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Abstract

In this paper we show how a number of different formulations
of nonmonotonic reasoning, probabilistic reasoning and design can
be combined into a coherent logic-based abductive framework. This
framework is based on allowing consistent assumptions to be used to
prove a goal. Different frameworks are characterised by who chooses
the assumptions, whether an adversary chooses the assumptions, na-
ture chooses the assumptions, or one gets to choose whatever assump-
tions one likes.

1 Introduction

In artificial intelligence over the last decade there has been much work in
logic-based nonmonotonic, probabilistic and abductive reasoning (see e.g.,
papers in [17, 44, 26]). In this paper, we show how a particular simple
form of abductive reasoning can gives a unifying theme to many seeming
disparate reasoning schemes, for example Circumscription [24] and Bayesian
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networks [27]. This can be (and has been) used for such diverse applications
as diagnosis, user modelling, recognition and planning [32, 29, 31].

The context in which this is placed is in the area of assumption-based log-
ical reasoning, that has been associated with Pierce’s notion of abduction.
Pierce’s notion was of a rule in inference that said, given ¢ and ¢ = ¢, infer
a. This has typically! been interpreted in terms of assumption-based rea-
soning, namely that a is a consistent assumption that can be used to derive
g. The term ‘abduction’ has sometimes been used exclusively for the case
where ¢ is an observation, [30], and sometimes for the more general idea
that places no restriction on the status of g. This paper is about different
specializations of the assumption-based reasoning framework corresponding
to different restrictions on the status of ¢ and g.

We consider three different tasks that can be placed into this framework:

Design / Planning
In the area of design or planning [13], ¢ is a design goal to be achieved,
and a is a set of building blocks of the design. Thus we hypothesise a
design that provably fulfills its goal. We can use any criteria to choose

a design; we can choose one design over another because we happen to
like 1t better.

Recognition / Diagnosis

A different class of problems arises when ¢ is an observation, and we
would like to hypothesise what is in the world that could have produced
this observation [30, 32, 40]. It is not up to us to choose the assumptions
— ‘nature’ has already chosen what is true; it is our job to determine
which of these explanations is right. We want to determine what is
in the world or inside a patient or system that could have produced
the observations. We also consider making tests to determine which
explanation is correct [43, 7].

Default Reasoning
A third class of problems is when we do not know whether ¢ is true,
but ¢ is something we may want to predict based on assumptions of
normality [29, 30, 32]. If we want to be conservative in our predictions,
we only predict what we can reach even if an ‘adversary’ gets to choose
the assumptions.

1See, for example, the papers in [26].



We first go on to define these notions, and show that they are very closely
related to some seemingly disparate areas of recent Al research. These are
seen as assumption based reasoning, but differ in who chooses the assump-
tions: one’s self, nature or an adversary. This then is related to the theory
of games and economic behaviour [46], in order to see how the current Al
theories can be expanded.

2 The abductive framework

The formulation of abduction used is that of Theorist [37, 28], but the for-
mulation has become common (see for example, papers in [26]).

We assume a standard first-order language, using the normal logical connec-
tives such as negation, disjunction, conjunction, implication and quantifica-
tion [9, 16]. A closed formula is one in which every variable is quantified. An
open formula is one where some of the variables are free (not in the scope of
any quantifier). A ground formula is one that does not contain any variables.
An assumption-based scheme is a pair (F, H) where

F' is a set of closed formulae called the ‘Facts’,

H is a set of (possibly open) formulae called the ‘assumables’ or the ‘possible
hypotheses’. Let H' be the set of ground instances of elements of H.

Definition 2.1 A scenario of (F, H) is a subset* D of H' such that F'U D

1s consistent.

Definition 2.2 [f g is a ground formula, an explanation of g from (F, H)
is a scenario of (F, H) that together with F implies g.

Thus, if ¢ is a closed formula, an explanation of ¢ from (F, H) is a set D
of elements of H' such that

o 'UD =g and
o ["UD £ false.

?We treat the set of formulae as the conjunction of the formulae. Whether we mean
the set or the conjunction will be clear from the context.



The first condition says that, if ) were true so would ¢, and the second says
that D is possible given what is known.

Definition 2.3 An extension of (F, H) is the consequences of F' together
with a maximal (with respect to set inclusion) scenario of (F, H).

