concept hierarchy from the Open
Directory Project (ODP) 6. To judge precision, recall, and F-measure, we use
the lexical and taxonomic metrics from [?]. The lexical metrics measure how well
the algorithms did in recreating the concepts, and the taxonomic metrics show
how well the algorithms did in recreating the structure. Notice that compar-
ing with a static ontology considered as gold standard has its problems since it
may miss important concepts and relationships and a good algorithm that finds
concepts and relationships manually verified to be correct may get penalized
unfairly. We will return to this point.

Formally, given an output ontology OR = {CR, root,�CR
} (where C is a

set of concepts, root is the root and �CR
is a hierarchy), and a gold standard

OG = {CG, root,�CG
}, the lexical precision is defined as

LP (OR, OG) =
|OR ∩OG|
|OR|

(1)

the lexical recall is defined as

LR(OR, OG) =
|OR ∩OG|
|OG|

(2)

The lexical F-measure is defined as:

LF (OR, OG) =
2 · LP (OR, OG) · LR(OR, OG)
LP (OR, OG) + LR(OR, OG)

(3)

6 http://dmoz.org

XVIII

The taxonomic metrics are based on the common semantic cotopy (i.e., an-
cestors and decedents of a node) of each concept in both ontologies [?]. Formally,
given two ontologies O1 and O2, the common semantic cotopy of a concept c is

csc(c, O1, O2) = {c′|c′ ∈ C1 ∩ C2 ∧ (c′ ≺C1 c ∨ c ≺C1 c′)} (4)

Given a resulting ontology OR and a gold standard OG, the local taxonomic
precision of the concept c is defined as

tp(c, OR, OG) =
|csc(c, OR, OG) ∩ csc(c, OG, OR)|

|csc(c, OR, OG)|
(5)

Thus, taxonomic precision is defined as

TP (OR, OG) =
1

|CR ∩ CG|
∑

c∈CR∩CG

tp(c, OR, OG) (6)

Taxonomic recall is defined as

TR(OR, OG) =
1

|CR ∩ CG|
∑

c∈CR∩CG

tp(c, OG, OR) (7)

Taxonomic f-measure is defined as

TF (OR, OG) =
2 · TP (OR, OG) · TR(OR, OG)
TP (OR, OG) + TR(OR, OG)

(8)

Table 6. Gold standard based lexical metric results for ontologies produced by five
algorithms. Subtrees associated with manually selected root concepts are extracted and
compared with the corresponding part in the gold standard.

Root
Lexical Precision(LP) Lexical Recall(LR) Lexical F-measure(LF)

ONT LFZ BB DAG Schmitz ONT LFZ BB DAG Schmitz ONT LFZ BB DAG Schmitz

software 0.2632 1 0.3333 0.5 0.2174 0.0481 0.0081 0.0153 0.0434 0.0106 0.0813 0.0161 0.0293 0.0799 0.0202
programming 0.5625 1 0.4375 0.375 0.1819 0.0104 0.0006 0.0175 0.0272 0.0039 0.0204 0.0012 0.0337 0.0507 0.0076

web 0.0789 0.5 0.0313 0.0741 0.0357 0.1163 0.0233 0.1163 0.0698 0.0233 0.0940 0.0445 0.0493 0.0719 0.0282
technology 0.0653 0.5 0.0907 0.3333 0.2 0.0238 0.001 0.0859 0.001 0.001 0.0349 0.0020 0.0882 0.0020 0.0020

photography 0.25 0.5 0.75 0.0625 0.0556 0.009 0.0023 0.009 0.0023 0.0023 0.0174 0.0046 0.0178 0.0044 0.0044
art 0.25 1 0.2222 1 0.05 0.4444 0.1111 0.2222 0.1111 0.1111 0.3200 0.2000 0.2222 0.2000 0.0690

6 largest 0.256 0.6667 0.1511 0.6129 0.125 0.0308 0.0045 0.0293 0.028 0.0065 0.0550 0.0089 0.0491 0.0536 0.0124
Overall 0.261 0.743 0.183 0.745 0.128 0.240 0.006 0.244 0.025 0.007 0.044 0.011 0.043 0.049 0.014

The resulting ontologies are still fairly small comparing with the ODP ontol-
ogy, which has 763,378 concepts overall; only 3,946 concepts were found by any
of the algorithms. We looked at the 25 highest-level concepts common across the
five algorithms.

Table 6 shows the lexical metrics for all five algorithms to see how similar
the output concepts are to the gold standard. Table 7 shows the taxonomic

XIX

Table 7. Gold standard based taxonomic metric results for ontologies produced by five
algorithms. Subtrees associated with manually selected root concepts are extracted and
compared with the corresponding part in the gold standard.

