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Abstract

This paper considers how relational probabilis-
tic models adapt to population size. First we
show that what are arbitrary choices for non-
relational domains become a commitment to how
a relational model adapts to population change.
We show how this manifests in a directed model
where the conditional probabilities are repre-
sented using the logistic function, and show why
it needs to be extended to a relational logistic
function. Second we prove that directed aggre-
gation models cannot be represented by Markov
Logic without clauses that involve multiple in-
dividuals. Third we show how these models
change as a function of population size.

1 Introduction

Relational probabilistic models are characterized by hav-
ing models that are specified independently of the actual
individuals, and where the individuals are exchangeable;
before we know anything about the individuals they are
treated identically. One of the features of relational proba-
bilistic models is that the predictions of the model depends
on the number of individuals (the population size). Some-
times, this dependence is desirable. In other cases, the
numbers may need to change [Jain et al., 2007, 2010]. In
either case, it is important to understand how the predic-
tions change with population size.

Varying population sizes are actually quite common. They
can appear in a number of ways including:

• The actual population may be arbitrary. For example,
in considering the probability of someone committing
a crime (which depends on how many other people
could have committed the crime) [Poole, 2003] we
could consider the population to be the population of
the neighbourhood, the population of the city, the pop-
ulation of the country, or the population of the whole

world. It would be good to have a model that does not
depend on this arbitrary decision. We would like to
be able to compare models where the modelers have
made different choices.

• The population can change. For example, the number
of people in a neighbourhood or in a school class may
change. We would like a model to make reasonable
predictions as the population changes. We would also
like to be able to apply a model learned at one popu-
lation size to a different population size. For example,
models from drug studies are acquired from very lim-
ited populations but are applied much more generally.

• The relevant populations can change from one individ-
ual to another. For example, the happiness of a person
may depend on how many of her friends are kind (and
how many are not kind). We would like a model that
makes reasonable predictions for a diverse number of
friends.

In the following, we start with a simple model, namely a di-
rected model where the conditional probabilities represent
a logistic regression model and show how the population
growth of this well-studied model is actually not well un-
derstood. This suggests a parametrization for such models
that takes the population growth into account. We compare
the resulting model to Markov logic parametrizations of the
same model, and show that the Markov logic models can-
not compactly represent the simple directed model. Finally
we show how both models adapt to changing population
size.

2 Some Basic Definitions

A population is a set of individuals. A population corre-
sponds to a domain in logic. The population size is the car-
dinality of the population which can be any non-negative
integer. For the examples below, where there is a single
population, we write the population as A1 . . .An, where n is
the population size.

A parameter, which corresponds to a logical variable, is
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Figure 1: Running example as (a) naı̈ve Bayes (b) logis-
tic regression (with independent priors for each R(x)) and
(c) Markov network. On the top are the parametrized net-
works, and on the bottom are the the groundings for the
population {A1,A2, . . . ,An}

written in lower case. Parameters are typed with a popu-
lation; if x is a parameter of type τ , pop(x) is the popula-
tion associated with x and |x|= |τ|= |pop(x)|. We assume
that the populations are disjoint (and so the types are mutu-
ally exclusive). Constants are written starting with an upper
case letter.

A parametrized random variable (PRV) is of the form
F(t1, . . . , tk) where F is a k-ary functor (a function sym-
bol or a predicate) and each ti is a parameter or a constant.
Each functor has a range, which is {True,False} for pred-
icate symbols. A parametrized random variable represents
a set of random variables, one for each assignment of an in-
dividual to a parameter. The range of the functor becomes
the range of each random variable.

A grounding of a model with respect to a population for
each parameter is a model created by replicating each PRV
for each individual in the domain of each parameter, and
preserving the structure.

3 Representing Conditional Probabilities

Suppose Boolean parametrized random variable Q is con-
nected to Boolean parametrized random variable R(x),
which contains an extra logical variable, x. In the ground-
ing, Q is connected to n instances of R(x), where n is the
population size. Ideally, we define the model before we
know n; it should be applicable for all values of n.