Thus an extension is made by making as many assumptions (from H) as
possible.

Lemma 2.4 /28] A closed formula is in an extension if and only if it has
an explanation.

Definition 2.5 A minimal explanation of ¢ is an explanation of g such
that no strict subset is also an explanation of g.

2.1 Implementation

There are two common ways of implementing explanations: bottom-up or
top down.

An ATMS [5] is a bottom up abduction engine where the facts are ground
Horn clauses (i.e., consist of definite clauses and integrity constraints). Def-
inite clauses are rules where a conjunction of atoms imply an atom and
integrity constraints are rules that imply false. The idea of the ATMS is to,
for each atom, keep a set (label) of the minimal explanations (environments)
found for that atom. The ATMS forward chains on the rules to find minimal
explanations for the atoms at the heads of the rules. Integrity constraints
are used to rule out inconsistent sets of assumptions (nogoods). Non-minimal
explanations are also pruned.

Top-down explanation finding (e.g., [13, 37, 33]), works by backward chaining
from what we are trying to explain, collecting the sets of assumptions that
were needed in the proof. These are shown to be consistent, by failing to
prove they are inconsistent.

3 Prediction versus Explanation

There are two different dimensions in which the use of the assumption-based
framework can be varied. The first is the status of ¢, whether it is known or
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whether it is something to be determined. The second is who gets to choose
the explanations; whether we should be able to choose whichever assumptions
we like or whether an adversary gets to choose the assumptions or we average
over the explanations using, for example, probabilities.

The first dimension is whether ¢ is known or whether it is something to be
determined. This difference has been seen most in the difference between
abductive diagnosis (where ¢ is the observation, and the explanations form
different diagnoses for ¢) and consistency-based diagnoses (where the obser-
vations are part of the facts, the defaults are normality assumptions, and
diagnoses correspond to extensions).

Abductive diagnosis is first described by Pople [38]. What I call consistency-
based diagnosis was first described in these terms by Reiter [42] and de Kleer
and Williams [7]. Reiter showed how the generalized set covering model of
abduction [40] can be represented within his framework. Poole [29] shows
the equivalence between the completion of a logical notion of abduction and
consistency-based diagnosis. This was for simple acyclic theories of a stan-
dard form described there. The completion result was extended to hierar-
chical logic programs by Console et. al. [3]. Konolige [21] developed an
equivalence between consistency-based diagnosis and the closure of abduc-
tive diagnosis, which works for cyclic propositional theories. The price he
pays for this is that there is no local closure of each symptom in terms of its
local causes — rather then the closure being modular and local to the rules
that imply an effect, his closure is global and takes the whole theory into
account. Poole [36] expands on the equivalence for acyclic theories allow-
ing a local closure and arbitrary (limited only by acyclicity) constraints on
interactions. All of these results are restricted to causal (or fault) theories.
The terms abductive diagnosis and consistency-based diagnoses were first
used in [31]. That paper showed how both of these frameworks can be used
for fault models and normality models and for the continuum of cases in
between. That paper presented examples that are much more sophisticated
than the simple causal theories for which there are adequate formal theories.
It was shown that even the logical formulation of a single observation needs
to be different for each diagnosis model!

In summary, when there is a causal model of the system, and everything is
propositional, then abductive diagnosis and consistency-based diagnosis on
the closure produce the same result. If the causal model is acyclic, a local
completion can serve as the closure [36]. If the causal model is cyclic a more



global closure is needed [21]. When we get beyond these simple cases very
little is known about the relationship (see [31]).

There are very good reasons for keeping the distinction between abductive
and consistency-based (predictive) diagnoses (apart from that fact that we do
not understand the relationships for cases beyond the simple causal proposi-
tional theories).

Csinger and Poole [4] show, in cooperative discourse domains, that when
we want to do both recognition and design (we want to recognize the goals
behind other’s utterances as well as design our own utterances), a shared
information constraint implies that we should do design by abduction and
recognition by prediction or design by prediction and recognition by abduc-
tion. If we do exclusively abduction or exclusively prediction, then we need to
store more information than we need to in order to support both recognition
and design.

