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Abstract

In this paper I argue that we do not under-
stand the process of default reasoning. A
number of examples are given which serve
to distinguish different default reasoning sys-
tems. It is shown that if we do not make
our assumptions explicit we get into trouble
with disjunctive knowledge, and if we make
our assumptions explicit, we run foul of the
lottery paradox. None of the current popular
default reasoning systems work on all of the
examples. It 1s argued that the lottery para-
dox does arise in default reasoning and can
cause problems. It is also shown that some
of the intuitively plausible requirements for
default reasoning are incompatible. How dif-
ferent systems cope with this is discussed.

1 Introduction

Default reasoning is the ability to jump to a conclusion
based on the lack of evidence to the contrary. Deduc-
tion in standard logic does not allow such reasoning;
if some proposition follows from a set of axioms, 1t fol-
lows from a superset of the axioms. There have been
many proposals for incorporating default reasoning
in logic [Reiter, 1980, McCarthy, 1986, Moore, 1985,
Delgrande, 1987, Poole, 1988]. I assume we use default
reasoning to predict what is true.

In this paper we consider the problem of default
reasoning, and discuss different choices that could be
made in developing a default reasoning system. A set
of examples is presented which indicates that current
default reasoning systems do not work properly.

This is argued in two parts. In the first part (section
2), it is argued that if we do not commit to implicit
assumptions made (for example, acknowledging that
we assumed Tweety 1s not an emu when we concluded
Tweety could fly) we get into trouble. In the second
part I show how the lottery paradox arises when we
do commit to assumptions.

When considering the lottery paradox, the main in-
tuition I rely on is the “one step default” property: if
“birds fly” (however we represent it) is a default and

all we know about an individual is that it is a bird (in
particular, we don’t know it doesn’t fly), we conclude
it flies. This seems like a minimal property the default

“birds fly” should have.

2 Commitment

Suppose we have d as a default, with exception e. The
first question I want to consider is whether we should
conclude —e as a side effect of concluding d.

Consider the classic example of birds flying:

Example 1 Suppose we want to use the default
“birds fly”, with emus as exceptions. Suppose we know
Polly is a bird, and know nothing else about Polly. As
“Birds fly” is an assumption, it seems reasonable to
conclude Polly flies. Should we conclude Polly is not
an emu? There have been three different solutions to
this suggested by different systems.

2.1 Non-committal

The first of the possible answers is that we should not
conclude d at all. We should rather conclude only the
disjunct d V e. The rationale is that we do not know
whether the exception e is true, so we do not know
whether d is true. If we cannot say whether e is true,
we should not allow any side effect to the value of e.

This is exactly the situation with circumscription
[McCarthy, 1986] with the exception being “fixed”
during the minimisation.

I would argue this non-committalness loses the very
reason for default reasoning: we can never conclude a
default, but only the disjunct of the possibilities. We
have lost the ability to jump to conclusions. Such a
system is not doing default reasoning at all; we have
just invented a new syntax for digjunctions.

We can never use the “birds fly” default to do what
was originally intended, namely to conclude something
flies from just knowing it is a bird. We would instead
conclude either the bird is an emu or flies. Somehow
we changed the meaning of “birds fly, but emu’s are
exceptions” to mean the logical statement “birds are
either emus or fly”. With many exceptions we could
only conclude Polly flies if we could prove polly is not
an emu, 1s not a roast duck, is not in the shell, etc.



2.2 Non-commitment

An alternate view is we should conclude default d, but
make no commitment as to whether e is true or not.
That is we conclude d, and not conclude —e. This
occurs, in autoepistemic logic [Moore, 1985] when we
use the formula':

—L-dA—-Le=d

(where the operator I means “know”), to mean that
if we don’t know d is false and we don’t know e is true,
conclude d.

Similarly, we can use Reiter’s semi-normal defaults
(as advocated in [Reiter and Criscuolo, 1981]):

s M(d A —e)
d

to mean if d A —e 1s consistent, conclude d.

These get funny (and T would argue, incorrect) re-
sults, because they are being non-committal about the
assumptions they are making. They do not allow us
to conclude anything about the exception e. Consider
the following example:

Example 2 Suppose by default people’s left arms are
usable, but a person with a broken left arm is an excep-
tion, and similarly people’s right arms are, by default,
usable, but broken right arms are an exception. In Re-
iter’s notation (ignoring variables, which are irrelevant
to this example) this is

: M (left-arm-usable A —left-arm-broken)

left-arm-usable

: M (right-arm-usable A —right-arm-broken)

right-arm-usable

If we know nothing about Matt’s left arm, we conclude
(correctly as to what we assumed a default was) his left
arm 1s usable. If we know his left arm is broken, we
(correctly again) do not conclude his left arm is usable.

Suppose we remember seeing him with a broken left
arm or a broken right arm (we can’t remember which).

We add
left-arm-brokenV right-arm-broken

In this case we cannot conclude he has a broken left
arm and so conclude his left arm is usable. We also
cannot conclude he has a broken right arm so we con-
clude his right arm is usable. We thus conclude both
his left arm and his right arm are usable.

I would argue that this is definitely a bug, being
able to conclude both arms are usable given we know
one of his arms is broken. The problem is we have im-
plicitly made an assumption, but have been prevented

!This analysis does not change if we use the more mod-
ular abnormality notation or use Gelfond’s [1988] method-
ology for using autoepistemic logic.

from considering what other assumptions we made as
a side effect of this assumption. Somehow we needed
to commit to the implicit assumption that his left arm
was not broken when we used the first default.

This problem of disjunctive exceptions is endemic to
the use of non-normal defaults?.

2.3 Commitment to Assumptions

A third alternative is to conclude d, and as a side effect
conclude —e. This reflects the idea that in concluding
d, we are assuming e is not true, because if e were true
we could not conclude d.

This is what happens in circumscription when we,
for the “birds fly” example, minimise “ab”, with
“emu” varying and specify

Va(bird(z) A —ab(x) = flies(x))
Va(emu(x) = ab(x))

or in Theorist [Poole, 1988] make “birds fly(X)” apos-
sible hypothesis and specify as facts

Va(bird(x) Abirds fly(z) = flies(z))
Va(emu(x) = —birdsfly(x))

When we specify Tweety is a bird, we conclude
Tweety is not an emu®. In the next section I con-
sider the question as to whether such side effects can

cause problems.

3 The Lottery Paradox

There is a famous problem which arises if we assume
a proposition is false when its probability falls below
some threshold. The problem arises because the con-
junction of a number of likely propositions make be-
come very unlikely or even impossible. This is known
as the lottery paradox [Kyburg, 1961].

Suppose we have a threshold of €. If there is a lottery
with > 1/€ tickets, we assume each of these will not
win. The conjunction of the assumptions is inconsis-
tent. This is usually translated in probability theory
as indicating that commitment is a bad idea.

In this section I show how the lottery paradox nat-
urally arises in default reasoning systems® and can

2[Poole, 1988] shows how the use of preconditions in
Reiter’s defaults can lead to errors with disjunction. This
example shows non normal defaults lead to errors with
disjunctive knowledge. It is interesting to note that the
simpler, and differently motivated Theorist system corre-
sponds exactly to Reiter’s normal defaults without precon-
ditions [Poole, 1988, theorem 4.1].

°In both of these systems we conclude —emu(c) for any
constant ¢ in our language that we do not know is an emu.

*[Kyburg, 1988, Perlis, 1987] also discuss how the lot-
tery paradox can arise in a default reasoning system, but
from a very different perspective.



potentially cause severe problems for current default
reasoning systems. I then examine some possible re-
sponses to this problem.

Consider the following example where the circum-
scription convention of using named abnormality is
used, as above. Assume all we are told about Tweety
is that Tweety is a bird.

We start off by writing the sort of birds we may
encounter in our domain and have a formula like®:

Vo bird(z) = emu(z)V penguin(z)V
hummingbird(z) V sandpiper(x) V

albatross(z) V ...V canary(z)

Now add defaults about birds. For each sort of bird
that 1s exceptional in some way we will be able to
conclude Tweety is not a bird of that sort.

e We conclude that Tweety is not an emu or a pen-
guin because they are exceptional in not flying.

e We conclude Tweety is not a hummingbird as
hummingbirds are exceptional in their size (con-
sider for example the case of making a bird cage
for Tweety; we have to make an assumption about

the size of birds),

e we conclude Tweety is not a sandpiper as sand-
pipers are exceptional in nesting on the ground
(for example, when bush walking and someone
says “look at that bird nest”, we have to look
somewhere first; we look up by default if all we
know is the nest belongs to a bird);

e we conclude Tweety is not an albatross as alba-
trosses are exceptional in some other way.