For this situation, a directed model where R(x) is a child
of Q is shown in Fig. 1 (a). It produces a naı̈ve Bayesian
model in the grounding with separate factors for Q and
for each individual. An undirected model with a potential
for Q and a pairwise potential for each factor is shown in
Fig. 1 (c). In both these models the joint probability is the
product of factors.

For a directed model with R(x) as a parent of Q (Fig. 1 (b)),
the variable Q has a unbounded number of parents in

the grounding, so we need some way to aggregate the
parents. Common ways to aggregate in relational do-
mains, e.g. [Horsch and Poole, 1990; Friedman et al., 1999;
Neville et al., 2005; Perlich and Provost, 2006; Natara-
jan et al., 2010], include logical operators such a noisy-or,
noisy-and, as well as ways to combine probabilities. This
requirement for aggregation occurs in a directed model
whenever a parent contains an extra logical variable.

3.1 Relational Logistic Regression

Consider a situation in which all the variables R(x) are ob-
served, and we only wish to model the conditional proba-
bility P(Q|R1, . . . ,Rn). These conditional probabilities for
both the naı̈ve Bayesian model (Fig. 1 (a)) and the Markov
model (Fig. 1 (c)) have the logistic regression form. To
see this, notice that both can be expressed by a product of
non-negative factors:

P(Q,R(A1), . . . ,R(An)) ∝ ∏
i

f (Q,R(Ai))×g(Q)

where Ri is R(Ai) for some enumeration A1, . . . ,An of the
population. We can now choose a particular value q for Q
and write ¬q as the negation of the assignment q:

P(q|R1, . . . ,Rn) =
P(q,R1, . . . ,Rn)

P(q,R1, . . . ,Rn)+P(¬q,R1, . . . ,Rn)

=
1

1+ P(¬q,R1,...,Rn)
P(q,R1,...,Rn)

=
1

1+1/(∏i f (q,Ri)/ f (¬q,Ri)×g(q)/g(¬q))

=
1

1+ e−∑i f̂ (Ri)+ĝ

where f̂ (Ri) = log( f (q,Ri)/ f (¬q,Ri)) and ĝ =
log(g(q)/g(¬q)). This last step is only valid if all
potentials are positive (contain no zeros). Assume some
numerical representation for the two values of each
Ri was chosen (e.g., {0,1} or {−1,1}). For fixed n,
we can always find values for w0 and wi, which de-
pend on the numerical representation chosen, such that
∑i f̂ (Ri)+ ĝ = w0 +∑i wiRi. Thus:

P(q|R1, . . . ,Rn) = sigmoid(w0 +∑
i

wiRi)

where

sigmoid(x) = 1/(1+ e−x) .

P(q|R1, . . . ,Rn) > 0.5 iff w0 +∑i wiRi > 0. The space of
assignments to the wi so that w0 +∑i wiRi = 0 is called the
decision threshold, as it is the boundary of where P(q |
R1, . . . ,Rn) changes between being closer to 0 and being
closer to 1.



For a relational model where the individuals are exchange-
able, wi must be identical for all variables Ri, so:

P(q|R1, . . . ,Rn) = sigmoid(w0 +w1 ∑
i

Ri). (1)

Consider what happens with a relational model, in which n
can vary.

Example 1. Suppose we want to represent “Q is true
if and only if R is true for 5 or more individuals” (i.e.,
q≡ |{i | Ri = true}| ≥ 5) using a logistic regression model
(P(q)> 0.5)≡ (w0+w1 ∑i Ri ≥ 0), which we fit for a pop-
ulation of 10. Consider what this model represents when
the population size is 20.

If the values of R are represented with f alse → 0 and
true → 1, this model will have Q true if R is true for 5
or more individuals out of a population of 20. It is easy to
see this, as ∑i Ri only depends on the number of positive
individuals.

However, if the values of R are represented with f alse→
−1 and true→ 1, this model will have Q true if R is true
for 10 or more individuals out of a population of 20. The
sum ∑i Ri depends on how many more individuals have R
true than have R false.

If the values of R are represented with f alse → 1 and
true→ 0, then this model will have Q true if R is true for
15 or more individuals out of a population of 20. The sum
∑i Ri depends on how many individuals have R false.