When adding probabilities to the assumption-based frameworks (see Section
4.4), if we want to enforce the independence of hypotheses then the logic
must be very weak. In particular, the only legal knowledge-base for the
consistency-based framework would be the one derived from the abductive
framework. We set up the framework so that the completion is valid. It is
much easier to understand the causal knowledge and the inference procedures
in terms of abduction than in terms of completion. The semantics can,
however, be best understood in terms of the completion [35].

4 Who chooses the assumptions?

In this section we consider different activities that can be encompassed by
the assumption-based framework:

Design / Planning
g is a design goal to be achieved.
We can choose the ‘best’ explanation for our purposes.

Recognition / Diagnosis
¢ is an observation about the world.
‘Nature’ has already chosen which assumptions are true; we can only
guess (given our observations) what it is that nature has chosen.
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given to be determined
self abductive | brave prediction /
design predictive design
who? adversary | sceptical | default prediction
abduction
nature Probabilistic Horn abduction

Figure 1: Different frameworks captured by the two dimensions

Default Reasoning
g is something we may want to predict.
We can sceptically predict as though an ‘adversary’ gets to choose
assumptions.

Each of these is considered in turn and is shown to correspond to different
reasoning frameworks that have been proposed.

Figure 1 gives a table showing how the two dimensions of the status of
g and who chooses the assumptions interact producing different reasoning
paradigms.

4.1 Choosing the best assumptions

Abduction has been proposed for planning and design [13]. In such a formu-
lation, the assumables become building blocks of a plan or design, and we
explain the design goal. An explanation corresponds to a plan or design. The
design provably fulfills the design goal (the explanation implies the goal), and
is possible (the explanation is consistent).

If we consider, for example, Green’s method for deductive planning [19], and
ask what it is that we have proved, when we have generated the plan, it is
exactly this: we have proved (based on the domain description) that if we
were to execute the steps in the plan that the goal would hold. If we are
designing circuits, then we hypothesise components and connections that,
are possible, and if put together would fulfill our design goal [13].

When we have a set of possible designs, it is up to us to choose any one of
them — we know they all fulfill our goals. We may choose our circuit by
which one has the least costly components or which circuit has the least area.



We may choose our plan by how long it will take or by how much effort it
requires. Alternatively we may just choose an arbitrary one that is easy to
generate.

4.2 Adversary choosing the assumptions

One class of assumption-based reasoning is where an adversary chooses the
assumptions [30, 32]. If ¢ is in all extensions, then no matter which assump-
tions an adversary chooses, we will be able to explain ¢ (either we can prove
¢ or make more assumptions to prove g). If g is not in all extensions, then
if an adversary can choose the extension which does not contain ¢, then we
cannot make any consistent assumptions to allow us to prove ¢g. Thus mem-
bership in all extensions seems to be the right characterisation of “predict if
an adversary chooses the assumptions”.

The following theorem is a derivation of a number of results [30, 10, 39, 18,

15].
Theorem 4.1 The following are equivalent:
1. g is in all extensions.

2. There is a set D of explanations of g such that ~(\/pep D) cannot be
explained.

3. g ts true in all minimal models of F', where the ordering on interpreta-
tions is defined by My <y My if the assumptions violated in My are a
subset of the assumption instances violated by My. That is, My <y M,
if{he H : M, E=-h} C{h e H : M, = -h}.

In this theorem, 1 is what we claimed was the appropriate characterisation
of prediction even when an adversary chooses the assumptions. Point 2, is in
terms of explanations. This is important as it is explanations that we know
how to compute. The best way to see point 2 is in terms of arguments. The
set D is a set of arguments for ¢ for which there is no counter argument
which simultaneously argues against each element of D (see [30]). Point 3
is a semantic notion in terms of minimal models [45], that is related to the
circumscriptive [23, 22] notion of minimal models (see section 4.2.1 below).



Proof: 1 = 2. Let A be the set of all explanations of ¢g. If C
is an explanation of =\ 4 C;, then (' can be extended to an
extension F, in which g does not appear (as F'U C implies the
negation of every explanation of ¢). Thus if ¢ is in all extensions,
no such F exists.

2 = 1. Suppose 2 is true. Given such a D, every extension
contains at least one element of D (otherwise the extension is an
explanation of the negation of the disjunct in 2). ¢ follows from
F U D, for all D € D thus ¢ is in every extension.

3 = 1. Suppose g is not in extension F. F is consistent and does
not entail g, so there is a model M of A —~g. M is a model of
I, as I' C E. M is minimal, as if there is some M’ < M, there
is some d € D' such that d ¢ E, d is consistent with £ (as M’ is
a model of F' A d), which is a contradiction to the maximality of
the extension F. Thus ¢ is not true in all minimal models.

1 = 3. Suppose ¢ is not true in minimal model M. Let F be the
set of consequences of FU{d € D': M | d}. F is an extension,
as F is consistent (M is a model of E), and if some d € D', d ¢ F,
then F | —d (otherwise £ A d has a model M’, in which case
M’ < M, a contradiction to the minimality of M). ¢ is not in
extension F (as it is not a consequence of F, as it is false in a

model of F). O

4.2.1 Relationship to circumscription

Circumscription [23, 24] is a formalism for nonmonotonic reasoning that is
defined in terms of second order logic for minimising some formula. It can
be defined in terms of a circumscriptive formula [24] or in terms of minimal
models [22].

Circumscription is usually defined in terms of fixed and varying predicates.
In the rest of this discussion we assume that all predicates are varying. Fixed
predicates can be simulated by minimising the predicate and its negation [6].
The minimal models definition of theorem 4.1 (based on that of Geffner [15],
but without priorities) is subtly but importantly different to the minimal
models definition of circumscription [22]. The definition above can be seen
as a syntactic minimisation: we are choosing a minimization based on the



(syntactic) hypotheses rather than on the (semantic) denotation of these
hypotheses, as in Circumscription. We are minimising over the syntactic
forms of the models (the sets we are comparing are sets of ground atomic
formulae). In circumscription, the minimization is in the semantic domain
(minimising over individuals rather than over ground terms).

A model is a triple (D, ¢, 7) where D, the domain, is a set of individuals, ¢
is a mapping that maps each ground term to an element of D, and ©# maps
each n-ary predicate symbol to a subset of D™ (those tuples for which the
relation is true).

The above theorem holds when we syntactically minimise. The restrictions
placed on the circumscription in the work of [39, 18] are the unique names
assumption (every distinct term denotes a different individual — ¢ is 1-1)
and domain closure assumption (every individual in the domain is named by
some term — ¢ is onto), giving an isomorphism between the syntactic and
semantic minimisation.

Theorem 4.1 does not require the unique names assumption. For example,
the violation set {ab(a),ab(b)} cannot be reduced by making ¢ = b. This
syntactic minimisation is also why we can minimise equality; the minimi-
sation occurs before the terms have been assigned to individuals. We can
thus affect this assignment. When minimising in the semantic domain, the
minimisation occurs after terms have been assigned to individuals; thus the
semantic minimisation cannot affect equality [12], and the unique names
hypothesis is needed. For example, the violation set {ab(a),ab(b)} can be
reduced by making « = b. Without the unique names assumption, from
the facts {ab(a), ab(b), p(a)} semantically minimizing ab (assuming —ab), will
conclude p(b). The syntactic minimization does not let us conclude this.
One of the things that circumscription can do which syntactic minimization,
as defined here, cannot do is to conclude universal conclusions. For example,
by minimising p(x), but knowing p(a), circumscription can conclude

Vo @ # a = —p(x).

The syntactic minimization cannot conclude the universal formula, but can
only conclude —p(t) for each ground term ¢ that is different to a.

While circumscription seems like the right tools for mathematical problems
like induction, I would argue that the syntactic minimisation is the right
tool for most modelling of assumptions about the world (i.e., commonsense
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reasoning). It can handle equality properly, and is more modest in its con-
clusions. While it may be sensible for an agent to assume each person they
meet is honest, it is not sensible to assume that every person is honest. It
is exactly this unreasonable universal conclusion that circumscription forces
on us.

Figure 2 shows the relationship between the formulations of prediction. As
well as the above three numbers, 4 denotes the circumscriptive notion of
minimisation [23, 22] and 5 denotes the circumscriptive formula. 3 and 4 are
the same under the unique names and domain closure assumptions. 1 < 5
is due to Etherington [11, 10]. 1 < 2 is due to Poole [30]. 2 < 5 is due to
Przymusinski [39] and Ginsberg [18]. The form of 3 presented here is adapted
from Geffner [15], by removing the priorities. 1 < 3, as far as [ know, is new
to this paper.

