
Flexible Policy Construction by Information

Re�nement

Michael C� Horsch David Poole

horsch�cs�ubc�ca poole�cs�ubc�ca

Department of Computer Science

University of British Columbia

���� Main Mall� Vancouver� B�C�� Canada V�T �Z�

Abstract

We report on work towards �exible algorithms for solving decision
problems represented as in�uence diagrams� An algorithm is given
to construct a tree structure for each decision node in an in�uence
diagram� Each tree represents a decision function and is constructed
incrementally� The decision maker can balance the cost of comput�
ing the next incremental improvement to a tree against the expected
value of the improvement� The improvements to the tree converge
to the optimal decision function computed by dynamic programming
techniques� and the asymptotic behaviour is only a constant factor
worse than dynamic programming techniques� counting the number of
Bayesian network queries� Empirical results show that utility varies
with the size of the tree and the number of Bayesian net calculations�

Keywords� in�uence diagrams� in�uence diagram evaluation� re�
source bounded computation�

�

� Introduction

In�uence diagrams provide expressive and intuitive representations for an
important class of decision problems ��� ��� ��� Small problems can be solved
by 	nding a policy which maximizes the decision maker
s expected utility
without considering the cost of computation� but 	nding these solutions is
an NP�hard problem ���� ��� �� ���

It is widely acknowledged that the assumption of negligible computational
costs can be lifted� and that doing so may provide the leverage needed to ad�
dress large problems� When the costs of computation are taken into account�
the decision maker must reason� not only about the outcomes of acting in
the world� but also about the outcome of computing on 	nite hardware while
other processes in the world continue ��� ����

We report a technique to compute policies for decision problems expressed
as in�uence diagrams� For each decision node in the in�uence diagram� the
technique builds a decision function in the form of a tree whose vertices are
labelled with predecessors of the decision node� and whose leaf nodes are
actions�

Our technique constructs a sequence of trees� the next being an incre�
mental improvement to the previous� ending with a tree which represents
the same �optimal� decision function that would be computed by traditional
dynamic programming techniques �����

This technique is a step towards �exible iterative re	nement of policies
for decision problems� Flexible means that policies are available in an any�
time manner ���� Iterative means that the next policy in the sequence is
constructed by re�ning the previous policy� Each tree in the sequence repre�
sents a sub�optimal decision function� whose expected value to the decision
maker is well de	ned� The computational e�ort to make an incremental im�
provement to a tree is known in advance� These two facts provide the basis
of a �exible system in which the decision maker can explicitly balance the
expected value of a policy against the cost of computing it�

For a decision node with n informational predecessors� each having at
most b values� the sequence of improvements to the tree converges after O�bn�
queries to a Bayesian network ����� only a constant fact worse than traditional
dynamic programming techniques�

We demonstrate the preliminary empirical results of this approach to the
sequence of decision trees� and discuss ways to order the sequence�

�

� In�uence diagrams

An in�uence diagram �ID� is a directed acyclic graph representing a sequen�
tial decision problem under uncertainty ���� An ID models the subjective
beliefs� preferences� and available actions from the perspective of a single
decision maker�

Nodes in an ID are of three types� Circle shaped chance nodes represent
random variables which the decision maker cannot control� square shaped de�
cision nodes represent decisions� i�e�� sets of mutually exclusive actions which
the decision maker can take� The diamond shaped value node represents the
decision maker
s preferences�

Arcs represent dependencies� A chance node is conditionally independent
of its non�descendants given its direct predecessors� A decision maker will
observe a value for each of a decision node
s direct predecessors before an
action must be taken� The decision maker
s preferences are expressed as a
function of the value node
s direct predecessors�

In an ID� there is a conditional probability table associated with every
chance node �unconditional� if it has no predecessors�� and a value function
associated with the value node�

For example� Figure ��a� shows an augmented version of the well known
Weather ID ����� The ID represents the information relevant to a hypotheti�
cal decision maker� whose problem is to decide whether to take an umbrella
to work� The goal is to maximize the decision maker
s expected Satisfaction�
which depends on the Weather and decision maker
s decision to Bring Um�
brella� The decision maker can choose to Take Umbrella� or Leave Umbrella�
which are not explicit in the 	gure�

The decision maker has two sources of information� a Radio Weather
Report� and the View From Window� These random variables are explicitly
assumed to be independent given the weather� and both have three possi�
ble outcomes� Sunny� Cloudy� and Rainy �not explicit in the 	gure�� The
Weather is also a random variable� not directly observable at the time an
action must be taken� it has two states� Sun and Rain� �not explicit in the
	gure��

For brevity� probability and utility information for this example has not
been shown� However� conditional probability tables of the form P�Weather��
P�Radio Weather ReportjWeather�� and P�View From WindowjWeather� are
necessary to complete the speci	cation� The value function� Satisfaction�Weather�
Take Umbrella� is also necessary�

�

Weather

Umbrella?

Take

Weather

Report

Radio View

From

Window
Satisfaction

Leave Umbrella

Leave Umbrella Take Umbrella

Leave Umbrella Take Umbrella

Cloudy

Sunny Rainy

Cloudy

Sunny Rainy

Radio Weather report

View from Window

(a) (b)

Figure �� �a� A simple ID� �b� A decision tree representation of a policy �see
Section ���

A policy prescribes an action �or sequence of actions� if there are several
decision nodes� for each possible combination of outcomes of the observable
variables� In one of the possible policies for the above example� the decision
maker always takes an umbrella� regardless of the information available� An
optimal policy is the policy which maximizes the decision maker
s expected
Satisfaction� without regard to the cost of 	nding such a policy�

The goal of maximizing the decision maker
s expected Satisfaction can be
achieved by 	nding an optimal policy� if computational costs are assumed to
be negligible� If computational costs are not negligible� the decision maker
s
expected utility might be maximized by a policy which is not optimal in the
above sense�

In this paper� IDs are assumed to have chance and decision nodes with a
	nite number of discrete values� Furthermore� we limit the discussion to IDs
with a single value node�

��� Terminology

Chance nodes are labelled x� y� z� � � �� Decision nodes are labelled d� with
subscripts if necessary to indicate the order the decision nodes� The value
node� and its value function� will be labelled v�

The set of a node
s direct predecessors is speci	ed by � subscripted by
the node
s label� The set of values �outcomes or actions� which can be taken
by a node is speci	ed by �� similarly subscripted� The set ��d

is the set of
all possible combinations of values for decision node d
s direct predecessors�

�

An element in this set will be called an information state�
A decision function for d is a mapping � � ��d

� �d� A policy for an ID
is a set � � f�i� i � � � � � ng of decision functions� one for each of the decision
nodes di� i � � � � � n�

��� Related work

There are several techniques for solving IDs� which do not consider the cost of
computation� The original technique converts an ID to a symmetric decision
tree ���� An algorithm which operates on the graphical structure is given in
�����

Recent advances in e�cient computation in Bayesian networks ��� �� ��
provides a framework for e�cient computation of expected value and opti�
mal policies ���� �� Heuristic search has also been applied to 	nding poli�
cies for IDs ���� using these advances� We use Bayesian networks �BNs� as
the underlying computational engine for our technique to compute posterior
probabilities and expected values �����

A number of researchers have described iterative approaches to solving
in�uence diagrams� Heckerman et al�� ��� and Lehner and Sadigh ��� use tree
structures to represent policies� and use a greedy approach to incremental
improvement of the tree structure� Both approaches use a single tree to
represent the policy� Lehner and Sadigh de	ne optimality of a decision tree
with respect to the number of nodes in the tree� and give a general property
which guarantees that an optimal decision tree of a certain size can be found
by greedy search� Heckerman et al�weigh the value of the tree against the cost
of computing it� but the tree itself is intended as an alternative to on�line
decision making�

Our work extends the current work by building a tree structure for each
decision node� taking advantage of e�cient probabilistic inference techniques�
This combination creates a basis for on�line� resource bounded computation�
Our empirical results also suggest that the simple greedy approach of one
step look ahead� can be improved by a greedy approach using less than a full
step look ahead�

� Single stage computations

We use decision trees to represent decision functions� In this section� we
de	ne decision trees� and show how they are built� In Section ���� we consider
the case where the decision problem has a single decision node� and extend
the idea to IDs with multiple decision nodes in Section ����

��� Decision trees

Let d be a decision node in an ID� A decision tree t for d is either a leaf labelled
by an action dj � �d or a non�leaf node labelled with some observable variable
x � �d� Each non�leaf has a child decision tree for every value xk � �x� An
information predecessor x � �d appears at most once in any path from the
root to a leaf� Each vertex v has a context� �v� de	ned to be the conjunction
of variable assignments on the path from the root of the tree to v� The
action at the leaf represents the action to be taken in the context of the leaf�
Given an information state w � ��d

� there is a corresponding path through
a decision tree for d� starting at the root leading to a leaf� which is labelled
with the prescribed action for w� Note that the context of an action need
not contain every variable in �d�

A decision tree represents a decision function� We will refer to the action
prescribed by a decision function by ��w� for information state w� or by dl if
l is a leaf on a given decision tree�

For a given leaf l� its context �l is extendible if it does not contain all the
observable variables� We refer to the variables which are not in the context as
possible extensions� writing �l� We will use � without subscript or argument
when we need to refer to an arbitrary context� The symbol �� represents the
empty context� equivalent to the context at the root of a decision tree�

A decision tree is shown in Figure ��b�� The tree can be interpreted as a
policy for the ID in Figure ��a� as follows� The decision maker 	rst considers
the view from the window� If the view is cloudy� then the decision maker
will determine what to do by consulting the radio weather report� However�
if the view from the window is sunny or rainy� then the radio report need not
be consulted at all� even though the report is available as information� Note
that in this example� the decision tree represents a policy� In general� we will
construct a decision tree for each decision node in an in�uence diagram�

�

����� Expected value

We de	ne expected value of a decision tree� so that we can compare decision
trees�

The expected value of the decision tree t is de	ned as follows�

Et �
X
l�t

u�dlj�l�P��l�

where u�dj�� is the expected value of an action d in a context �� and the
summation is over all leaves in t�

The optimal decision tree is de	ned as the one whose expected value is
greater or equal to the expected value of any other decision tree� t is optimal
if for all t�� Et � Et�� This de	nition of optimal does not take into account
the cost of computation�

��� Extending a decision tree

A decision tree t can be extended by removing some leaf l with context �l�
and replacing it with new vertex x � �l� The new vertex x must have a leaf
for every value xj � �x� and the leaf will be labelled with an action dj � �d

which maximizes the expected utility in the new context �� � xj�l�
Recall that each leaf in the tree is labelled with an action� The action is

chosen on the basis of being the best action for the context �l of the leaf l�

dl � arg max
di��d

u�dij�l�

We observe that this can be computed with one query to a Bayesian network
���� �see Section ���� If a vertex has b values� b queries to the BN are
required to compute its leaves� Another b queries are needed to compute
expected value for each leaf�

For a decision tree t� and leaf node l� we de	ne the expected value of
improvement� EV OIt�l� x�� to be the increase in expected value when t is
extended at l with some x � �l� resulting in a new tree t��

EV OIt�l� x� � Et� �Et

The best extension of t at l is given by�

x�l � arg max
x��l

EV OIt�l� x�

� arg max
x��l

X
xj��x

u�djjxj�l�P�xjj�l�

�

This x�l represents a local improvement� Note that EV OIt only depends
on l� its context� and the possible extensions at l� Therefore we can look
at improvements to each leaf independently of possible improvements to
other leaves� which we exploit for e�ciency� Finally� the posterior proba�
bility P�xjj�l� requires one additional BN computation� Therefore� to 	nd a
best extension for a particular leaf� we require ��n� k� � � BN calculations�
where n is the number of predecessor for the decision node� and k is the size
of the leaf
s context�

��� The single stage algorithm

The intuition for the single stage algorithm can be stated as follows� Given a
decision tree t� the algorithm extends the tree by choosing a leaf� and 	nding
its best extension� The process continues until some stopping criteria is met�
We have assumed that the ID has a single decision node� In the next section�
we show how to 	nd policies for IDs with several decision nodes�

The basic algorithm can be given as follows�

procedure DT�
Input�
in�uence diagram ID
decision node d

Output�
a decision tree for d

Start with the tree as a single leaf
Do f
Choose a leaf in the tree to extend
Replace the leaf with its best extension

g Until �stopping criteria are met
or no more leaf nodes to extend�

Return the tree

The sequence of trees created by DT� is such that the expected utility of
the next tree is never less than that of the previous tree� However� there is no
guarantee that the expected utility will always increase with every extension
of the tree� Furthermore� an ID could be constructed in which the expected
utility of a tree is arbitrarily far from the expected utility of the optimal tree
as long as every leaf node is still extendible�

�

The following results hold� regardless of the manner in which a leaf is
chosen for extension�

Theorem � Let n be the number of information predecessors for a decision
node d in an ID� Furthermore� assume that the number of states for any
node in the ID is bounded by a constant b� The total number of extensions
computed when DT� computes the optimal decision tree for d is less than
bn��

�b���� �

This follows from the observation that the number of extensions consid�
ered at a leaf depends on the size of its context� if decision node d has n

predecessors� and a leaf has k of these predecessors in its context� then the
number of extensions which must be examined to choose the maximum is
n� k� If the number of states a predecessor can take is bounded by constant
b� then during the course of constructing the optimal decision tree� DT� ex�
tends bk leaf nodes whose context is of size k� Therefore the total number of
extensions considered by DT� is

n��X
k��

�n � k�bk � bn��
n��X
k��

�n� k�bk�n�� � bn��
n��X
i��

ib��i

� bn��
�X
i��

ib��i � bn��
�
� �

�

b

���

We observe that this result implies that IDs with binary nodes form the
worst case for our technique� Note also that this result counts the number of
di�erent possible improvements to the tree throughout the process until the
optimal decision tree is found� This number is less than the number of leaf
nodes which need to be computed� by a factor of b�

Corollary � To compute the optimal decision tree for a decision node with
n informational predecessors� DT� requires O�bn� queries to a Bayesian net�
work�

Recall that each extension requires �b queries to the BN �Section ����� This
result implies that DT� requires a only constant factor more BN queries than
traditional dynamic programming algorithms �����

�

����� A greedy sequence of extensions

Recall the de	nition of the best extension of a decision tree t at a leaf l�
Here we de	ne the notion of the best extension for the whole tree� the tree
is extended by picking the leaf whose best extension yields a higher expected
value than the best extension of any other leaf in the tree�

More formally� the best extension for a decision tree t is de	ned to be the
extension x�t at some leaf l such that for all leaf nodes l� �� l�

EV OIt�l� x
�

l � � EV OIt�l
�� x�l��

We can reduce this to the following� given a decision tree t� with leaves
L � fl�� l�� � � � � lkg� the best extension to t is given by�

x�t � argmax
l�L

X
xj��x�

l

u�dj jxj�l�P�xjj�l�� u�dlj�l�

where x�l is the best extension for a given leaf l� and �l is the context of leaf
l� The action dj maximizes the decision maker
s expected value in each new
context�

This expression emphasizes that extensions to all leaves can be computed
independently� and the best one chosen from them� Furthermore� any exten�
sion which is not chosen as x�t can be cached� and possibly used later without
recomputation�

Finding the best extension to a tree may seem to require an additional
non�trivial amount of computation� However� so long as we choose to extend
the chosen leaf by its best extension� the greedy extension changes only the
ordering in which the tree is extended� A simple implementation would use a
priority queue to order the extension sequence� extensions stored in the queue
represent a computational investment� and if the computation continues until
the optimal tree �it could be asked to stop earlier�� none of the work put into
the queue is wasted� However� as we show in Section �� the one step look
head turns out not to be the best investment of computational resources�

��� Multiple decision nodes

We have seen that a decision function can be constructed for an in�uence
diagram containing one decision node� For IDs which have several decision
nodes� we work in the usual order �last decision to 	rst�� We allow the algo�
rithm to �split� on a decision node
s values� assigning a uniform distribution

��

over the decision variable� even though the decision maker has control� We
de	ne the expected value of a non�leaf vertex labelled with a decision node to
be the maximum expected value of its children� The decision vertex retains
all its leaves� as some future extension may shift the maximum expected
value to another branch�

��� Implementational details

We have implemented the algorithm using the greedy approach of the previ�
ous section� We use a BN to compute expected value� and make some e�ort
to make the implementation reasonably e�cient�

����� A BN as computational engine

Computation of expected value is based on the conversion of IDs to BNs �����
The utility node is converted to a binary chance node whose conditional

probability distribution is the normalized utility function� Decision nodes in
the ID are converted to root chance nodes with uniform probability distri�
butions�� The BN derived in this way from an ID is subsequently compiled
into a join tree ���� which can compute posterior probabilities e�ciently�

The best action d� � �d to be performed in a state w � ��d
can be found

by choosing the action which maximizes the query P�djw� v�� the expected
value of the best action is computed by querying the utility node P�vjw� d���

We generalize this result in terms of choosing an action which maximizes
expected utility in a given context �recall that a context may not include a
value for every observable variable in �d�� The corresponding queries are�
P�djv� ��� and P�vjd�� ���

����� Other e�ciency issues

We use a priority queue to order the sequence of extensions to a given tree�
The queue contains elements having a context� and a subtree labelled with the
implied leaf
s best extension� with leaf nodes attached to it� as in Section ����
In e�ect� when the implementation pulls an item from the queue� it is almost
trivial to replace the leaf with a subtree� because it was pre�computed� Most

�This does not a�ect the probability distribution� and makes the size of the largest

cliques a function of the probabilistic information in the ID� The informational predecessors

remain part of the ID� but not the underlying BN�

��

of the work happens after the leaf is replaced� For each of the new leaf nodes�
we compute the new best extension� its best subtree� and enter it into the
queue�

We avoid recomputing expected value by storing the expected value of
a leaf� and the expected value of each extension in the queue� As well� we
store the posterior probability each of non�leaf node given its context� Thus�
we need only to compute expected value for a new context� all the remaining
information is obtained by look up�

In order to compute EV OIt�l� x�� we need to compute the posterior prob�
ability P�xjj�t�l��� We order the exploration of extensions so that we can
enter �t�l� once� and query the BN for the posterior probabilities of x � �l
on the basis of one DistributeEvidence computation� We still require this
computation once for every leaf� but this is insigni	cant compared to the �k
CollectEvidence computations required to compute the expected value for
all k of the leaf
s possible extensions�

In our implementation� any leaf node whose context contains logical im�
possibilities are not extended nor are they considered further� Empirically�
this could have a great e�ect on the cost of computation and the size of the
resulting tree� as shown in the 	rst example in the next section�

� Performance

In this section� we explore the behaviour of a greedy DT� empirically� We
demonstrate the algorithm on a small well known problem� and a set of larger
random problems�

��� Terms of comparison

We describe the behaviour of an implementation of DT�� running the proce�
dure until the optimal decision tree is achieved� The data points we will be
collecting represent decision trees in terms of the tree
s expected value� the
number of BN computations required to achieve the tree� and the number
of interior nodes in the tree� Note that each data point could be used as an
anytime solution�

The expected value of a decision tree has been de	ned earlier� In our ex�
amples� expected value is normalized to ��� ��� We measure the computation
cost in terms of the number of BN computations required� Recall that each

��

Car
Condition

Results
from
Test 1

Results
from

Test 2

Test
1

Test
2

Buy
Car?

Value

Car
Condition

Results
from
Test 1

Results
from

Test 2

Test
1

Test
2

Buy
Car?