Other parametrizations can result in different decision
thresholds.

The following table gives some possible parameter settings
as a function of the numerical representation of f alse and
true, which represent the same conditional distribution for
n = 10, and the corresponding prediction for a population
size of 20:

false true w0 w1 Prediction for n = 20
0 1 −4.5 1 Q≡ |{Ri = true}| ≥ 5
−1 1 0.5 1 Q≡ |{Ri = true}| ≥ 10
−1 0 5.5 1 Q≡ |{Ri = true}| ≥ 15
−1 2 −4.5 1 Q≡ |{Ri = true}| ≥ 8

1 2 −14.5 1 Q≡ |{Ri = true}| ≥ 0

All of these are linear functions of population size for fixed
numbers of R true, and linear functions of the number of
Rs true for a fixed population. We can prove the following
proposition:

Proposition 1. If f alse is represented by the number α and
true is represented by β , for a fixed w0/w1 learned for one
population size, the decision threshold for a population of
size n is

w0

w1(α−β )
+

α

α−β
n

What is important about this proposition is that the way the
decision threshold grows with the population size n does
not depend on data (which would provide the weights), but
on the prior assumptions, which are implicitly encoded into
the numerical representation of R.

Thus, (1) with any specific numeric representation of true
and false is only able to model one of the dependencies of
how predictions depend on population size, and so cannot
properly fit data that does not adhere to that dependence.

We need an extra degree of freedom to get a relational
model that can model any of the above dependencies on
n, regardless of the numerical representation chosen.

Definition 1. Let Q be a Boolean parametrized random
variable with a single parent R(x), where x is the set of
logical variables in R that are not in Q (so we need to ag-
gregate over the values of x). A (single parent) relational
logistic function (RLF) for Q with parents R(x) is of the
form:

P(q|R(A1), . . . ,R(An)) =

sigmoid(w0 +w1 ∑
i

Ri +w2 ∑
i
(1−Ri)) ,

(2)

where Ri is 1 if R(Ai) is true, and 0 otherwise. So, ∑i Ri is
the number of individuals for which R is true and ∑i(1−
Ri) is the number of individuals for which R is f alse.

Changing the parametrization, (e.g., representing f alse as
−1) would result in the weights changing, but not the deci-
sion thresholds.

A relational logistic function can represent not only the
threshold for any particular n, but also a (linear) function
of how the threshold depends on the population.

An alternative but equivalent parametrization can be for-
mulated as

P(q|R(A1), . . . ,R(An)) =

sigmoid(w0 +w2 ∑
i

1+w3 ∑
i

Ri)

where 1 is a function that has value 1 for every individual,
and so ∑i 1 = n. The mapping between these parametriza-
tions is w3 = w1−w2; w0 and w2 are the same.

While the dependence on the population may be arbitrary
when a single population is observed, it affects the ability
of a model to simultaneously predict when multiple popu-
lations or subpopulations are observed.

Example 2. Suppose we want to model whether someone
being happy depends on the number of their friends that are
kind to them. Consider the following three hypotheses:

(a) A person is happy as long as they have 5 or more
friends who are kind to them.

happy(x)≡ |{y : f riend(y,x)∧ kind(y)}| ≥ 5



(b) A person is happy if half or more of their friends are
kind to them.

happy(x)≡|{y : f riend(y,x)∧ kind(y)}|
≥ |{y : f riend(y,x)∧¬kind(y)}|

(c) A person is happy as long as fewer than 5 of their
friends are not kind to them.

happy(x)≡ |{y : f riend(y,x)∧¬kind(y)}|< 5

These three models coincide for people with 10 friends,
but make different predictions for people with 20 friends.
Only one of these can be represented using standard logistic
regression (which one depends on the representation of true
and false).

We can use the following relational logistic function to
model these cases:

P(happy(x)|par)

= sigmoid(w0 +w1 ∑
y

f riend(y,x)kind(y)

+w2 ∑
y

f riend(y,x)(1− kind(y)))

(3)

where par is a complete assignment of f riend and kind to
the individuals.