4.2.2 Sceptical Prediction Implementations

The idea behind implementing sceptical prediction [30, 20, 39, 18] is that
proposition ¢ is in all extensions if it is in an extension even when an adver-
sary can choose the defaults. ¢ is not in all extensions if there is an extension
which does not contain g¢; if we can show that an adversary cannot generate
such an extension, then ¢ must be in all extensions.

For the forward chaining default provers [20], to determine if ¢ is in all
extensions we try to generate an extension in which ¢ does not appear. When
there is a choice of which default to choose, we let an adversary choose the
default. If an adversary can generate an extension which does not contain
g, then ¢ is not in all extensions. If we can demonstrate that there are no
choices for the adversary which lead to an extension not containing ¢, then
¢ is in all extensions.

For the backward chaining default provers [30, 18, 39], we use the results
of Theorem 4.1. Using a method to compute explanations (section 2.1), we
find explanations of ¢ and try to find an explanation for the negation of the
disjunction of explanations of ¢g. If we fail to find such a counter argument
for some set of explanations of ¢ then ¢ is in all extensions. If we find a
counter argument to every explanation of ¢, then ¢ is not in every extension.
This can be seen as a form of dialectical argument [30].
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Figure 3: Depiction of Quaker—Republican example.
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Example 4.2 Consider the following example® depicted in Figure 3:

H Hrh(X), qd(X), hs(X), hp(X), dp(X), qr(X)}

F ={VX republican(X) A rh(X) = hawk(X),
VX quaker(X) A qd(X) = dove(X),
VX hawk(X) A hs(X) = support-star-wars(X),
VX hawk(X) A hp(X) = politically-motivated(.X),
VX dove(X) A dp(X) = politically-motivated( X)
VX quaker(X) A gr(X) = religious(X)}
VX —(dove(X) A hawk(X)),
quaker(dick),
republican(dick) }

Consider the process of trying to determine support-star-wars(dick). There
is one explanation for it namely,

F U {rh(dick), hs(dick)}

There is one set of ground instances of defaults which, if an adversary had
chosen, would make this arqument inapplicable:

F U {qd(dick)}

Thus support-star-wars(dick) is not in all extensions.
Consider determining politically-motivated(dick). There are two explana-
tions for it:

F U {qd(dick),dp(dick)}
F U {rh(dick), hp(dick)}
There is no explanation for the negation of the disjunction of the explanations

=((gd(dick) A dp(dick)) V (rh(dick) A hp(dick)))

and so politically-motivated(dick) is in all extensions.

3This example is based on an example by Matt Ginsberg, which is based on an example
due to Ray Reiter. Here we use the (probably unfortunate) Prolog convention of having
variables in upper case.
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4.3 Nature choosing the assumptions

The third case is where ‘nature’ gets to choose the assumptions. In this
case, the best we have is a probability distribution over the hypotheses.
Probabilistic Horn Abduction [35] is a framework for logic-based abduction
that incorporates probabilities with assumptions. This has been implemented
[34] and is being used as a framework for diagnosis, user modelling and
recognition that incorporates discrete Bayesian Networks [27] as a special
case [35].

The aim is to design the knowledge base so that conclusions can be inter-
preted probabilistically. Associated with each possible hypothesis is a prior
probability. Each explanation thus inherits a probability [25], and we build
the knowledge base so that the explanations are exclusive and covering. We
can then compute the prior probability of any logical expression.

The knowledge base is designed so that the rule base is acyclic and the rules
for any goal are disjoint and covering. We use recent results on the completion
semantics for abduction [29, 3] that tell us that if the rules for every atom are
covering (i.e., Clark’s completion [2] holds) then any atom will be equivalent
to the disjunction of the explanations for that atom.

We also assume independence amongst consistent hypotheses to allow us to
compute the probability of explanations. The idea is that when there is a de-
pendence amongst hypotheses, we invent another hypothesis to explain the
dependence. In this manner we can express arbitrary probabilistic depen-
dencies [35]. This idea is essentially Reichenbach’s principle of the common
cause [41].