Root
Taxonomic Precision(TP) Taxonomic Recall(TR) Taxonomic F-measure(TF)

ONT LFZ BB DAG Schmitz ONT LFZ BB DAG Schmitz ONT LFZ BB DAG Schmitz

software 0.7102 0 1 0.2739 1 0.7188 0 0.4857 0.762 0.25 0.7144 — 0.6538 0.4029 0.4
programming 0.8889 0 0.9405 0.5333 1 1 0 0.69 0.95 1 0.9411 — 0.7960 0.6831 1

web 1 0 0.6667 1 0 1 0 1 1 0 1 — 0.8000 1 —
technology 0.5513 0 0.6644 0 0 0.9565 0 0.9031 0 0 0.6994 — 0.7655 — —

photography 1 0 1 0 0 1 0 1 0 0 1 — 1 — —
art 1 0 1 0 0 1 0 1 0 0 1 — 1 — —

6 largest 0.5956 0 0.5341 0.2348 0.7 0.7983 0 0.7494 0.8041 0.35 0.6822 — 0.6236 0.3635 0.4667
Overall 0.480 0.077 0.434 0.123 0.329 0.723 0.023 0.711 0.783 0.256 0.577 0.035 0.539 0.212 0.288

metrics, which try to capture how similar the output structure is to the gold
standard. Bolded entries represent the best performance. Because the 25 highest
level common concepts were very uneven in size, we only performed a detailed
analysis of the 6 largest subtrees — otherwise algorithms would be testing against
subtrees that were only one or two concepts large.

ONTECTAS has the second highest overall lexical recall and f-measure,
which shows that it finds the desired concepts well. While DAG had the highest
lexical precision and f-measure, and BB had the highest lexical recall, they both
did very poorly on taxonomic precision, leading to a low taxonomic f-measure.

LFZ had a very good lexical precision; however, this is achieved by reporting
a very small number of correct concepts. ONTECTAS is superior to LFZ in terms
of all three taxonomic measures. Unlike for lexical recall, there are some cases
where the taxonomic recall is zero. This means there is no validated hierarchy
corresponding to this concept in the output produced by that algorithm. This
often occurs when single nodes rather than their surrounding nodes are matched
with the gold ontology. A very flat taxonomy can also suffer from this when leaf
nodes are matched.

As we show in Tables 6 and 7, when we considered only the 6 largest subtrees,
ONTECTAS had the best lexical and taxonomic f-measure.

Algorithms with zero recall cannot have their f-measure calculated, so their
f-measure is indicated by a dash. In this experiment LFZ had a very shallow
taxonomy, and its taxonomic recall and f-measure suffer accordingly.

Comparing to a gold standard shows how well algorithms do against a man-
ually created ontology. But since a gold standard ontology is static, this metric
may unfairly penalize algorithms that genuinely find correct concepts and rela-
tionships. E.g., “dialect” and “software is-a technology” is incorrect according
to this standard. Thus, comparing algorithms should take into account other
components discussed above as well.

8 Conclusion and Future Work
We proposed an algorithm (ONTECTAS) for building ontologies of keywords
from collaborative tagging systems. ONTECTAS uses association rule mining,
bi-gram pruning, exploiting pairs of tags with the same child, and lexico-syntactic

XX

patterns to detect relationships between tags. We also provided a thorough anal-
ysis of ONTECTAS and how it compares to other algorithms. Some of the
important open problems include detecting spam users, improving accuracy of
ontology extraction via supervised learning and by means of incorporation of
part-of-speech detection. Our ongoing work addresses some of these.

Acknowledgements

This research is funded by a grant from NSERC Canada.

XXI

0 3

0.4

0.5

0.6

0.7

0.8

0.9

Pr
ec
isi
on

ONTECTAS BB Schmitz LFZ DAG

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Del.icio.us CiteULike LibraryThing

Pr
ec
isi
on

ONTECTAS BB Schmitz LFZ DAG

(a) Precision

0.2

0.25

0.3

0.35

0.4

0.45

Re
la
tiv
e
Re

ca
ll

ONTECTAS BB Schmitz LFZ DAG

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

Re
la
tiv
e
Re

ca
ll

ONTECTAS BB Schmitz LFZ DAG

Del.icio.us CiteULike LibraryThing

(b) Relative Recall — is-a

0.6

0.8

1

1.2

1.4

ge
 N
um

be
r o

f C
hi
ld
re
n

ONTECTAS BB Schmitz LFZ DAG

0

0.2

0.4

0.6

0.8

1

1.2

1.4

Del.icio.us CiteULike LibraryThing

Av
er
ag
e
N
um

be
r o

f C
hi
ld
re
n

ONTECTAS BB Schmitz LFZ DAG

(c) Average Number of Children

1

1.5

2

2.5

Av
er
ag
e
De

pt
h

ONTECTAS BB Schmitz LFZ DAG

0

0.5

1

1.5

2

2.5

Del.icio.us CiteULike LibraryThing

Av
er
ag
e
De

pt
h

ONTECTAS BB Schmitz LFZ DAG

(d) Average Depth

0.15

0.2

0.25

0.3

0.35

Re
la
tiv
e
Re

ca
ll

TECTAS BB Schmitz LFZ DAG

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

Re
la
tiv
e
Re

ca
ll

TECTAS BB Schmitz LFZ DAG

Del.icio.us CiteULike LibraryThing

(e) Relative Recall (any relationship)

3

4

5

6

7

M
ax
im

um
 D
ep

th

ONTECTAS BB Schmitz LFZ DAG

0

1

2

3

4

5

6

7

Del.icio.us CiteULike LibraryThing

M
ax
im

um
 D
ep

th

ONTECTAS BB Schmitz LFZ DAG

(f) Maximum Depth

Fig. 3. Comparison of ONTECTAS to other algorithms for different metrics. Lower
bars show is-arelationships and higher bars show “any” relationships.