To model each of the above three cases, we can set w0, w1,
and w2 in (3) as follows:

(a) Let w0 =−4.5, w1 = 1, w2 = 0
(b) Let w0 = 0.5, w1 = 1, w2 =−1
(c) Let w0 = 5.5, w1 = 0, w2 =−1

4 Markov Logic Networks

Markov logic networks (MLNs) [Richardson and Domin-
gos, 2006; Domingos et al., 2008] provide alternative
parametrizations for the above example.

Example 3. Consider an MLN representation of the ongo-
ing example, with the following αi weights and formulae:

α0 ¬q

α1 q

α2 ¬q∨¬r(x)

α3 ¬q∨ r(x)

α4 q∨¬r(x)

α5 q∨ r(x)

α6 ¬r(x)

α7 r(x)

where the probability of any world is ∏ fi eαi = e∑ fi αi for
all ground formulae fi true in the world. This MLN can
be used to represent the same model as Equation (2) when
R(x) is observed for all x.

In particular, if obs is an observation for which R is true for
k individuals and false for the remaining n− k individuals:

P(q|obs)

= sigmoid(α1−α0 +(α4−α2)k+(α5−α3)(n− k)) .

Thus, we can create the same conditional distribution as
(2) by setting α0 = 0, α1 = w0, α2 = 0, α3 = 0, α4 = w1,
α5 = w2. Note that α6 and α7 are not required for rep-
resenting the conditional probability (they cancel out), but
can be used to affect P(r(Ai)).

5 Representing Distributions

It is well known that the Naı̈ve Bayesian model and the
Markov model are equivalent to the logistic function when
all of the individuals have R observed. When not all of the
Ri are observed, a Naı̈ve Bayesian model ignores the un-
observed variables. In the (relational) logistic regression
and the Markov logic network representations the unob-
served variables are marginalized over. However, the in-
dependence assumptions are different between the models
[Pearl, 1988]:

• In the logistic regression model (Fig. 1 (b)), the R(Ai)
are independent of each other (when Q is not ob-
served), and the R(Ai) are dependent given Q. Thus,
for logistic regression P(R(A1)|R(A2)) = P(R(A1)).
• In a Markov network and in Naive Bayes (Fig. 1 (a)

and (c)), the R(Ai) depend on each other when Q is not
observed, and independent given Q. Thus, for Markov
network and Naive Bayes P(R(A1)|R(A2),Q) =
P(R(A1)|Q).

This does not mean that the models cannot represent each
other. In particular, if we marry the parents in a Bayesian
network, we can treat the resulting graph as a Markov net-
work. Essentially we can enforce the independence by
the parametrization. Given a Markov model we can cre-
ate a Bayesian network by, for every factor fi on variables
X1, . . . ,Xk in the Markov network, introducing a variable
Ti, and creating P(Ti|X1, . . . ,Xk), where the probability for
Ti = true corresponds to the values for the Markov network
(suitably scaled) and then conditioning on Ti = true.

Unfortunately, it is not obvious that this can be done for
models where n varies, as marrying the parents creates a
factor of unbounded size. In the next section we show that
Markov logic indeed cannot represent the same distribution
as the directed model without introducing factors among
the individuals.

5.1 Markov Logic Networks

While MLNs can represent any (ground) directed model
(without aggregation) by representing the conditional prob-
ability tables as factors [Domingos et al., 2008] and they



can represent various aggregation models [Natarajan et al.,
2010], they cannot compactly represent even the directed
model of Fig. 1 (b). The reason is that the MLNs make the
variables R(Ai) interdependent. This can be fixed only by
introducing factors between the R(Ai) variables. We will
prove this for any aggregation function, not just variants of
logistic regression.

Consider directed aggregation models, characterized by:

P(Q,R1, . . . ,Rn) = P(Q | R1, . . . ,Rn)∏
i

P(Ri) (4)

i.e. models where the variables {Ri} are independent when
Q is not observed. These are directed models depicted by
Fig. 1 (b), but with arbitrary conditionals P(Q | R1, . . . ,Rn),
of which the logistic regression model is a special case. We
show that such models, where the Ri actually affect Q, can-
not be represented using undirected models such as MLNs,
using just formulae over Q, over R(x), and over both, with-
out using formulas which combine different R variables. In
other words, by using models with no more than a single
logical variable in each formula.

