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Abstract

We report on work towards �exible algorithms for solving decision
problems represented as in�uence diagrams� An algorithm is given
to construct a tree structure for each decision node in an in�uence
diagram� Each tree represents a decision function and is constructed
incrementally� The decision maker can balance the cost of comput�
ing the next incremental improvement to a tree against the expected
value of the improvement� The improvements to the tree converge
to the optimal decision function computed by dynamic programming
techniques� and the asymptotic behaviour is only a constant factor
worse than dynamic programming techniques� counting the number of
Bayesian network queries� Empirical results show that utility varies
with the size of the tree and the number of Bayesian net calculations�

Keywords� in�uence diagrams� in�uence diagram evaluation� re�
source bounded computation�
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� Introduction

In�uence diagrams provide expressive and intuitive representations for an
important class of decision problems ��� ��� ��� Small problems can be solved
by 	nding a policy which maximizes the decision maker
s expected utility
without considering the cost of computation� but 	nding these solutions is
an NP�hard problem ���� ��� �� ���

It is widely acknowledged that the assumption of negligible computational
costs can be lifted� and that doing so may provide the leverage needed to ad�
dress large problems� When the costs of computation are taken into account�
the decision maker must reason� not only about the outcomes of acting in
the world� but also about the outcome of computing on 	nite hardware while
other processes in the world continue ��� ����

We report a technique to compute policies for decision problems expressed
as in�uence diagrams� For each decision node in the in�uence diagram� the
technique builds a decision function in the form of a tree whose vertices are
labelled with predecessors of the decision node� and whose leaf nodes are
actions�

Our technique constructs a sequence of trees� the next being an incre�
mental improvement to the previous� ending with a tree which represents
the same �optimal� decision function that would be computed by traditional
dynamic programming techniques �����

This technique is a step towards �exible iterative re	nement of policies
for decision problems� Flexible means that policies are available in an any�
time manner ���� Iterative means that the next policy in the sequence is
constructed by re�ning the previous policy� Each tree in the sequence repre�
sents a sub�optimal decision function� whose expected value to the decision
maker is well de	ned� The computational e�ort to make an incremental im�
provement to a tree is known in advance� These two facts provide the basis
of a �exible system in which the decision maker can explicitly balance the
expected value of a policy against the cost of computing it�

For a decision node with n informational predecessors� each having at
most b values� the sequence of improvements to the tree converges after O�bn�
queries to a Bayesian network ����� only a constant fact worse than traditional
dynamic programming techniques�

We demonstrate the preliminary empirical results of this approach to the
sequence of decision trees� and discuss ways to order the sequence�
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� In�uence diagrams

An in�uence diagram �ID� is a directed acyclic graph representing a sequen�
tial decision problem under uncertainty ���� An ID models the subjective
beliefs� preferences� and available actions from the perspective of a single
decision maker�

Nodes in an ID are of three types� Circle shaped chance nodes represent
random variables which the decision maker cannot control� square shaped de�
cision nodes represent decisions� i�e�� sets of mutually exclusive actions which
the decision maker can take� The diamond shaped value node represents the
decision maker
s preferences�

Arcs represent dependencies� A chance node is conditionally independent
of its non�descendants given its direct predecessors� A decision maker will
observe a value for each of a decision node
s direct predecessors before an
action must be taken� The decision maker
s preferences are expressed as a
function of the value node
s direct predecessors�

In an ID� there is a conditional probability table associated with every
chance node �unconditional� if it has no predecessors�� and a value function
associated with the value node�

For example� Figure ��a� shows an augmented version of the well known
Weather ID ����� The ID represents the information relevant to a hypotheti�
cal decision maker� whose problem is to decide whether to take an umbrella
to work� The goal is to maximize the decision maker
s expected Satisfaction�
which depends on the Weather and decision maker
s decision to Bring Um�
brella� The decision maker can choose to Take Umbrella� or Leave Umbrella�
which are not explicit in the 	gure�

The decision maker has two sources of information� a Radio Weather
Report� and the View From Window� These random variables are explicitly
assumed to be independent given the weather� and both have three possi�
ble outcomes� Sunny� Cloudy� and Rainy �not explicit in the 	gure�� The
Weather is also a random variable� not directly observable at the time an
action must be taken� it has two states� Sun and Rain� �not explicit in the
	gure��

For brevity� probability and utility information for this example has not
been shown� However� conditional probability tables of the form P�Weather��
P�Radio Weather ReportjWeather�� and P�View From WindowjWeather� are
necessary to complete the speci	cation� The value function� Satisfaction�Weather�
Take Umbrella� is also necessary�
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Figure �� �a� A simple ID� �b� A decision tree representation of a policy �see
Section ���

A policy prescribes an action �or sequence of actions� if there are several
decision nodes� for each possible combination of outcomes of the observable
variables� In one of the possible policies for the above example� the decision
maker always takes an umbrella� regardless of the information available� An
optimal policy is the policy which maximizes the decision maker
s expected
Satisfaction� without regard to the cost of 	nding such a policy�

The goal of maximizing the decision maker
s expected Satisfaction can be
achieved by 	nding an optimal policy� if computational costs are assumed to
be negligible� If computational costs are not negligible� the decision maker
s
expected utility might be maximized by a policy which is not optimal in the
above sense�

In this paper� IDs are assumed to have chance and decision nodes with a
	nite number of discrete values� Furthermore� we limit the discussion to IDs
with a single value node�

��� Terminology

Chance nodes are labelled x� y� z� � � �� Decision nodes are labelled d� with
subscripts if necessary to indicate the order the decision nodes� The value
node� and its value function� will be labelled v�

The set of a node
s direct predecessors is speci	ed by � subscripted by
the node
s label� The set of values �outcomes or actions� which can be taken
by a node is speci	ed by �� similarly subscripted� The set ��d

is the set of
all possible combinations of values for decision node d
s direct predecessors�
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An element in this set will be called an information state�
A decision function for d is a mapping � � ��d

� �d� A policy for an ID
is a set � � f�i� i � � � � � ng of decision functions� one for each of the decision
nodes di� i � � � � � n�

��� Related work

There are several techniques for solving IDs� which do not consider the cost of
computation� The original technique converts an ID to a symmetric decision
tree ���� An algorithm which operates on the graphical structure is given in
�����

Recent advances in e�cient computation in Bayesian networks ��� �� ��
provides a framework for e�cient computation of expected value and opti�
mal policies ���� �� Heuristic search has also been applied to 	nding poli�
cies for IDs ���� using these advances� We use Bayesian networks �BNs� as
the underlying computational engine for our technique to compute posterior
probabilities and expected values �����

A number of researchers have described iterative approaches to solving
in�uence diagrams� Heckerman et al�� ��� and Lehner and Sadigh ��� use tree
structures to represent policies� and use a greedy approach to incremental
improvement of the tree structure� Both approaches use a single tree to
represent the policy� Lehner and Sadigh de	ne optimality of a decision tree
with respect to the number of nodes in the tree� and give a general property
which guarantees that an optimal decision tree of a certain size can be found
by greedy search� Heckerman et al�weigh the value of the tree against the cost
of computing it� but the tree itself is intended as an alternative to on�line
decision making�

Our work extends the current work by building a tree structure for each
decision node� taking advantage of e�cient probabilistic inference techniques�
This combination creates a basis for on�line� resource bounded computation�
Our empirical results also suggest that the simple greedy approach of one
step look ahead� can be improved by a greedy approach using less than a full
step look ahead�





� Single stage computations

We use decision trees to represent decision functions� In this section� we
de	ne decision trees� and show how they are built� In Section ���� we consider
the case where the decision problem has a single decision node� and extend
the idea to IDs with multiple decision nodes in Section ����

��� Decision trees

Let d be a decision node in an ID� A decision tree t for d is either a leaf labelled
by an action dj � �d or a non�leaf node labelled with some observable variable
x � �d� Each non�leaf has a child decision tree for every value xk � �x� An
information predecessor x � �d appears at most once in any path from the
root to a leaf� Each vertex v has a context� �v� de	ned to be the conjunction
of variable assignments on the path from the root of the tree to v� The
action at the leaf represents the action to be taken in the context of the leaf�
Given an information state w � ��d

� there is a corresponding path through
a decision tree for d� starting at the root leading to a leaf� which is labelled
with the prescribed action for w� Note that the context of an action need
not contain every variable in �d�

A decision tree represents a decision function� We will refer to the action
prescribed by a decision function by ��w� for information state w� or by dl if
l is a leaf on a given decision tree�

For a given leaf l� its context �l is extendible if it does not contain all the
observable variables� We refer to the variables which are not in the context as
possible extensions� writing �l� We will use � without subscript or argument
when we need to refer to an arbitrary context� The symbol �� represents the
empty context� equivalent to the context at the root of a decision tree�

A decision tree is shown in Figure ��b�� The tree can be interpreted as a
policy for the ID in Figure ��a� as follows� The decision maker 	rst considers
the view from the window� If the view is cloudy� then the decision maker
will determine what to do by consulting the radio weather report� However�
if the view from the window is sunny or rainy� then the radio report need not
be consulted at all� even though the report is available as information� Note
that in this example� the decision tree represents a policy� In general� we will
construct a decision tree for each decision node in an in�uence diagram�
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����� Expected value

We de	ne expected value of a decision tree� so that we can compare decision
trees�

The expected value of the decision tree t is de	ned as follows�

Et �
X
l�t

u�dlj�l�P��l�

where u�dj�� is the expected value of an action d in a context �� and the
summation is over all leaves in t�

The optimal decision tree is de	ned as the one whose expected value is
greater or equal to the expected value of any other decision tree� t is optimal
if for all t�� Et � Et�� This de	nition of optimal does not take into account
the cost of computation�

��� Extending a decision tree

A decision tree t can be extended by removing some leaf l with context �l�
and replacing it with new vertex x � �l� The new vertex x must have a leaf
for every value xj � �x� and the leaf will be labelled with an action dj � �d

which maximizes the expected utility in the new context �� � xj�l�
Recall that each leaf in the tree is labelled with an action� The action is

chosen on the basis of being the best action for the context �l of the leaf l�

dl � arg max
di��d

u�dij�l�

We observe that this can be computed with one query to a Bayesian network
���� �see Section ���� If a vertex has b values� b queries to the BN are
required to compute its leaves� Another b queries are needed to compute
expected value for each leaf�

For a decision tree t� and leaf node l� we de	ne the expected value of
improvement� EV OIt�l� x�� to be the increase in expected value when t is
extended at l with some x � �l� resulting in a new tree t��

EV OIt�l� x� � Et� �Et

The best extension of t at l is given by�

x�l � arg max
x��l

EV OIt�l� x�

� arg max
x��l

X
xj��x

u�djjxj�l�P�xjj�l�
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This x�l represents a local improvement� Note that EV OIt only depends
on l� its context� and the possible extensions at l� Therefore we can look
at improvements to each leaf independently of possible improvements to
other leaves� which we exploit for e�ciency� Finally� the posterior proba�
bility P�xjj�l� requires one additional BN computation� Therefore� to 	nd a
best extension for a particular leaf� we require ��n� k� � � BN calculations�
where n is the number of predecessor for the decision node� and k is the size
of the leaf
s context�

��� The single stage algorithm

The intuition for the single stage algorithm can be stated as follows� Given a
decision tree t� the algorithm extends the tree by choosing a leaf� and 	nding
its best extension� The process continues until some stopping criteria is met�
We have assumed that the ID has a single decision node� In the next section�
we show how to 	nd policies for IDs with several decision nodes�

The basic algorithm can be given as follows�

procedure DT�
Input�
in�uence diagram ID
decision node d

Output�
a decision tree for d

Start with the tree as a single leaf
Do f
Choose a leaf in the tree to extend
Replace the leaf with its best extension

g Until �stopping criteria are met
or no more leaf nodes to extend�

Return the tree

The sequence of trees created by DT� is such that the expected utility of
the next tree is never less than that of the previous tree� However� there is no
guarantee that the expected utility will always increase with every extension
of the tree� Furthermore� an ID could be constructed in which the expected
utility of a tree is arbitrarily far from the expected utility of the optimal tree
as long as every leaf node is still extendible�
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The following results hold� regardless of the manner in which a leaf is
chosen for extension�

Theorem � Let n be the number of information predecessors for a decision
node d in an ID� Furthermore� assume that the number of states for any
node in the ID is bounded by a constant b� The total number of extensions
computed when DT� computes the optimal decision tree for d is less than
bn��

�b���� �

This follows from the observation that the number of extensions consid�
ered at a leaf depends on the size of its context� if decision node d has n

predecessors� and a leaf has k of these predecessors in its context� then the
number of extensions which must be examined to choose the maximum is
n� k� If the number of states a predecessor can take is bounded by constant
b� then during the course of constructing the optimal decision tree� DT� ex�
tends bk leaf nodes whose context is of size k� Therefore the total number of
extensions considered by DT� is

n��X
k��

�n � k�bk � bn��
n��X
k��

�n� k�bk�n�� � bn��
n��X
i��

ib��i

� bn��
�X
i��

ib��i � bn��
�
� �

�

b

���

We observe that this result implies that IDs with binary nodes form the
worst case for our technique� Note also that this result counts the number of
di�erent possible improvements to the tree throughout the process until the
optimal decision tree is found� This number is less than the number of leaf
nodes which need to be computed� by a factor of b�

Corollary � To compute the optimal decision tree for a decision node with
n informational predecessors� DT� requires O�bn� queries to a Bayesian net�
work�

Recall that each extension requires �b queries to the BN �Section ����� This
result implies that DT� requires a only constant factor more BN queries than
traditional dynamic programming algorithms �����
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����� A greedy sequence of extensions

Recall the de	nition of the best extension of a decision tree t at a leaf l�
Here we de	ne the notion of the best extension for the whole tree� the tree
is extended by picking the leaf whose best extension yields a higher expected
value than the best extension of any other leaf in the tree�

More formally� the best extension for a decision tree t is de	ned to be the
extension x�t at some leaf l such that for all leaf nodes l� �� l�

EV OIt�l� x
�

l � � EV OIt�l
�� x�l��

We can reduce this to the following� given a decision tree t� with leaves
L � fl�� l�� � � � � lkg� the best extension to t is given by�

x�t � argmax
l�L

X
xj��x�

l

u�dj jxj�l�P�xjj�l�� u�dlj�l�

where x�l is the best extension for a given leaf l� and �l is the context of leaf
l� The action dj maximizes the decision maker
s expected value in each new
context�

This expression emphasizes that extensions to all leaves can be computed
independently� and the best one chosen from them� Furthermore� any exten�
sion which is not chosen as x�t can be cached� and possibly used later without
recomputation�

Finding the best extension to a tree may seem to require an additional
non�trivial amount of computation� However� so long as we choose to extend
the chosen leaf by its best extension� the greedy extension changes only the
ordering in which the tree is extended� A simple implementation would use a
priority queue to order the extension sequence� extensions stored in the queue
represent a computational investment� and if the computation continues until
the optimal tree �it could be asked to stop earlier�� none of the work put into
the queue is wasted� However� as we show in Section �� the one step look
head turns out not to be the best investment of computational resources�

��� Multiple decision nodes

We have seen that a decision function can be constructed for an in�uence
diagram containing one decision node� For IDs which have several decision
nodes� we work in the usual order �last decision to 	rst�� We allow the algo�
rithm to �split� on a decision node
s values� assigning a uniform distribution
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over the decision variable� even though the decision maker has control� We
de	ne the expected value of a non�leaf vertex labelled with a decision node to
be the maximum expected value of its children� The decision vertex retains
all its leaves� as some future extension may shift the maximum expected
value to another branch�

��� Implementational details

We have implemented the algorithm using the greedy approach of the previ�
ous section� We use a BN to compute expected value� and make some e�ort
to make the implementation reasonably e�cient�

����� A BN as computational engine

Computation of expected value is based on the conversion of IDs to BNs �����
The utility node is converted to a binary chance node whose conditional

probability distribution is the normalized utility function� Decision nodes in
the ID are converted to root chance nodes with uniform probability distri�
butions�� The BN derived in this way from an ID is subsequently compiled
into a join tree ���� which can compute posterior probabilities e�ciently�

The best action d� � �d to be performed in a state w � ��d
can be found

by choosing the action which maximizes the query P�djw� v�� the expected
value of the best action is computed by querying the utility node P�vjw� d���

We generalize this result in terms of choosing an action which maximizes
expected utility in a given context �recall that a context may not include a
value for every observable variable in �d�� The corresponding queries are�
P�djv� ��� and P�vjd�� ���

����� Other e�ciency issues

We use a priority queue to order the sequence of extensions to a given tree�
The queue contains elements having a context� and a subtree labelled with the
implied leaf
s best extension� with leaf nodes attached to it� as in Section ����
In e�ect� when the implementation pulls an item from the queue� it is almost
trivial to replace the leaf with a subtree� because it was pre�computed� Most

�This does not a�ect the probability distribution� and makes the size of the largest

cliques a function of the probabilistic information in the ID� The informational predecessors

remain part of the ID� but not the underlying BN�
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of the work happens after the leaf is replaced� For each of the new leaf nodes�
we compute the new best extension� its best subtree� and enter it into the
queue�

We avoid recomputing expected value by storing the expected value of
a leaf� and the expected value of each extension in the queue� As well� we
store the posterior probability each of non�leaf node given its context� Thus�
we need only to compute expected value for a new context� all the remaining
information is obtained by look up�

In order to compute EV OIt�l� x�� we need to compute the posterior prob�
ability P�xjj�t�l��� We order the exploration of extensions so that we can
enter �t�l� once� and query the BN for the posterior probabilities of x � �l
on the basis of one DistributeEvidence computation� We still require this
computation once for every leaf� but this is insigni	cant compared to the �k
CollectEvidence computations required to compute the expected value for
all k of the leaf
s possible extensions�

In our implementation� any leaf node whose context contains logical im�
possibilities are not extended nor are they considered further� Empirically�
this could have a great e�ect on the cost of computation and the size of the
resulting tree� as shown in the 	rst example in the next section�

� Performance

In this section� we explore the behaviour of a greedy DT� empirically� We
demonstrate the algorithm on a small well known problem� and a set of larger
random problems�

��� Terms of comparison

We describe the behaviour of an implementation of DT�� running the proce�
dure until the optimal decision tree is achieved� The data points we will be
collecting represent decision trees in terms of the tree
s expected value� the
number of BN computations required to achieve the tree� and the number
of interior nodes in the tree� Note that each data point could be used as an
anytime solution�

The expected value of a decision tree has been de	ned earlier� In our ex�
amples� expected value is normalized to ��� ��� We measure the computation
cost in terms of the number of BN computations required� Recall that each

��



Car
Condition

Results
from 
Test 1

Results
from

Test 2

Test
1

Test
2

Buy 
Car?

Value

Car
Condition

Results
from 
Test 1

Results
from

Test 2

Test
1

Test
2

Buy 
Car?