Value

(a) (b)

Figure �� The Car Buyer Problem� Part �a� shows the in�uence diagram	
part �b� shows the BN used for computation of expected value for the last
decision node� Buy Car �

extendible leaf requires ��n�k��� BN computations� where n is the number
of predecessors of the decision node� and k is the number of observations in
the context of the leaf�

The size of our decision trees is measured in terms of the number of non�
leaf vertices in the tree� Assuming binary valued predecessors of a decision
node� the number of actions in a tree of size s is s��� as shown in Section ��

We compare our implementation to an idealized dynamic programming
algorithm� in which a BN computation is required for every possible ob�
servable state ����� If a decision node in an ID has n binary predecessors�
then the dynamic programming algorithm requires exactly �n BN computa�
tions to 	nd the optimal decision function containing �n information states�
If required� the expected value of the decision function could be computed
with a single BN computation after the decision function has been estab�
lished� Finally� since the dynamic programming algorithm only produces a
single solution� it falls under the category of in�exible� and for emphasis and
brevity� we refer to it as such�

��� A classical example

To illustrate the behaviour of DT�� we will show its behaviour on the well�
known Car Buyer problem� Figure � ����� There are three decision nodes in
this problem� in this section� we use DT� to 	nd a decision function for the
last decision node�

Brie�y� the ID represents the knowledge relevant to a decision maker

��

deciding whether or not to buy a particular car� The decision maker has
the option of performing a number of tests to various components of the
car� and the results of these tests will provide information to the decision
to buy the car� The actual condition of the car is not observable directly
at the time the decision maker must act� but will in�uence the 	nal value
of the possible transaction� A policy for this problem would indicate which
tests to do under which circumstances� as well as a prescription to buy the
car �or not� given the results of the tests� Due to space constraints� none
of the numerical data required to complete the speci	cation of this problem
is shown� this information can be found in ���� ���� This problem is well
known for its asymmetry� some combinations of tests and results are logical
impossibilities�

Figures � and � show the performance of DT� on the last decision stage
in the problem�

Figure ��b� compares the expected value of the decision tree and the size�
Again� each point represents a decision tree improved by a single extension�
Because of the asymmetries in the problem� the optimal policy can be rep�
resented with a decision tree with � internal vertices and �� leaves� For this
problem� the largest tree computed by DT� has �� vertices and �� leaves�
The in�exible algorithm� unless designed to handle asymmetries� requires a
table of �� entries� The large di�erence between our trees and the in�exible
solution is due to the asymmetries in the problem� our implementation does
not extend contexts whose probability is zero�

Figure ��b� illustrates the increase in expected value of each decision
function� as a function of the number of BN computations� The very 	rst
decision function for this problem is available after just � BN calculations� and
has an expected value which is less than ��! from optimal� Each subsequent
point represents an improvement to the decision function by extending the
tree by one node� The rightmost point represents the optimal policy�

For comparison� the in�exible algorithm requires �� BN computations� to
compute a table of �� actions�

Figure � plots expected value versus the computational e�ort required�
essentially� it shows where the work gets done� Much work goes into 	nding
the 	rst few trees� as each information state is small� and has many possi�
ble extensions� Half of the work is done to 	nd a decision function which
distinguishes � information states� As the decision tree gets larger� the num�
ber of possible extensions for each context gets smaller� Towards the end of
the process� very few BN calculations are performed because there are no

��

0.72

0.725

0.73

0.735

0.74

0.745

0.75

0.755

0.76

0.765

0.77

0 5 10 15 20 25 30

E
xp

ec
te

d
V

al
ue

 (
no

rm
al

iz
ed

)

Size of Policy

The Car Buyer Problem

0.72

0.725

0.73

0.735

0.74

0.745

0.75

0.755

0.76

0.765

0.77

0 20 40 60 80 100 120 140 160 180 200

E
xp

ec
te

d
V

al
ue

 (
no

rm
al

iz
ed

)

BN Computations

The Car Buyer Problem

(a) (b)

