
Learning, Bayesian Probability,

Graphical Models, and Abduction

David Poole

University of British Columbia

1



Induction and abduction

Bayesian
networks

probabilistic
Horn

abduction

logical
abduction

Bayesian
learning

neural
networks

statistical
learning

MDL
principle

logic
programming

possible
worlds

semantics

2



Overview

• Causal and evidential modelling & reasoning

• Bayesian networks, Bayesian conditioning &

abduction

• Noise, overfitting, and Bayesian learning
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Causal & Evidential Modelling
Causal modelling:

causes

↑
of interest

−→ effects

↑
observed

vision: scene−→ image

diagnosis: disease−→ symptoms

learning: model−→ data
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Evidential modelling:

effects−→ causes

vision: image−→ scene

diagnosis: symptoms−→ diseases

learning: data−→ model
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Causal & Evidential Reasoning

observation

cause

prediction

evidential reasoning

causal reasoning
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Reasoning & Modelling Strategies
How do we do causal and evidential reasoning, given

modelling strategies?

• Evidential modelling & only evidential
reasoning (Mycin, Neural Networks).

• Model evidentially + causally(problem:

consistency, redundancy, knowledge acquisition)

• Model causally; use different reasoning
strategies for causal & evidential reasoning.
(deduction + abduction or Bayes’ theorem)
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Bayes’ Rule

[de Moivre 1718, Bayes 1763, Laplace 1774]

P(h|e) = P(e|h)P(h)

P(e)

Proof:

P(h∧ e) = P(e|h)P(h)

= P(h|e)P(e)
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Lesson #1
You should know the difference between

• evidential & causal modelling

• evidential & causal reasoning

There seems to be a relationship between Bayes’

theorem and abduction — used for the same task.
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Bayesian Networks

• Graphical representation of independence.

• DAGs with nodes representing random

variables.

• Embed independence assumption:

If b1, · · · , bn are the parents ofa then

P(a|b1, · · · , bn, V) = P(a|b1, · · · , bn)

if V is not a descendant ofa.
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Bayesian Network for Overhead Projector
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12



Bayesian networks as logic programs

projector_lamp_on←
power_in_projector∧
lamp_works∧
projector_working_ok.←− possible hypothesis

with associated probability
projector_lamp_on←

power_in_projector∧
∼lamp_works∧
working_with_faulty_lamp.
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Probabilities of hypotheses

P(projector_working_ok)

= P(projector_lamp_on |
power_in_projector∧ lamp_works)

— provided as part of Bayesian network

P(∼projector_working_ok)

= 1− P(projector_working_ok)
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What do these logic programs mean?

• Possible world for each assignment of truth value to a

possible hypothesis:

{projector_working_ok, working_with_faulty_lamp}
{projector_working_ok,∼working_with_faulty_lamp}
{∼projector_working_ok, working_with_faulty_lamp}
{∼projector_working_ok,∼working_with_faulty_lamp}

• Probability of a possible world is the product of the

probabilities of the associated hypotheses.

• Logic program specifies what else is true in each possible

world.
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Probabilistic logic programs & abduction
Semantics is abductive in nature

— set of explanations of a proposition characterizes the

possible worlds in which it is true.

(assume possible hypotheses and their negations).

P(g) =
∑

E is an explanation ofg

P(E)

P(E) =
∏

h∈E

P(h)

↑ given with logic program
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Conditional Probabilities

P(g|e) = P(g∧ e)

P(e)

←− explaing∧ e

←− explaine

Given evidencee, explaine, then try to explaing

from these explanations.
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Lessons #2

• Bayesian conditioning = abduction

• The evidence of Bayesian conditioning is what

is to be explained.

– Condition on all information obtained since

the knowledge base was built.

P(h|e∧ k) −→ Pk(h|e)
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Induction

data

model

prediction

evidential reasoning

causal reasoning
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Potential Confusion
Often the data is about some evidential reasoning

task. e.g., classification, diagnosis, recognition …

Example:We can doBayesian learningwhere the

hypotheses are decision trees, neural networks,

parametrized distribution, or Bayesian networks.

Example:We can dohill climbing learning with

cross validationwhere the hypotheses are decision

trees, neural networks, parametrized distribution,

or Bayesian networks.
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Noise and Overfitting
Most data contains noise (errors, inadequate

attributes, spurious correlations)

H⇒ overfitting— the model learned fits random

correlations in the data

Example:A more detailed decision treealwaysfits

the data better, but usually smaller decision trees

provides better predictive value.

Need tradeoff between

model simplicity + fit to data.
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Overfitting and Bayes’ theorem

P(h|e) = P(e|h)P (h)

P (e)

normalizing constant

fit to data bias
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Minimum description length principle
Choose best hypothesis given the evidence:

arg max
h

P(h|e)

= arg max
h

P(e|h)P(h)

P(e)
= arg max

h
P(e|h)P(h)

= arg max
h

− log2 P(e|h) − log2 P(h)
︷ ︸︸ ︷
the number of bits to

describe the data in

terms of the model

+
︷ ︸︸ ︷
the number of

bits to describe

the model
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Graphical Models for Learning
Idea: model−→ data

Example: parameter estimation for probability of

heads (from [Buntine, JAIR, 94])

heads1

heads2

headsN

. . .

heads

N
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Abductive Version of Parameter Learning

heads(C)←
turns_heads(C, 2) ∧ prob_heads(2).

tails(C)←
turns_tails(C, 2) ∧ prob_heads(2).

∀C∀2 {turns_heads(C, 2), turns_tails(C, 2)} ∈ C

{prob_heads(θ) : θ ∈ [0, 1]} ∈ C

Prob(turns_heads(C, θ)) = θ

Prob(turns_tails(C, θ)) = 1− θ

Prob(prob_heads(θ)) = 1 ←− uniform on[0, 1].
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Explaining Data
If you observe:

heads(c1), tails(c2), tails(c3), heads(c4), heads(c5), . . .

For eachθ ∈ [0, 1] there is an explanation:

{prob_heads(θ), turns_heads(c1, θ), turns_tails(c2, θ),

turns_tails(c3, θ), turns_heads(c4, θ), turns_heads(c5, θ),

. . .}
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Abductive neural-network learning

i 1

i 2

i 3

h1

h2

o2

o3

o1

prop(X, o2, V)←
prop(X, h1, V1) ∧ prop(X, h2, V2) ∧
param(p8, P1) ∧ param(p10, P2) ∧ ←− abducible

V = 1

1+ e(V1P1+V2P2)
. ←− sigmoid additive
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Lesson #3
Abductive view of Bayesian learning:

• rules imply data from parameters or possible

representations

• parameter values or possible representations

abducible

• rules contain logical variables for data items
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Evidential versus causal modelling

Neural Nets Bayesian Nets

modelling evidential causal

sigmoid additive linear gaussian

— related by Bayes theorem

evidential reasoning direct abduction

causal reasoning none direct

context changes fragile robust

learning easier more difficult
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Conclusion
• Bayesian reasoning is abduction.

• Bayesian network is a causal modelling language —

abduction + probability.

• What logic-based abduction can learn from Bayesians:

Handle noise, overfitting

Conditioning: explain everything

Algorithms: exploit sparse structure, exploit extreme

distributions, or stochastic simulation.

• What the Bayesians can learn:

Richer representations.
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