Value

(a) (b)

Figure �� The Car Buyer Problem� Part �a� shows the in�uence diagram	
part �b� shows the BN used for computation of expected value for the last
decision node� Buy Car �

extendible leaf requires ��n�k��� BN computations� where n is the number
of predecessors of the decision node� and k is the number of observations in
the context of the leaf�

The size of our decision trees is measured in terms of the number of non�
leaf vertices in the tree� Assuming binary valued predecessors of a decision
node� the number of actions in a tree of size s is s��� as shown in Section ��

We compare our implementation to an idealized dynamic programming
algorithm� in which a BN computation is required for every possible ob�
servable state ����� If a decision node in an ID has n binary predecessors�
then the dynamic programming algorithm requires exactly �n BN computa�
tions to 	nd the optimal decision function containing �n information states�
If required� the expected value of the decision function could be computed
with a single BN computation after the decision function has been estab�
lished� Finally� since the dynamic programming algorithm only produces a
single solution� it falls under the category of in�exible� and for emphasis and
brevity� we refer to it as such�

��� A classical example

To illustrate the behaviour of DT�� we will show its behaviour on the well�
known Car Buyer problem� Figure � ����� There are three decision nodes in
this problem� in this section� we use DT� to 	nd a decision function for the
last decision node�

Brie�y� the ID represents the knowledge relevant to a decision maker
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deciding whether or not to buy a particular car� The decision maker has
the option of performing a number of tests to various components of the
car� and the results of these tests will provide information to the decision
to buy the car� The actual condition of the car is not observable directly
at the time the decision maker must act� but will in�uence the 	nal value
of the possible transaction� A policy for this problem would indicate which
tests to do under which circumstances� as well as a prescription to buy the
car �or not� given the results of the tests� Due to space constraints� none
of the numerical data required to complete the speci	cation of this problem
is shown� this information can be found in ���� ���� This problem is well
known for its asymmetry� some combinations of tests and results are logical
impossibilities�

Figures � and � show the performance of DT� on the last decision stage
in the problem�

Figure ��b� compares the expected value of the decision tree and the size�
Again� each point represents a decision tree improved by a single extension�
Because of the asymmetries in the problem� the optimal policy can be rep�
resented with a decision tree with � internal vertices and �� leaves� For this
problem� the largest tree computed by DT� has �� vertices and �� leaves�
The in�exible algorithm� unless designed to handle asymmetries� requires a
table of �� entries� The large di�erence between our trees and the in�exible
solution is due to the asymmetries in the problem� our implementation does
not extend contexts whose probability is zero�

Figure ��b� illustrates the increase in expected value of each decision
function� as a function of the number of BN computations� The very 	rst
decision function for this problem is available after just � BN calculations� and
has an expected value which is less than ��! from optimal� Each subsequent
point represents an improvement to the decision function by extending the
tree by one node� The rightmost point represents the optimal policy�

For comparison� the in�exible algorithm requires �� BN computations� to
compute a table of �� actions�

Figure � plots expected value versus the computational e�ort required�
essentially� it shows where the work gets done� Much work goes into 	nding
the 	rst few trees� as each information state is small� and has many possi�
ble extensions� Half of the work is done to 	nd a decision function which
distinguishes � information states� As the decision tree gets larger� the num�
ber of possible extensions for each context gets smaller� Towards the end of
the process� very few BN calculations are performed because there are no
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Figure �� The results of using DT� on last decision node of the Car Buyer
Problem� �a� The expected value versus the size of the tree� �b� The ex�
pected value versus the number of BN computations� Each point represents a
decision tree� and the rightmost point in both graphs represents the optimal
decision function�

extensions to the contexts pulled from the queue�

��� Performance on random single decision IDs

To show the performance of DT� on a single decision node� we have created
a number of random in�uence diagrams with one decision node� Figure 
illustrates the template ID which we have used to create random decision
problems� The template problem has n chance nodes� each of which is an
informational predecessor to the decision node� As well� each chance node
is a predecessor of the value node� The template can be instantiated by
choosing n� random binary probability distributions� i�e�� P�ck�� are chosen
from a uniform distribution on ��� ��� The utility function is also chosen from
a uniform distribution ��� ���

Figure �� shows the behaviour of DT� on seven instantiations with n � ��
Each point in these graphs represents a decision function� there are seven sets
of data shown� one shape for each ID� Part �a� shows the increase in expected
value as the trees increase in size� Part �b� shows the expected value of the
decision function as a function of the work done by the algorithm in terms of
BN calculations� The right most points represent the optimal decision tree
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Figure �� Showing where the work gets done by DT� when computing decision
functions for the last decision in the Car Buyer Problem�

for each problem� The left hand endpoints represent the expected value of
the decision tree continuing only a single leaf�

While the data tend to overlap the general trends are clear� expected
value increases with the size of the tree� and the work done� However� the
optimal policy can be computed by the in�exible algorithm in �� BN com�
putations� which is well before the trees produced by greedy DT� begin to
level o� in terms of expected value�

We observe that the greedy DT� does not invest computation time wisely�
The graph of expected value versus size �Figure �a� illustrates the concern
mentioned in Section �� that the greedy approach produces trees which are
small but expensive to compute�

We have two 	nal points to make about these graphs� First� even the 	rst
few trees can be more valuable to a decision maker than no decision function
at all� if there are deadlines or other opportunity costs� Second� the IDs in
these graphs are random� and symmetrical� there is reason to believe that
decision problems faced by real decision makers contain more structure than
our random problems do�

��� Performance on IDs with several decision nodes

DT� can be applied to each decision node in an ID� in the standard back to
front dynamic programming order� We have applied this technique to the
Car Buyer problem� The results are preliminary� but encouraging�
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Figure �� Seven random IDs with 
 informational predecessors each were
solved by an implementation of DT�� The improvement of the tree in terms
of expected value� �a� as the tree increases in size� and �b� as the number of
BN calculations performed increases�
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Because the optimal decision tree for the last decision node can be repre�
sented with a tree of � non�leaf vertices� we explored the space of all possible
decision trees for the three decision nodes� Note that the 	rst decision node
has no informational predecessors� and the second has two� The maximum
tree sizes for these two decision nodes are zero and � non�leaf vertices� re�
spectively�

The optimal policy was found when the third decision tree had � non�leaf
vertices� and the second decision tree no non�leaf vertices� In total� only �
BN calculations were needed to compute the policy ��� of which were needed
to 	nd a decision tree for the last decision node�� as opposed to the ���
BN calculations required by the in�exible method� A sub�optimal policy� in
which the decision maker buys the car without any tests� is found with � BN
calculations� and the expected value of this policy is about �! less than the
optimal policy
s expected value�

� Conclusions

We have shown how a decision function can be constructed iteratively� We
have shown that the sequence converges necessarily to the optimal decision
function� Asymptotically� the number of Bayesian network calculations re�
quired by the iterative technique is a constant factor larger than dynamic
programming techniques� Furthermore� given a model of the cost of compu�
tation� the expected cost of the next iteration can be weighed against the
increase in expected value of the decision function�

We have shown preliminary empirical results which are encouraging� small
decision trees are of value to a decision maker� before in�exible techniques
have produced the optimal decision tree� The greedy implementation was
shown to spend much e�ort to 	nd the best extension to the decision tree
at a given leaf� resulting in trees which are small but expensive to compute�
Another approach would be to choose a good extension� as opposed to the
best extension� We expect that if less e�ort is spent to build a tree of a given
size� the expected value of a decision tree will rise more quickly as measured
by the number of BN calculations� correspondingly� the tree will also grow
more quickly� We are currently exploring these and other ways to increase
the value of early computational e�ort�

We have shown how to apply the greedy DT� to IDs with several decision
nodes� While the algorithm can be applied in a straightforward manner to

��



such decision problems� we are exploring ways to balance the computational
e�ort across the stages� The dilemma is that the decision maker may need
to take action on the 	rst decision node with some urgency� but all the
computational e�ort could go into 	nding a decision function for the last
decision node� We are looking at the e�ects of computing very small trees
for decision nodes late in the sequence� and increasing the size for early
decision nodes� Our preliminary experiments on simple IDs suggest that this
technique may be successful�

We also are exploring the relationship between tree structured decision
functions and tree representations of conditional probability tables� e�g������
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