Proposition 1. Let a distribution be characterized by
Eq. (4), i.e. in which the variables Ri are independent of
each other (when Q is not observed). If n ≥ 2, and if the
distribution is representable by an undirected model which
does not contain factors between multiple Ri’s, then Q is
independent of some parent variable Ri.

Proof. If the undirected model does not contain factors
over multiple Ri variables, then the distribution can be char-
acterized by:

P(Q,R1, . . . ,Rn) =
1
Z

f1(Q)∏
i

f2,i(Ri) f3,i(Q,Ri)

where Z is the normalization constant, which may depend
on the population size n.

Define: gi(Q,Ri)= f2,i(Ri) f3,i(Q,Ri)

P(Q,R1, . . . ,Rn)=
1
Z

f1(Q)∏
i

gi(Q,Ri) (5)

Define: f5(Q)=
1
Z

f1(Q)
n

∏
i=3

∑
Ri

gi(Q,Ri)

P(Q,R1,R2)=∑
R3

· · ·∑
Rn

P(Q,R1, . . . ,Rn)

=
f1(Q)

Z
g1(Q,R1)g2(Q,R2)

n

∏
i=3

∑
Ri

gi(Q,Ri)

= f5(Q)g1(Q,R1)g2(Q,R2)

P(R1,R2)=∑
Q

f5(Q)g1(Q,R1)g2(Q,R2)

We will use P12(·, ·) as a shorthand notation, e.g.
P12(T,F) = P(R1 = T,R2 = F). We will mark

f5 =

[
a
b

]
,g1 =

[
c d
e f

]
and g2 =

[
c′ d′

e′ f ′

]
,

i.e. f5(F) = a, f5(T ) = b,g1(F,F) = c,g1(F,T ) =
d,g1(T,F) = e,g1(T,T ) = f , and similarly for g2. If the
distribution can also be represented by (4), then R1 and R2
are independent (when Q is not observed), and therefore:

P(R1,R2) = P(R1)P(R2)

P12(F,F)P12(T,T ) = P12(F,T )P12(T,F)

(acc′+bee′)(add′+b f f ′) = (acd′+be f ′)(adc′+b f e′)

a2cc′dd′+abcc′ f f ′+abdd′ee′+b2ee′ f f ′

= a2cc′dd′+abcd′e′ f +abc′de f ′+b2ee′ f f ′

abcc′ f f ′+abdd′ee′ = abcd′e′ f +abc′de f ′

ab(c f −de)(c′ f ′−d′e′) = 0

Thus a = 0, b = 0, c f = de or c′ f ′ = d′e′.

In the case that a= 0 or b= 0, Q is deterministic, and there-
fore does not depend on any Ri. Consider the case c f = de.
If c = 0, then d = 0 or e = 0. In this case, either Q is deter-
ministic, and therefore does not depend on any Ri, or R1 is
deterministic, in which case it carries no information, and

Q does not depend on it. If c 6= 0, then g1 =

[
c d
e de

c

]
. It

can therefore be decomposed as: g1(Q,R1) = f6(Q) f7(R1),

with f6 =

[
c
e

]
and f7 =

[
1 d

c

]
, i.e. f7(F) = 1 and

f7(T ) = d
c . Substituting into (5) yields:

P(Q,R1, . . . ,Rn) =
1
Z

f1(Q) f6(Q) f7(R1)∏
i6=1

gi(Q,Ri) (6)

Therefore, Q does not depend on R1. Similarly, the case of
c′ f ′ = d′e′ leads to Q not depending on R2.

Proposition 2. Let a distribution characterized by (4) be
representable using an undirected model which contains no
factors between multiple Ri’s. Then at most a single vari-
able R j affects Q, i.e. the distribution can be characterized
by:

P(Q,R1, . . . ,Rn) = P(Q | R j)∏
i

P(Ri).

Proof. By Proposition 1, Q does not depend on some par-
ent variable Ri. We can disconnect Ri from Q and repeat
the argument, until Q has a single parent variable.

Proposition 3. Let a distribution characterized by (4) be
representable using an MLN with at most a single logical
variable in each formula. Then, if n ≥ 2, then all the vari-
ables are independent.

Proof. Let us notice that an MLN is an undirected model,
in which the factors are constrained such that they are iden-
tical if we exchange the identities of the objects. An MLN
with no more than a single logical variable in each formula



corresponds to (5), but in which all factors gi are equal
(gi = g). When repeating the proof of Proposition 1 but
with gi = g, the substitution of the decomposition of g into
(5) becomes the simplified:

P(Q,R1, . . . ,Rn) =
1
Z

f1(Q)∏
i

f6(Q) f7(Ri)

Hence all variables are independent.

5.2 Dependence on Population

Given the relational logistic parametrization of Defini-
tion 1, we can sum out the unobserved variables. If none of
the R(x) are observed, and if pr is the prior probability of
R(x):

P(q)=
n

∑
i=0

(
n
i

)
sigmoid(w0+iw1+(n−i)w2)pi

r(1− pr)
n−i

which is an instance of first-order variable elimination [de
Salvo Braz et al., 2007].

To compute P(q) given the MLN parametrization of Ex-
ample 3, it can be noticed that when Q is conditioned on,
the graph is disconnected, with each component having the
same probability. So we can compute the probability of one
of them and raise it to the power of n [Poole, 2003], giving:

P(q) = sigmoid(α1−α0 +n(α4−α2 +α5−α3 +c)) (7)

where

c = log(eα4 + eα5+α7−α6)− log(eα2 + eα3+α7−α6)

What can be noticed about this is that this is a sigmoid func-
tion of n, α0 and α1, but is not a sigmoid of the other pa-
rameters.

We also compare these to a simple mean-field approxima-
tion:

P(q) = sigmoid(w0 +nprw1 +n(1− pr)w2)

where npr is the expected number of R’s true and n(1− pr)
is the expected number of R’s false.

Example 4. A plot of the probability of q function of
the population size n is given in Fig. 2. The parameters
settings are fixed to w0 = −4.5, w1 = 1, w2 = −1, and
pr = 0.7. On the x-axis is the population size (n). The
solid blue line gives P(q) for relational logistic regression.
The dashed red line gives the mean-field approximation
sigmoid(−4.5+0.4n). The dotted line gives the MLN with
α7 = 2.82, chosen to give it the same probability as the re-
lational logistic regression for n = 1.

It might be conjectured that the MLN representation is
qualitatively similar to the relational logistic regressions
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Figure 2: Probability of q as a function of population size
for Example 4
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Figure 3: Probability of q as a function of population size
in Example 5

formulation of the same problem. The probability of q
in the MLN as a function of n is a logistic function; the
sigmoid of a linear function. The simplest property of the
sigmoid is that it is monotonic. Thus, we can make the
following conjecture:

Conjecture 1. The probability of q in the relational logis-
tic function representation of the network in Fig. 1 (b) is
monotonic in n.

It turns out that this conjecture is false.

Example 5. Consider the case: w0 =−2, w1 = 2, w2 =−1,
P(R(x)) = 0.3. We can plot P(q) as a function of n, shown
as the solid blue line in Fig. 3. P(q) is at a maximum
when n = 18. On the x-axis is the population size (n).
The dashed red line gives the mean field approximation,
sigmoid(−2− 0.1n). The growth for an MLN representa-
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Figure 4: Probability of q as a function of α7 in an MLN
for various population sizes. See Example 6.

tion for this example is given in Example 6.

5.3 Phase Transitions

One of the properties of the relational logistic regression
is that P(R(Ai)) does not depend on n and can be given as
input to the model. Except for the special case of a naive
Bayesian model, in MLNs P(R(Ai)) is not independent of
n. We show that for some MLNs, P(R(Ai)) cannot be arbi-
trarily set in the limit as the population increases.

Example 6. Consider the same parametrization as Exam-
ple 5, and the mapping to MLNs given in Example 3. Un-
der this mapping, the MLN and the relational logistic re-
gression both represent the same conditional probability of
q given an assignment of R to each element of the popula-
tion. To fully specify the model, the probabilistic relational
regression requires pr, representing P(r(x)) for all x. The
MLN requires α6 and α7. As the model only depends on
their difference, we can arbitrarily set α6 = 0.

Fig. 4 shows the probability of q as a function of α7 for
different population sizes. The least steep slope is a popu-
lation of 1. The other plots are, in order of steepness, for
populations of 3,5,7,20,100. All of these slopes are logistic
functions; as the population increases the slope becomes
steeper.

There is a phase transition at approximately α7 = 0.7. Be-
low this, the probability goes down with population size
and above this phase transition point, the probability in-
creases with population size. At the phase transition point,
the probability does not depend on n. The phase transition
occurs when the coefficient of n in Equation (7) is zero.

Fig. 5 shows the probability of r(A1) as a function of α7 for
different population sizes. Note that all of the individuals
have the same probability that r is true. This is for the same
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Figure 5: Probability of r(A1) as a function of α7 in an
MLN for various population sizes. See Example 6.

set of populations used in Figure 4; again, the smallest pop-
ulation has the least steep slope.

Notice the way the parameter α7 affects the probability de-
pends on the population size. We cannot set the parameters
so that the MLN represents the logistic regression as the
population varies.

At the phase transition, there is an approximately verti-
cal line segment for large populations. The corresponding
probabilities for r(A1) cannot be represented in the limit.
We known in the limit that P(q) approaches either 0 or 1
(or is not affected by the population size). For example,
if in the limit we have P(q)→ 1 and we adjust α7 to fit
P(r(A1)) = 0.3 when P(q) = 1, the new value found for α7
implies that P(q)→ 0 in the limit. Similarly, if P(q)→ 0
and we adjust α7 to fit P(r(A1)) = 0.3 when P(q) = 0, the
new value found for α7 implies that P(q)→ 1. Thus α7
cannot be set to make P(r(A1)) = 0.3 in the limit.

Fig. 6 shows how q and r(A1) vary with population size for
two different parametrizations, α7 = 0.66 and 0.73. The
lines that approach 1 are for α7 = 0.73 and the lines that
approach 0 are for α7 = 0.66.

6 Beyond the Simple Example

The general case for relational logistic regression is to use
a linear function of arbitrary relational features on arbitrary
populations. It is even possible to have a definition of the
conditional probability as a weighted set of clauses in much
the same way as an MLN is represented. This is a different
class of models than the MLNs.

The MLN

q∨ r(x)∨ r(y)
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Figure 6: Probability of q and r(A1) as a function of popu-
lation sizes for α7 = 0.66 and 0.73. See Example 6.

allows for a squared growth with population. The MLN

q∨ r(x)∨ r(y)∨ r(z)

allows for a cubic growth with population.

There are many issues that remain open. What parametriza-
tions allow for a k-degree polynomial growth with popula-
tion? What about a

√
n growth with population? (E.g.,

if the individuals are arcs in a dense network, a property of
nodes grows with the square root of the population of arcs.)

Noisy-and, noisy-or and averages as aggregation functions
can also be represented with clauses [Natarajan et al.,
2010]. Proposition 3 is also applicable to these methods;
while MLNs without factors among the individuals may be
able represent the aggregation, they have side effects that
may make them less applicable.

7 Conclusion

We had expected complex dependence on population for
complex cases (e.g., when the Ri in the running example
are dependent due to common ancestors). We were sur-
prised to find that even the well-understood case of logistic
regression has complex dependence on population size.

• If we learn a model for some population sizes, we
may want to apply it to other population sizes. We
want to make explicit assumptions and know the con-
sequences of these assumptions.
• We want to know the effect of choosing particular

parametrizations. What assumptions are we making?
Why should we choose one representation over an-
other?
• If one model fits some data, it is important to under-

stand why it fits the data better. This will enable us to
know what models to consider for different data.

The other message is that undirected models such as MLNs
are different to directed models such as relational logistic
regression. It is important to understand these differences
if we are to choose an appropriate model for a domain.
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