The probabilistic independence assumption places a restriction on what logic
can be used. If we really want different hypotheses to be independent, then
we cannot allow the logic to impose any dependence between hypotheses.
We cannot allow one hypothesis to entail another or to entail the negation of
another. It is for this reason that we restrict the facts to be definite clauses,
with a restricted form of integrity constraints.

4.3.1 Probabilistic Horn Abduction

The language is that of pure Prolog (i.e., definite clauses) with special dis-
joint declarations that specify a set of disjoint hypotheses with associated
probabilities. There are some restrictions on the forms of the rules and the
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probabilistic dependence allowed.

Definition 4.3 A definite clause is of the form: a. or a < ay A --- A a,,.
where a and each a; are atomic symbols.

Definition 4.4 A disjoint declaration is of the form
disjoint([hy i p1,-- -y ha : pa]).

where the h; are atoms, and the p; are real numbers 0 < p; < 1 such that
p1+ -+ p, = 1. Any variable appearing in one h; must appear in all of
the hj (i.e., the h; share the same variables). The h; will be referred to as
hypotheses.

Definition 4.5 A probabilistic Horn abduction theory (which will be
referred to as a ‘theory’) is a collection of definite clauses and disjoint dec-
larations such that if a ground atom h is an instance of a hypothesis in one
disjoint declaration, then it is not an instance of another hypothesis in any
of the disjoint declarations.

Given theory T', we define the associated facts and hypotheses as:

Fr the facts, is the set of definite clauses in T' together with the clauses of
the form
false — h; N\ h;

where h; and h; both appear in the same disjoint declaration in 7', and
t # j. Let F} be the set of ground instances of elements of F.

Hp to be the set of hypotheses, the set of h; such that h; appears in a
disjoint declaration in 7T'. Let HJ be the set of ground instances of
elements of Hr.

Pr is a function H} — [0,1]. Pr(h%) = p; where h! is a ground instance of
hypothesis h;, and h; : p; is in a disjoint declaration in 7.

Where T is understood from context, we omit the subscript.

Probabilistic Horn abduction also contains some assumptions about the rule
base. It can be argued that these assumptions are natural, and do not really
restrict what can be represented [35].

The first assumption we make is about the relationship between hypotheses
and rules:
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Assumption 4.6 There are no rules with head unifying with a member of

H.

Instead of having a rule implying a hypothesis, we invent a new atom, make
the hypothesis imply this atom, and all of the rules imply this atom, and use
this atom instead of the hypothesis.

Assumption 4.7 (acyclicity) If F' is the set of ground instances of elements
of F', then it is possible to assign a natural number to every ground atom such
that for every rule in F' the atoms in the body of the rule are strictly less
than the atom in the head.

This assumption is discussed in [1].

Assumption 4.8 The rules in I for a ground non-assumable atom are cov-
ering.

That is, if the rules for a in I’ are
a+— B
a — By
a+— B,

if @ is true, one of the B; is true. Thus Clark’s completion [2] is valid for
every non-assumable. Often we get around this assumption by adding a rule

a +— some_other_reason_for_a
and making ‘some_other_reason_for_a’ a hypothesis [35].

Lemma 4.9 [3, 29] Under assumptions 4.6, 4.7 and 4.8, if expl(g,T) is
the set of minimal explanations of g from theory T then

g = \/ €

e;€expl(g,T)

Assumption 4.10 The bodies of the rules in I for an atom are mutually
exclusive.

17



Given the above rules for a, this means that =(B; A B;) is true in the domain
under consideration for each ¢ # j. We can make this true by adding extra
conditions to the rules to make sure they are disjoint.

Lemma 4.11 Under assumptions 4.6 and 4.10, minimal explanations of
atoms or conjunctions of atoms are mutually inconsistent.

See [35] for more justification of these assumptions.

4.4 Probabilities

Associated with each possible hypothesis is a prior probability. We use this
prior probability to compute arbitrary probabilities.
The following is a corollary of lemmata 4.9 and 4.11

Lemma 4.12 Under assumptions 4.6, 4.7, 4.8 and 4.10, if expl(g,T) is the
set of minimal explanations of a conjunction of atoms g from probabilistic
Horn abduction theory T then

Pg) = P ( V ei)
e;€expl(g,T)
= Y. Ple)

e;€expl(g,T)
Thus to compute the prior probability of any ¢ we sum the probabilities of
the explanations of g.
To compute arbitrary conditional probabilities, we use the definition of con-
ditional probability:

P(B)

Thus to find arbitrary conditional probabilities P(«|f3), we find P(3), which
is the sum of the explanations of 3, and P(a A 3) which can be found by ex-
plaining o from the explanations of 3*. Thus arbitrary conditional probabil-
ities can be computed from summing the prior probabilities of explanations.
It remains only to compute the prior probability of an explanation D of g.
We assume that logical dependencies impose the only statistical dependencies
on the hypotheses. In particular we assume:

4D is an explanation of a A 3 from (F, H) if and only if D = Dy U D5 where D; is an
explanation of 4 from (F, H) and D5 is an explanation of « from (F'U Dy, H).
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Assumption 4.13 Ground instances of hypotheses that are not inconsistent
(with Fr) are probabilistically independent. That is, different instances of
disjoint declarations define independent hypotheses.

The hypotheses in a minimal explanation are always logically independent.
The language has been carefully set up so that the logic does not force any
dependencies amongst the hypotheses. If we could prove that some hypothe-
ses implied other hypotheses or their negations, the hypotheses could not be
independent. The language is deliberately designed to be too weak to be
able to state such logical dependencies between hypotheses.

Under assumption 4.13, if {hy,---,h,} are part of a minimal explanation,
then

Py A Ah) = T[P(h)

To compute the prior of the minimal explanation we multiply the priors of
the hypotheses. The posterior probability of the explanation is proportional
to this.

Poole [35] shows that all of the numbers can be consistently interpreted as
probabilities, and all of the rules can be given their normal logical interpre-
tation.

It can be shown [35] that such a formulation generalises discrete Bayesian
networks. The locality of Bayesian networks is preserved in the translation
from Bayesian networks to a probabilistic Horn abduction theory.

The mapping is as follows. Suppose random variable ¢ having value v is
represented as the proposition a(v). Variable a with parents by,---, by is
translated into the rule:

a(V) «—by(Vi) A ANbp(Vi) Aeea(Vo VA, -+ Vi)

where c_a(V, Vi, ---,V}) is a possible hypothesis. This is a causal hypothesis
that says that ¢ has value V' because each b; has value V;. The probability
of this hypothesis is

Pla=Vby=ViA---Aby = V4).

See [35] for details.
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Example 4.14 Consider a representation of the Bayestan network of Figure
4.14, with the following conditional probability distributions:

P(fire) = 0.01

P(smoke|fire) = 0.9
P(smoke|=fire) = 0.01
P(tampering) = 0.02

P(alarm|fire A tampering) = 0.5
P(alarm|fire AN =tampering) = 0.99
P(alarm|=fire A tampering) = 0.85

P(alarm|=fire A =tampering) = 0.0001
P(leaving|alarm) 0.88
P(leaving|-alarm) = 0.001

P(reportlleaving) = 0.75
P(report|=leaving) = 0.01

The following is a probabilistic Horn abduction representation of this Bayesian

network (from [35]):

disjoint([fire(yes) : 0.01, fire(no) : 0.99]).
smoke(Sm) «— fire(Fi), c.smoke(Sm, Fi).
disjoint([c_smoke(yes,yes) : 0.9,
c_smoke(no,yes) : 0.1]).
disjoint([c_smoke(yes,no) : 0.01,
c_smoke(no, no) : 0.99]).
disjoint([tampering(yes) : 0.02,
tampering(no) : 0.98]).
alarm(Al) « fire(Fi), tampering(Ta),
calarm(Al, Fi,Ta).
disjoint([c_alarm(yes,yes,yes) : 0.50,
c_alarm(no,yes, yes) : 0.50]).
disjoint([c_.alarm(yes, yes,no) : 0.99,
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Figure 4: A Bayesian network for a smoking alarm.



c_alarm(no,yes,no) : 0.01]).
disjoint([c_alarm(yes, no,yes) : 0.85,
c_alarm(no, no,yes) : 0.15]).
disjoint([c_alarm(yes, no,no) : 0.0001,
c_alarm(no, no,no) : 0.9999]).
leaving(Le) «— alarm(Al), cleaving(Le, Al).
disjoint([c_leaving(yes,yes) : 0.88,
cleaving(no,yes): 0.12]).
disjoint([c_leaving(yes,no): 0.001,
cleaving(no,no) : 0.999]).
report(Le) « leaving(Al), coreport(Le, Al).
disjoint([creport(yes,yes) : 0.75,
c_report(no,yes) : 0.25]).
disjoint([creport(yes,no) : 0.01,
c_report(no,no) : 0.99]).
Here fire(yes) corresponds to there being a fire and fire(no) corresponds to
there being no fire. c_alarm(yes,yes,no) is the causal hypothesis that the

alarm is ringing because there is a fire and no tampering. The other variables
are treated analogously.

5 Pointers for Future Research

The main problem I am currently interested in is how to mix the above rea-
soning strategies. The representation language I anticipate having is where
some assumptions I choose, some assumptions nature chooses, and some as-
sumptions adversaries (or other agents) choose. We may for example consider
a design (that we choose) that will work no matter what other assumptions
an adversary makes. We may consider a plan (a design that considers time)
that works on the average better than some other plan — thus combining
me choosing and nature choosing assumptions. This is very reminiscent of
what is called game theory.

Game theory [46, 14] has a long history that considers moves by ones self,
other agents (including adversaries) and nature, that is in some sense rem-
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iniscent of the unified framework provided in this paper. The use of the
term ‘game’ here is much richer than that studied in AT text books for games
such as chess. These could be described as deterministic (there are no chance
moves by nature), perfect information (each player knows the previous moves
of the other players), zero-sum (one player can only win by making the other
player lose), two-person games. Each of these assumptions can be generalised
[46].

One could claim that this semblance is superficial. Nonmonotonic reasoning
is concerned with truth; or determining what is true, based on expectations.
Game theory is concerned with moves and decisions. Game theory is inex-
tricably concerned with values and utilities which (currently) play no part in
nonmonotonic reasoning.

If this analogy is deeper than this, it is interesting to look at what game/decision
theorists have considered that could be incorporated into assumption-based
reasoning:

e Moves by nature and agents have been considered. The formalisms
described in the preceding section only had one form of assumptions.
There were not some assumptions that an adversary, some that nature
chooses, and some that the agent itself can choose. Game theory allows
for multiple moves by different agents and by nature.

o Utility and values play an integral part in decision and game theory.
They are not part of nonmonotonic formalisms, although it has been
admitted that values do play a part in what assumptions should be
made [45, 8]. Utilities have not been explicit, and maybe they need to
be so that they can be reasoned about and not compiled into a set of
assumptions.

o What information is available to agents when making a decision is also
important (as we do not always have ‘perfect information’). This plays
an important role in game theory and decision theory. The closest
related idea in nonmonotonic reasoning is in the fixed predicates in
circumscription [24]. These are assumptions that can be assumed true
or assumed false by an adversary [6] (i.e., a is fixed means a € H
and —a € H, when used for sceptical prediction). The notion of fixed
predicates does not come close to the sophistication needed to reason
about information availability.
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o Game theory also considers n-person games, for arbitrary n. We do
not only need to consider adversaries, but maybe many agents with
different values, beliefs and goals. It seems as though nonmonotonic
reasoning will need to become intertwined with multi-agent reasoning.
With multiple agents we can also consider alliances between agents,
and communication between agents.

e Game theory also considers that there is a difference between zero-sum
and non zero-sum two person games. In a two person zero sum game
we can always treat the other player as an adversary. Many situations
are not zero sum, and it may be the case that the agents can gain by
cooperation.

Each of these issues is important and points to a wealth of future research.

6 Conclusion

This paper has shown how some recent formulations of reasoning can be
placed into a framework of assumption-based reasoning, but differ in who
chooses the assumptions. We have a framework that incorporated such seem-
ingly disparate ideas as circumscription and Bayesian networks. This view
of recent work sheds light on a whole area of combinations of these reasoning
strategies where different assumptions are treated differently.

The abductive framework provides for a unified view of many reasoning
strategies that is more general than the minimal model approach advocated
by Shoham [45]. As well as being able to capture the notion of minimal
models, we can also capture probabilistic reasoning (averaging over models,
rather than just choosing models), and design tasks.
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