Figure �� The results of using DT� on last decision node of the Car Buyer
Problem� �a� The expected value versus the size of the tree� �b� The ex�
pected value versus the number of BN computations� Each point represents a
decision tree� and the rightmost point in both graphs represents the optimal
decision function�

extensions to the contexts pulled from the queue�

��� Performance on random single decision IDs

To show the performance of DT� on a single decision node� we have created
a number of random in�uence diagrams with one decision node� Figure
illustrates the template ID which we have used to create random decision
problems� The template problem has n chance nodes� each of which is an
informational predecessor to the decision node� As well� each chance node
is a predecessor of the value node� The template can be instantiated by
choosing n� random binary probability distributions� i�e�� P�ck�� are chosen
from a uniform distribution on ��� ��� The utility function is also chosen from
a uniform distribution ��� ���

Figure �� shows the behaviour of DT� on seven instantiations with n � ��
Each point in these graphs represents a decision function� there are seven sets
of data shown� one shape for each ID� Part �a� shows the increase in expected
value as the trees increase in size� Part �b� shows the expected value of the
decision function as a function of the work done by the algorithm in terms of
BN calculations� The right most points represent the optimal decision tree

�

0

20

40

60

80

100

120

140

160

180

200

0 5 10 15 20 25 30

B

N
 C

om
pu

ta
tio

ns

Size of Policy

The Car Buyer Problem

Figure �� Showing where the work gets done by DT� when computing decision
functions for the last decision in the Car Buyer Problem�

for each problem� The left hand endpoints represent the expected value of
the decision tree continuing only a single leaf�

While the data tend to overlap the general trends are clear� expected
value increases with the size of the tree� and the work done� However� the
optimal policy can be computed by the in�exible algorithm in �� BN com�
putations� which is well before the trees produced by greedy DT� begin to
level o� in terms of expected value�

We observe that the greedy DT� does not invest computation time wisely�
The graph of expected value versus size �Figure �a� illustrates the concern
mentioned in Section �� that the greedy approach produces trees which are
small but expensive to compute�

We have two 	nal points to make about these graphs� First� even the 	rst
few trees can be more valuable to a decision maker than no decision function
at all� if there are deadlines or other opportunity costs� Second� the IDs in
these graphs are random� and symmetrical� there is reason to believe that
decision problems faced by real decision makers contain more structure than
our random problems do�

��� Performance on IDs with several decision nodes

DT� can be applied to each decision node in an ID� in the standard back to
front dynamic programming order� We have applied this technique to the
Car Buyer problem� The results are preliminary� but encouraging�

��

C1

Cn

D V. . .

Figure � An ID with one decision node and n informational predecessors�

0.45

0.5

0.55

0.6

0.65

0.7

0.75

0 32 64 96 128 160 192 224

E
xp

ec
te

d
V

al
ue

 (
no

rm
al

iz
ed

)

Size of Policy

Eight Random 1-IDs

0.45

0.5

0.55

0.6

0.65

0.7

0.75

0 512 1024 1536 2048

E
xp

ec
te

d
V

al
ue

 (
no

rm
al

iz
ed

)

BN Computations

Eight Random 1-IDs

(a) (b)

Figure �� Seven random IDs with
 informational predecessors each were
solved by an implementation of DT�� The improvement of the tree in terms
of expected value� �a� as the tree increases in size� and �b� as the number of
BN calculations performed increases�

��

Because the optimal decision tree for the last decision node can be repre�
sented with a tree of � non�leaf vertices� we explored the space of all possible
decision trees for the three decision nodes� Note that the 	rst decision node
has no informational predecessors� and the second has two� The maximum
tree sizes for these two decision nodes are zero and � non�leaf vertices� re�
spectively�

The optimal policy was found when the third decision tree had � non�leaf
vertices� and the second decision tree no non�leaf vertices� In total� only �
BN calculations were needed to compute the policy ��� of which were needed
to 	nd a decision tree for the last decision node�� as opposed to the ���
BN calculations required by the in�exible method� A sub�optimal policy� in
which the decision maker buys the car without any tests� is found with � BN
calculations� and the expected value of this policy is about �! less than the
optimal policy
s expected value�

� Conclusions

We have shown how a decision function can be constructed iteratively� We
have shown that the sequence converges necessarily to the optimal decision
function� Asymptotically� the number of Bayesian network calculations re�
quired by the iterative technique is a constant factor larger than dynamic
programming techniques� Furthermore� given a model of the cost of compu�
tation� the expected cost of the next iteration can be weighed against the
increase in expected value of the decision function�

We have shown preliminary empirical results which are encouraging� small
decision trees are of value to a decision maker� before in�exible techniques
have produced the optimal decision tree� The greedy implementation was
shown to spend much e�ort to 	nd the best extension to the decision tree
at a given leaf� resulting in trees which are small but expensive to compute�
Another approach would be to choose a good extension� as opposed to the
best extension� We expect that if less e�ort is spent to build a tree of a given
size� the expected value of a decision tree will rise more quickly as measured
by the number of BN calculations� correspondingly� the tree will also grow
more quickly� We are currently exploring these and other ways to increase
the value of early computational e�ort�

We have shown how to apply the greedy DT� to IDs with several decision
nodes� While the algorithm can be applied in a straightforward manner to

��

such decision problems� we are exploring ways to balance the computational
e�ort across the stages� The dilemma is that the decision maker may need
to take action on the 	rst decision node with some urgency� but all the
computational e�ort could go into 	nding a decision function for the last
decision node� We are looking at the e�ects of computing very small trees
for decision nodes late in the sequence� and increasing the size for early
decision nodes� Our preliminary experiments on simple IDs suggest that this
technique may be successful�

We also are exploring the relationship between tree structured decision
functions and tree representations of conditional probability tables� e�g������

Acknowledgements

The authors would like to thank Brent Boerlage of Norsys Software Corp�
for advice and support in the use of the Netica API as our Bayesian network
engine� and for many discussions�

References

��� G� F� Cooper� The computational complexity of probabilistic inference
using Bayesian belief networks �research note�� Arti�cial Intelligence�
��������������� �����

��� D� E� Heckerman� John S� Breese� and Eric� J� Horvitz� The compilation
of decision models� In Uncertainty in Arti�cial Intelligence �� pages ����
���� �����

��� Eric J� Horvitz� Computation and action under bounded resources�
Technical Report KSL������� Departments of Computer Science and
Medicine� Stanford University� �����

��� R�A� Howard and J�E� Matheson� The Principles and Applications of
Decision Analysis� Strategic Decisions Group� CA� �����

�� Frank Jensen� Finn V� Jensen� and Soren L Dittmer� From in�uence
diagrams to junction trees� In Proceedings of the Tenth Conference on
Uncertainty in Arti�cial Intelligence� pages �������� �����

��

��� F�V� Jensen� K�G� Olesen� and S�K� Andersen� An algebra of Bayesian
belief universes for knowledge based systems� Networks� �����������
�����

��� S� L� Lauritzen and D� J� Spiegelhalter� Local computation with proba�
bilities on graphical structures and their application to expert systems�
J� R� Statist Soc B� ������������ �����

��� Paul E� Lehner and Azar Sadigh� Two procedures for compiling in�uence
diagrams� In Proceedings of the Ninth Conference on Uncertainty in
Arti�cial Intelligence� pages ������� �����

��� Judea Pearl� Probabilistic Reasoning in Intelligent Systems� Networks
of Plausible Reasoning� Morgan Kaufmann Publishers� Los Altos� �����

���� Runping Qi and David Poole� New method for in�uence diagram eval�
uation� Computational Intelligence� ������������� ����

���� Stuart Russell and Eric Wefald� Do the Right Thing� Studies in Limited
Rationality� MIT Press� Cambridge� Mass�� �����

���� Ross Shachter and Mark Peot� Decision making using probabilistic infer�
ence methods� In Proceedings of the Eighth Conference on Uncertainty
in Arti�cial Intelligence� pages �������� �����

���� Ross D� Shachter� Evaluating in�uence diagrams� Operations Research�
�������������� �����

���� J� E� Smith� S� Holtzman� and J� E� Matheson� Structuring conditional
relationships in in�uence diagrams� Operations Research� �����������
�����

��� Nevin Lianwen Zhang� A Computational Theory of Decision Networks�
PhD thesis� University of British Columbia� �����

��

