Appendix: Lemmas and Proofs

Proposition 1. Let M be an OGBN and S be a maximal
well-defined conjunction of variable assignments. For any
variable X ¢ vars(S), S = —~dom(X).

Proof. Assume the statement were not true. Let X ¢ vars(S)
be the first variable such that Sy [~ ~dom(Xy). Let D =
vars(dom(Xy)) \ vars(S). We could find an assignment D to
the variables in D such that S A D A X, = x; is well-defined,
and so S were not maximal. O

Lemma 1. Let M be an OGBN with the total ordering
Xi,..., Xy of variables, and M™ be the corresponding EBN.

Let St = X;rr(l) =X A --/\X;“(k) = Xz (k) be a conjunction

of variable assignments. If there exists some X; Test such
that St = dom(X;)" and ST = X" = L, then PM+(8+)

Proof. Tt suffices to show that for any full conjunction &/ full
such that S}, = ST, Prg+(Shy) = 0.

By the construction of the EBN, Py (X" = L |
SEPa(X*)}) 0, where S{P )} denotes the part of S}, in-

volving the variables in Pa(X;"). The chain rule for belief
networks thus gives

Pri+ (Shun) HPM+ S{X}|5{Pax+)}) 0.

O

Definition 7. A conjunction S of variable assignments de-
fined in an OGBN M is realistic if for any variable X; €
vars(S), M.Ont [ S<; — —~dom(X;).

Realistic conjunctions are exactly those that may have pos-
itive probabilities in an OGBN. A (maximal) well-defined
conjunction can be constructed from a realistic conjunction
by adding variable assignments to it. It is also clear that any
well-defined conjunction is also realistic.

Lemma 2. Let M be an OGBN with the total ordering
X1, ..., X, of variables, and M™ be the corresponding EBN.
Let 8T = X;(l) =Xg() N\ AX;F(I{) = Xg(x) be a conjunction
of variable assignments and S be the conjunction such that
SEX =xiff ST ):X+ =x; and x; # L. If S is not realistic,
then Py+(ST) =

Proof. 1t suffices to show that for any full conjunction S},
such that S,y = S, Prg+ (Shy) = 0.
Let X, € vars(S) be the first variable such that M.Ont =

S<u — —dom(X,)). By the construction of the EBN,

Py (X5 =x, | Sipa(x;r)}) = 0. The chain rule for belief net-

works then gives P+ (S}.u”) =0. 0

Corollary 1. Let M be an OGBN with the total ordering
Xi,..., Xy of variables, and M™ be the corresponding EBN.
Let S be a maximal well-defined conjunction of variable as-
signments, and SJTMH be the full conjunction such that Xl?L is

assigned the value as X; if X; € vars(S) and L otherwise.
Ppg+(8T) = Pag (Sfun)-

Proof. The probability of ST in M™ can be computed as

Py (ST = Y Py (St
S}'ull ):S+
where S}MH is any full conjunction of variables assignments

that entails ST. By Proposition 1 and Lemma 2 since S
is maximal, P+ (S}u”) =0 for any S u” e fu” Thus,

PM+(S+):PM+(S};,¢H)' D

Lemma 3. Let M be an OGBN and M™ be the correspond-
ing EBN. Let S = ch(l) = Xr(1) AR /\an(k) = Xz (k) be a
maximal well-defined conjunction of variable assignments.
Pr(S) = Ppy+(ST).

Proof. Pap(S) is computed as

SIe

where ¢z ;) is the parent context for X(;) such that S E C(i)
Similarly for the corresponding extended belief network

i) = Xn(i) |C7'L' )

Py (S :ZPM+(8+/\S/) (1)
fZHPMJr 1 =X | (S+/\Sl){Pa X* ) )
S/ '7

—HPM+

where S’ is any conjunction that assigns a value to every
variable not assigned in ST. Equation 3 follows because,

: + —
by construction, P+ (X 20) = ) | (8T /\S’){Pa(X;(i))}) =

i) = Xr(i) |C )): 3)

PM+(X;(1.) = X0 | €} ), and the variables in S’ are all
summed out.

We have the correspondence P(Xz(iy = Xz(i) | Cr(i)) =
P+ (X;() = X0y | ¢} () between M and M+, and S0
Pr(S) = PM+(5+) O

Proof of Theorem 1. Let M™ be the corresponding EBN of
M. Consider a maximal well-defined conjunction S of vari-
able a551gnments By Corollary 1 and Lemma 3, Pp(S) =

PM+(Sfu”) where Sf ;; is as defined in Corollary 1. By
Lemma 1 and Lemma 2, any other full conjunction in M™
has probability 0. Since /\/l+ is known to represent a coher-
ent probability distribution, it follows that M also encodes a
coherent probability distribution. [

Validity of 3Q-INFERENCE

We first show that an OGBN M and its corresponding EBN
M encode the same probabilities over all realistic (thus, in-
cluding well-defined) conjunctions of variable assignments.
The conjunctions that are not realistic are irrelevant and not
specified in the OGBN.