If every sort of bird is exceptional in some way, ex-
cept for, say, the canary, we conclude Tweety is a ca-
nary (as we have ruled out all the other alternatives).
This may or may not be a bad side effect. When we
add the fact canaries are abnormal in being a bright
colour, suddenly nothing works. We can no longer con-
clude Tweety flies! flies(Tweety) is no longer in all
minimal models. There is one model in which Tweety
does not fly and in which all of the other abnormalities
are false.

The problem is that local, seemingly irrelevant infor-
mation (namely information about how different sorts
of birds are abnormal in different ways) can interact
to make nothing work. When we follow the advertised
way to use these default reasoning systems, we find we
get very strange behaviour. For seemingly unrelated
statements to interact to produce such disastrous side
effects is a bad technical problem.

Unlike McDermott [Hanks and McDermott, 1986,
McDermott, 1987], I do not suggest this is evidence to
give up on the programme of formalising commonsense

®This sort of statement naturally arises in systems
where we assume complete knowledge.

reasoning using logic, but rather use this problem to
shed more light on the phenomenon we are trying to
formalise.

4 Possible Responses
There a number of possible responses to this problem:

4.1 Denial

The first response is denial that this problem will ever
arise in practice. Unfortunately this is an empirical
question and not a theoretical question. We can argue
about this forever, but until we actually go and build
real systems and find out what does happen, the argu-
ment will be as irrelevant as trying to determine how
many angels can fit on the head of a pin.

The problem outlined here was discovered by us-
ing our Theorist system [Poole et. al., 1987, Poole,
1988], and noticing funny side effects and obscure rea-
sons why we should not predict (membership in all
extensions) certain expected outcomes. We are cur-
rently building larger systems to determine whether
such problems do arise. Unfortunately we will never
be able to say this problem does not arise in practice,
but only be able to determine it does.

I do not believe the scenario above, considering each
type of bird as being exceptional in some way, is so far
fetched. T would not be surprised, in a large database,
if each subclass of bird is indeed exceptional in some
way. All we need for the above problem to arise is
some way to determine there is no completely typi-
cal individual. Once we can determine this, none of
the formalisms (that commit to an assumption) work
correctly. In large knowledge bases, not only would
I expect such situations to arise, but they would be
normal. For example, the “normal” person (who is
175cm tall, has an IQ of 100, has a grade 12 education
and has 2.2 children), does not exist, although we may
want to make these assumptions so we can point out
to others how someone is different to that “normal”
person.

Example 3 As a natural example, take the well
known default in the legal system namely “people
are presumed innocent unless proven guilty”, and the
knowledge that someone is guilty (as there was a crime
committed). This could be represented as

V& —ab(innocence, x) = —guilty(xz)

Jx guilty(x)
For any particular individual we do not conclude they
are not guilty. I would not like to be the one to explain
to judge Jones that we do not conclude

—guilty(judge_jones)

but do conclude

—guilty(judge_jones) V mguilty(jack the_ripper)



4.2 Technical Patches

I described this as a “technical problem”, and as such
it seems as though 1t should have a technical solu-
tion. I believe the problem is endemic to current ideas
about how defaults work (see section 5 below). There
is good evidence to suggest that any solution to the lot-
tery paradox above will not work for the broken arm
problem (the structure of both of them is remarkably
similar, but we expect different answers). T see this
as a challenge to those who like to find technical so-
lutions, but I feel as though the problem is we do not
understand the phenomena we are trying to formalise.

Suggestions such as prioritised circumscription [Me-
Carthy, 1986] will not work. There is a symmetry
about this example. The side effect will affect what-
ever 1is the lowest priority default.

One interesting thing can be seen in this example. If
we predict what 1s in one extension rather than what is
in all extensions (following the definition of extension
in [Reiter, 1980] or [Poole, 1988]), we find “Tweety
flies” is in one extension. If we add the exceptions
(emu’s are abnormal with respect to flying) as facts,
we can also predict Tweety doesn’t fly. Poole [1988]
suggests this problem (of having the side effect ex-
plicit) could be solved by using “constraints” to prune
the scenarios without being part of the scenarios. This
works if we equate prediction with being in one exten-
sion. We can explain Tweety flying, but cannot ex-
plain the negation. We can explain each of the other
typical properties of birds; we cannot predict the con-
junction of the properties. The use of constraints also
does not let us conclude both of Matt’s arms are us-
able.

This seems to be a good “technical patch” of the
type we were looking for. However, equating predic-
tion with membership in an extension leads to the pe-
culiar property of predicting a proposition and also
predicting its negation. Careful structuring of the
knowledge base may help this (see section 4.3), but
this is not a general solution.

If, instead we equate prediction with membership in
all extensions, the use of constraints again does not
work. The conjunction of all of the normal assump-
tions about birds is inconsistent; removing the assump-
tion Tweety is normal with respect to flying is a way
to make an extension from which we cannot conclude
Tweety flies.

4.3 Breaking Conventions

Let us now consider one sort of knowledge it 1s claimed
defaults capture. This is the idea that default reason-
ing models a notion of conventional reasoning. The
reason “birds fly” is a default is that if T tell you
Tweety 1s a bird, and I do not tell you Tweety can-
not fly, I am telling you Tweety can fly. This is the
motivation for autoepistemic reasoning [Moore, 1985,
section 2.

If we take this meaning of default reasoning seri-
ously, not only does the lottery paradox above not
arise, but the multiple extension problem in general
does not arise.

According to the defaults as conventions view, the
default “birds fly” means if I add knowledge about a
particular bird, I must assert it doesn’t fly if 1t doesn’t
fly. With this convention, if I assert Tweety is a bird,
and I do not assert Tweety does not fly, I am saying
Tweety flies. If Tweety does not fly I have broken the
convention. The knowledge based should be fixed up
just as if I had asserted something that is false.

If there are multiple extensions they are mutually in-
consistent, so at most one can be true of the world un-
der consideration (the intended interpretation). Thus
one of the extensions must be false in the intended in-
terpretation. So either something I added explicitly is
false in the intended interpretation, or else there is a
default which is not applicable in the world under con-
sideration. In the latter case, to follow our convention,
I must tell the system about that exception. Multiple
extensions indicate I did not follow the convention.

In the lottery paradox example above, Tweety 1s
exceptional in at least one of the properties, so to
follow the convention, I should tell you that prop-
erty. Thus the lottery paradox example cannot arise.
Moreover, none of the multiple extension problems can
arise. Multiple extensions are thus not a problem to
be solved, but indicate a convention has been broken;
we need to patch up our buggy knowledge base rather
than solve the multiple extension problem.

Automatically enforcing such constraints i1s not as
difficult as it may, at first, seem. In the Theorist sys-
tem [Poole et. al., 1987, Poole, 1988], we can main-
tain a knowledge base with only one extension [Poole,
1989a] by ensuring that:

1. When a new default is added to the knowledge
base, if we can explain an instance of the negation
of the default and cannot prove that instance, this
default introduces multiple extensions. If not, we
still only have one extension.

2. When a new fact is added, if we can explain the
negation of the fact with a explanation containing
more than one default and cannot explain it with
a subset of that explanation containing only one
default, the new fact introduced multiple exten-
sions.

When we detect we have multiple extensions we can
ask the user to debug the knowledge base by cancelling
one of the defaults [Poole, 1988]. These detection pro-
cedures are, in general, undecidable. However it seems
appropriate to assign these to low priority background
processes, which report when they find an inconsis-
tency or a multiple extension. Just as people do not
immediately (if at all) realise they have been mislead
(or lied to), these background processes may or may



not return to report a breaking of a convention.

The importance of this section is that “defaults as
conventions” is a consistent view of defaults; whether
it corresponds to the use of the term default is a dif-
ferent question.

4.4 We don’t understand the Phenomena.

The fourth response is we do not understand the phe-
nomena we are trying to formalise. If we mean some
sort of “typically”, the response in section 4.3 does
not seem to be appropriate. If this is the case we must
recognise that the lottery paradox can arise in the for-
mal systems defined so far. If we claim the lottery
paradox does not arise in the “commonsense” view of
a default, then the formal systems do not capture our
normal sense of “default”. Thus we do not understand
the phenomena we are trying to characterise.

In the next section I show that one intuitive reading
of “birds fly” is incompatible with many of the formal
models of non-monotonic reasoning.

5 One Step Default Property

The property underlying the intuition in the lottery
paradox example is what I call the “one step default
property” .

T will use the notation “p(x) — q(z)” is a default to
mean “p’s are ¢’s by default”. No meaning should be
placed in this notation. Different systems use different
notations and have different semantics. I intend this
discussion to include all of these notations.

Definition 1 A default reasoning system has the one
step default property if whenever “p(z) — ¢(2)”
is a default and all that is given about constant ¢ is
“p(e)” (in particular we do not know the truth of ¢(c¢)),
it concludes “q(c)”.

For example, under this property if I tell you “birds
fly”, and all T tell you about Tweety is Tweety is a
bird, if a system has the one step default property
it concludes Tweety flies. This seems like a minimal
property “birds fly” should have.

The following theorem puts a constraint on the type
of systems with this property.

Theorem 1 A default reasoning system cannot have
all of the following properties:

(i) The one step default property.

(ii) Ifit concludes two answers, it concludes their con-
junction. That is, if 1t concludes “a” and con-
cludes “b”, it concludes “a A b”.

®This discussion is in terms of parametrized (open) de-
faults as is it most natural for this case. However the ar-
gument is purely propositional, and covers propositional
systems as well as systems allowing defaults with free
variables.

(iii) The ability to represent disjunctive knowledge,
and to allow arbitrary (not directly conflicting)

defaults.
(iv) It does not conclude anything known to be false”.
Proof: To prove this it suffices to give

one set of inputs which follow the constraints
given in (iii). By showing that properties (i)
and (ii), lead to a contradiction with (iv), we
demonstrate that a system with all four prop-
erties cannot exist.

Suppose
p(x) = qi(x)

is a default for 2 = 1..n, and

Vo —qr(z) V oga(x) V.oV gp ()

is a fact, and we are given

p(c)

By (i) we conclude each “g;(¢)”, and by (11)
we conclude their COHJUHCthIl which is in-
consistent, and so must be false, contravening
(iv). O

Given these four intuitive properties are inconsis-
tent, 1t is interesting to consider which property dif-
ferent systems have given up.

(i) is given up in circumscription [McCarthy, 1986],
in any minimal model solution [Shoham, 1987]
and systems which require membership in all ex-
tensions [McDermott and Doyle, 1980]. This is
because they want the expressiveness that prop-
erty (iii) gives, they need property (ii) by their
very nature, and always reject having inconsistent
extensions or reducing to no models.

(ii) is given up in many probability-based systems
[Neufeld and Poole, 1988, Bacchus, 1989], and in
systems which, for prediction, only require mem-
bership in one extension [Reiter, 1980, Moore,
1985, Poole, 1988]. These latter systems seem to
get the one step default property for the wrong
reason, namely by being able to predict a propo-
sition and also predict its negation.

(iii) is given up in inheritance systems [Thomason and
Horty, 1988]. These allow (i), (ii) and (iv), how-
ever they lack the expressiveness of the richer
logic-based formalisms.

(iv) is not given up by any system I know, although it
is argued [Israel, 1980, Perlis, 1987, Kyburg, 1988]
that commonsense reasoning does indeed require
reasoning under inconsistency.

"We do not want it to be inconsistent if the facts are
consistent. This property does not constrain the system at
all if the facts given are inconsistent.



The e-semantics of [Pearl, 1988] fits into this analy-
sis in a very interesting way. For this theorem it fails
in property (iii). There is no consistent probability as-
signment for the defaults and facts given in the proof.
This could be translated as meaning it solves the prob-
lem nicely, but I would claim it means we must treat
seriously the semantics saying there are only infinites-
imally few exceptions. It shows we cannot use the
system 1if the proportion of exceptions does not have
measure zero. In particular this system does not seem
appropriate to represent “birds fly”, as it is not true
there are infinitesimally few birds that don’t fly. His
semantics means accepting the “convention” view of
defaults (section 4.3).

Shoham [1987] rejects the one step default prop-
erty in his discussion on the lottery paradox. How-
ever his discussion indicates that we would not want
to write such defaults, but explicitly rejects the view
of defaults as autoepistemic statements (section 4.3).
Rather than indicating to the user that the knowledge
base is inconsistent, he would rather [Shoham, 1987, p.
392] the system decide that the user was not rational
in adding the default that each lottery ticket would not
win, and so not allow the one step default conclusion.

6 Where to look for a solution

I think there are two areas to look for a solution to
this problem: these are in the areas of probability the-
ory, and in comparing logical arguments as to why we
should believe some proposition or not.

6.1 Probability

Pearl [1988] and Cheeseman [1985] argue very logically
and convincingly that probability theory is the correct
way to consider reasoning under uncertainty.

The one step default property 1s ingrained at the
very foundation of probability theory. p(A|B) = v
only tells us information about A when all we know 1s
B8 [Pearl, 1988]. Not unsurprisingly, default reason-
ing systems based on probability theory (eg. [Geffner,
1988]) end up with different properties than those
based on minimal models or other logical formalisms
which do not have the one step default property.

According to probability theory the lottery paradox
is a problem with commitment to assumptions. The
problem 1is concluding a proposition is true without
being certain of the proposition. Instead of conclud-
ing Tweety flies we could conclude the probability of
Tweety flying is high. The conjunction of the conclu-
sions would have probability zero, but we know we can-
not conclude the conjunction of propositions is likely
just because the proposition is likely.

One of the promising ideas in this area is to use qual-
itative probabilities [Aleliunas, 1988], where instead of

#In particular, if v # 0, it tells us nothing about the
value if p(A|B A C).

using numbers we can use more linguistic probability
values in a probability algebra. The relationship be-
tween this and notions of default reasoning is not clear.

Another promising idea is that of Neufeld [1988],
where “birds fly” means the probabilistic statement
Tweety being a bird increases our belief in Tweety
flying:

p(flies|bird) > p(flies)

The lottery paradox is overcome by not allowing us to
conclude the belief in the conjunction is increased just
because belief in each proposition is increased.

6.2 Arguments

The second promising area 1s to consider the role of
logical arguments.

Logic can be seen as the study of arguments; it is the
study of when we should believe an argument based
on the truth of the premises. A valid logical argu-
ment 1s one in which the conclusion must be true if the
premises are true. It has been shown [Poole, 1988] that
defaults can be treated as possible hypotheses that can
be used in the premise of a logical argument. The de-
faults are the premises of a logical deduction; we do
not defeat the argument, but defeat the premises (by
showing they are inconsistent). All of the arguments
are standard logical proofs. Multiple extensions in-
dicate there is an argument for a proposition and an
argument against a proposition.

A natural way to consider default reasoning is to
compare the arguments for and against some propo-
sition. Poole [1989a] shows how membership in all
extensions can be seen as a process of dialectics. A
goal is in all extensions if and only if there is a set
of explanations for the proposition such that there is
no scenario inconsistent with all of the explanations.
This can be modelled at two agents having an argu-
ment; one agent finds arguments for the goal and the
other agent tries to find a scenario in which all of the
first agent’s arguments fall down [Poole, 1989a].

In the example of section 3, given Tweety is a
bird, there is a very short argument that Tweety flies
(namely because Tweety is a bird and “birds fly”).
There is a long convoluted argument saying Tweety
does not fly (namely by assuming other normalities of
birds which eliminates all other possible types of birds
Tweety can be, except for the non-flying ones).

It seems reasonable to view reasoning as a process
of evaluating logical arguments (or more precisely the
premises of logical arguments), and preferring more
direct (in some sense) arguments. There is one con-
sequence of this way to view the lottery paradox. We
end up with a direct argument that Tweety flies. We
end up with all of the other direct arguments about
Tweety. The problem is the conjunction of these as-
sumptions is inconsistent. Although we would pre-
dict a number of consequences of our knowledge, we



may not want to predict the conjunction of these con-
sequences. This is exactly the lottery paradox. We
predict any particular lottery ticket is not going to
win. When we conjoin many such predictions prob-
lems arise.

One of the reasons the lottery paradox example
1s so persuasive is because of our intuitions about
wanting to prefer more specific knowledge [Touret-
zky, 1986, Thomason and Horty, 1988, Poole, 1985,
Geffner, 1988]. One intuition behind specificity is ex-
actly the one step default property (we prefer the one
step default that emu’s don’t fly over the longer ar-
gument that emus are birds and birds fly). If this is
so, any method that compares extensions or models
(without regard to the question being asked) is not
going to be the basis for a model of default reasoning
incorporating specificity. Either it says “yes” to the
conjunction of the predictions (which is inconsistent,
and so would predict something known to be false), or
it says “no” to flies(Tweety), and so must find very
circuitous arguments to defeat the direct implication
(which seems antithetical to the notion of preferring
more specific knowledge).

This 1dea of solving specificity problems by com-
paring logical arguments is pursued further in [Poole,

1989b)].

7 Conclusion

Rather than suggesting we give up on logic when we
find the default reasoning formalisms do not give the
answers | would like, I have argued that we need to
reconsider the phenomena we are trying to formalise.
The way the lottery paradox can easily arise shows the
fragility of current default reasoning systems. I believe
the right solution is to consider the role of dialectics;
we must compare arguments for and against proposi-
tions. However, for logicists to defeat the arguments
that probability theory is the appropriate framework
in which to view this will not be easy. We both need
to understand the problems we are trying to solve.
The other moral of this paper is that we must build
systems to see how our reasoning systems work in prac-
tice. The instance of the lottery paradox was found
while using our Theorist implementation [Poole et. al.,
1987]. No one understands what other problems will
arise when we start to solve non-trivial problems.
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