Proof of Theorem 2. The probability of S can be calculated

as
Z PM (Smax)7
Simax ):S



where Sy, s any maximal well-defined conjunction that en-
tails S. Similarly, the probability of ST is

Py ()= Y Pu (St
S}ull':‘s‘Jr

where S%,, is any full conjunction that entails S*.
By Corollary 1 and Lemma 3, for any Sy, Pat(Spax) =
P+ (S;{ull), where Sftdl is the full conjunction in M* such

that X;" is assigned the value as X; if X; € vars(Syax) and L
otherwise. By Lemma 1 and Lemma 2, all other full conjunc-
tions in M™ have probability 0. Hence, the desired equality
follows. O

Corollary 2. Let M be an OGBN and M™ be the corre-
sponding EBN. Consider any two conjunctions of variable
assignments, S| and S, such that Sy is realistic, Sy \S» is
realistic, and Py (S1) > 0. Pp(S2 | Si) = Pay+ (S | S)).

Proof. Elementary probability theory gives

Pri+ (S NS
Pace (7 | 57) = 2B 250
1

By Theorem 2, Py((Si) = P+ (Sy) and Pp(Si1ASy) =
P+ (S ASS). The desired result follows. O

Corollary 3. Let M be an OGBN and M™ be the corre-
sponding EBN. Consider any variable Q and well-defined ev-
idence & such that € |= dom(Q) and Py (E) > 0. P (Q =
q| &) =Py (Q" =q|ET) forany q# L, and Py (Q" =
L]EM)=0.

Proof. Since £ = dom(Q), the conjunction £ A Q = q is re-
alistic. By Corollary 2, P(Q =¢q | £) = P+ (0T =g |
ET). Because Py(Q | €) is a probability distribution over
range(Q), it follows that Py+ (QT = L | ET) =0. O

We proceed to show other simple identities that hold in the
corresponding EBN M ™.

Proposition 2. Let M be an OGBN and M™ be the cor-
responding extended belief network. For any variable Q
and well-defined evidence & such that £ |= —~dom(Q) and
Pu(E)>0,Py+(QT=1|ET) =1

Proof. Consider any ¢ # L. By Lemma 2, Py+ (ETAQT =
q) = 0 since £ A Q = ¢ is not realistic. It follows that

PM+(8+) = ZPM+(E+/\Q+ :V)
=Py+(ETANQT =1).
This result gives

PM+(5+ AQT = 1)
Pp+(ET)

Py (QF =167 =
=1.
O

An immediate consequence of Proposition 2 is that, when
EE—~dom(Q), P\+(QT =¢q|ET)=0forany g # L.

Lemma 4. Let M be an OGBN and M™ be the correspond-
ing EBN. For any variable Q and well-defined evidence £
such that € W= —dom(Q) and Py (E) > 0, Py (0T =¢q |
ET) = Ppg+ (dom(Q)T NQT =q | EY) forany g # L.

Proof. 1t suffices to show that Py (—~dom(Q)" ANQT =q |
ET)=0forany g # 1.
If &€ dom(Q), it is an immediate result that
Pr+ (mdom(Q)t AQT =¢q | ET) = 0. Otherwise,
Pucs (~dom(@)" 10" =a €
Py (ET A—dom(Q)T ANOT =q)
N Pp(EF)

By Theorem 2, P+ (ET A —=dom(Q)" A Q' = ¢q) =0, and
the result follows. O

Lemma 5. Let M be an OGBN and M™ be the corre-
sponding EBN. For any variable Q and well-defined evi-
dence & such that Ppm(E) >0, Py (QT =L | ET)=1—
P+ (dom(Q)T | ET).

Proof. If £ = dom(Q), then P+ (dom(Q)" | £ET) =1, and
by Corollary 3, P+ (QT =L | ET) =0.
If £ = —~dom(Q), then P+ (dom(Q)* | £T) =0, and by
Proposition 2, Py+ (QT =L | ET) =1.
Otherwise, £ = dom(Q) and & = ~dom(Q).
Py+(QF=11€&") (4)

=Y P (QT =L ETAS ) x Py (ST 1EY) ()
S+

=Y Pyt (QF =L[ETAS ) x P (S'| EF) (6)
S/

=Y Py (S8']€) (7
S/

=P+ (~dom(Q)T | E£T) (8)

=1 - Py (dom(Q)" | EF), 9)

where ST is any conjunction of variable assignments such
that vars(S*) = vars(dom(Q)™) \ vars(£T), and &’ is any
8™ such that ET AST = —~dom(Q)*. Equation 6 follows
because, by Corollary 3, Py (QT = L | EFAST) =0 for
any ST such that E* AST |= dom(Q)™; Equation 7 follows
since, by Proposition 2, Py (QT = L | ETAS’) = 1. (Note
that £ AS™ includes all variables in vars(dom(Q) ™), and so
ETANST Edom(Q)T & ETAST = —~dom(Q)™.) O

We now apply the previous results to prove the validity
of the inference scheme 3Q-INFERENCE by showing that
any query results in identical posterior probabilities with an
OGBN and with its corresponding EBN.

Proof of Theorem 3. We prove by considering the three dis-
tinct cases.

Case 1: M.Ont | € — —dom(Q). 3Q-INFERENCE spec-
ifies P(Q" = L | £) = 1. By Proposition 2, Py+ (0" = L |
EN=1.

Case 2: M.Ont =& — dom(Q). 3Q-INFERENCE spec-
ifies, forany ¢ # L, P(QT =¢q | &) =Pu(Q=gq| &) and



P(Q" =11]&)=0. By Corollary 3, forany g # |, P\ (Q" =
gl EN) =P+ (0t =¢q|ET)andthus P+ (QT =L |ET) =

=)

Case 3: M.Ont = & — —dom(Q) and M.Ont = € —
dom(Q). 3Q-INFERENCE specifies P(QT = 1L |&£) =1—
Pu(dom(Q) | €) and, for any ¢ # L, P(QT =q | &) =
Paidom(0) | £) x Paur(Q = q | dom(Q) NE).

By Corollary 2 and Lemma 5,

1= Pa(dom(Q) | €) = 1 — Py (dom(Q)* | £7)
=Py (QT =L]&Y).

Since dom(Q) A € is well-defined, Corollary 3 gives
Prm(Q = q | dom(Q) NE) = P+ (QF = q | dom(Q)" NET)
for any g # L. Together with Corollary 2, it follows that

Pri(dom(Q) | €) x Pm(Q = q | dom(Q) \E)
=Py (dom(Q)T | EY) x Py (QT =g | dom(Q)T ANET)
= Ppg+ (dom(Q) AQT =¢q | ET)
=Py (07 =¢q| &),
where the final equality follows from Lemma 4. O

We show that inference algorithms for belief networks can
be used for OGBNSs to compute the correct probabilities.

Theorem 4. Let M™ be an OGBN. Suppose we treated
the graph structure and CPDs of M™ as for a regular be-
lief network (i.e., ignoring whether the variables are well-
defined and the missing possible value “undefined”), called
M. Let S be a well-defined conjunction for M™, Pyy(S) =
P./\/l+ (Smax)-

Proof. Since the probability of S is the sum of the probabili-
ties of all maximal well-defined conjunctions that entail S, it
suffices to show that Pyy (Spax) = Pag+ (Simax) for any maxi-
mal well-defined conjunction Sy,4y.

Let Sax = Xn’(l) = Xz(1) AREE /\an(k) = X (k)- Py (Smax)
can be computed by summing the probabilities of all full con-
junctions that entail S,,4y, or equivalently, by “summing out”
variables not in vars(Spqx):

PM’ (Smax) (10)
= Y Pu(Smu) (11)
{xj€range(X;):
Xj¢vars(Smax)}
= Y JIPvw&i=xilc) (12)
{xj€range(X;): i=1
Xj¢vars(Smax) }
k
=[1Pw Xz = x20) | cxi)) X [P (X5 =x; | ¢))
=l i
13)
=P+ (Smax)- (14)

where ¢; is the parent context for X; such that Sy, = ¢;.
Equation 13 follows since, by construction, ¢y ;) does not in-
volve any X; ¢ vars(Suqx) (even if X; is a parent variable of
Xn(i))- Equation 14 follows since the exact same conditional
probabilities are used. O

This essentially means that, although M’ can encode arbi-
trary probabilities for conjunctions that are not well-defined,
we can still apply any belief network algorithm to an OGBN
in 3Q-INFERENCE, as we only make probabilistic queries
that are well defined by the ontology. Note that this is not
true even for realistic conjunctions because for M’, unlike
how M is defined, the probability of a realistic conjunction
is not just the sum of the probabilities of all maximal well-
defined conjunctions that entail it.



