
Appendix: Lemmas and Proofs
Proposition 1. Let M be an OGBN and S be a maximal
well-defined conjunction of variable assignments. For any
variable X /∈ vars(S), S |= ¬dom(X).

Proof. Assume the statement were not true. Let Xk /∈ vars(S)
be the first variable such that S<k 6|= ¬dom(Xk). Let D =
vars(dom(Xk))\ vars(S). We could find an assignment D to
the variables in D such that S ∧D∧Xk = xk is well-defined,
and so S were not maximal.

Lemma 1. Let M be an OGBN with the total ordering
X1, . . . ,Xn of variables, andM+ be the corresponding EBN.
Let S+ ≡ X+

π(1) = xπ(1)∧ ·· ·∧X+
π(k) = xπ(k) be a conjunction

of variable assignments. If there exists some X+
i ∈ S+ such

that S+ |= dom(Xi)
+ and S+ |=X+

i =⊥, then PM+(S+) = 0.

Proof. It suffices to show that for any full conjunction S ′f ull
such that S ′f ull |= S+, PM+(S ′f ull) = 0.

By the construction of the EBN, PM+(X+
i = ⊥ |

S ′{Pa(X+
i )}) = 0, where S ′{Pa(X+

i )} denotes the part of S ′f ull in-

volving the variables in Pa(X+
i ). The chain rule for belief

networks thus gives

PM+(S ′f ull) =
n

∏
j=1

PM+(S ′{X j} | S
′
{Pa(X+

j )}) = 0.

Definition 7. A conjunction S of variable assignments de-
fined in an OGBN M is realistic if for any variable Xi ∈
vars(S),M.Ont 6|= S<i→¬dom(Xi).

Realistic conjunctions are exactly those that may have pos-
itive probabilities in an OGBN. A (maximal) well-defined
conjunction can be constructed from a realistic conjunction
by adding variable assignments to it. It is also clear that any
well-defined conjunction is also realistic.

Lemma 2. Let M be an OGBN with the total ordering
X1, . . . ,Xn of variables, andM+ be the corresponding EBN.
Let S+ ≡ X+

π(1) = xπ(1)∧ ·· ·∧X+
π(k) = xπ(k) be a conjunction

of variable assignments and S be the conjunction such that
S |= Xi = xi iff S+ |= X+

i = xi and xi 6=⊥. If S is not realistic,
then PM+(S+) = 0.

Proof. It suffices to show that for any full conjunction S ′f ull
such that S ′f ull |= S+, PM+(S ′f ull) = 0.

Let Xu ∈ vars(S) be the first variable such thatM.Ont |=
S<u → ¬dom(Xu)). By the construction of the EBN,
PM+(X+

u = xu | S ′{Pa(X+
u )}) = 0. The chain rule for belief net-

works then gives PM+(S ′f ull) = 0.

Corollary 1. Let M be an OGBN with the total ordering
X1, . . . ,Xn of variables, andM+ be the corresponding EBN.
Let S be a maximal well-defined conjunction of variable as-
signments, and S+f ull be the full conjunction such that X+

i is
assigned the value as Xi if Xi ∈ vars(S) and ⊥ otherwise.
PM+(S+) = PM+(S+f ull).

Proof. The probability of S+ inM+ can be computed as

PM+(S+) = ∑
S ′f ull |=S+

PM+(S ′f ull),

where S ′f ull is any full conjunction of variables assignments
that entails S+. By Proposition 1 and Lemma 2, since S
is maximal, PM+(S ′f ull) = 0 for any S ′f ull 6≡ S

+
f ull . Thus,

PM+(S+) = PM+(S+f ull).

Lemma 3. LetM be an OGBN andM+ be the correspond-
ing EBN. Let S ≡ Xπ(1) = xπ(1) ∧ ·· · ∧ Xπ(k) = xπ(k) be a
maximal well-defined conjunction of variable assignments.
PM(S) = PM+(S+).

Proof. PM(S) is computed as

PM(S) =
k

∏
i=1

PM(Xπ(i) = xπ(i) | cπ(i)),

where cπ(i) is the parent context for Xπ(i) such that S |= cπ(i).
Similarly for the corresponding extended belief network,

PM+(S+) = ∑
S ′

PM+(S+∧S ′) (1)

= ∑
S ′

n

∏
j=1

PM+(X+
1 = x1 | (S+∧S ′){Pa(X+

j )}) (2)

=
k

∏
i=1

PM+(X+
π(i) = xπ(i) | c+π(i)), (3)

where S ′ is any conjunction that assigns a value to every
variable not assigned in S+. Equation 3 follows because,
by construction, PM+(X+

π(i) = xπ(i) | (S+ ∧S ′){Pa(X+
π(i))}

) =

PM+(X+
π(i) = xπ(i) | c+

π(i)), and the variables in S ′ are all
summed out.

We have the correspondence P(Xπ(i) = xπ(i) | cπ(i)) =

PM+(X+
π(i) = xπ(i) | c+

π(i)) between M and M+, and so
PM(S) = PM+(S+).

Proof of Theorem 1. Let M+ be the corresponding EBN of
M. Consider a maximal well-defined conjunction S of vari-
able assignments. By Corollary 1 and Lemma 3, PM(S) =
PM+(S+f ull), where S+f ull is as defined in Corollary 1. By
Lemma 1 and Lemma 2, any other full conjunction in M+

has probability 0. SinceM+ is known to represent a coher-
ent probability distribution, it follows thatM also encodes a
coherent probability distribution.

Validity of 3Q-INFERENCE
We first show that an OGBNM and its corresponding EBN
M+ encode the same probabilities over all realistic (thus, in-
cluding well-defined) conjunctions of variable assignments.
The conjunctions that are not realistic are irrelevant and not
specified in the OGBN.

Proof of Theorem 2. The probability of S can be calculated
as

PM(S) = ∑
Smax|=S

PM(Smax),



where Smax is any maximal well-defined conjunction that en-
tails S. Similarly, the probability of S+ is

PM+(S+) = ∑
S ′f ull |=S+

PM+(S ′f ull),

where S ′f ull is any full conjunction that entails S+.
By Corollary 1 and Lemma 3, for any Smax, PM(Smax) =

PM+(S+f ull), where S+f ull is the full conjunction inM+ such
that X+

i is assigned the value as Xi if Xi ∈ vars(Smax) and ⊥
otherwise. By Lemma 1 and Lemma 2, all other full conjunc-
tions inM+ have probability 0. Hence, the desired equality
follows.

Corollary 2. Let M be an OGBN and M+ be the corre-
sponding EBN. Consider any two conjunctions of variable
assignments, S1 and S2, such that S1 is realistic, S1 ∧S2 is
realistic, and PM(S1)> 0. PM(S2 | S1) = PM+(S+2 | S

+
1 ).

Proof. Elementary probability theory gives

PM+(S+2 | S
+
1 ) =

PM+(S+1 ∧S
+
2 )

PM+(S+1 )
.

By Theorem 2, PM(S1) = PM+(S+1 ) and PM(S1 ∧ S2) =
PM+(S+1 ∧S

+
2 ). The desired result follows.

Corollary 3. Let M be an OGBN and M+ be the corre-
sponding EBN. Consider any variable Q and well-defined ev-
idence E such that E |= dom(Q) and PM(E) > 0. PM(Q =
q | E) = PM+(Q+ = q | E+) for any q 6= ⊥, and PM+(Q+ =
⊥ | E+) = 0.

Proof. Since E |= dom(Q), the conjunction E ∧Q = q is re-
alistic. By Corollary 2, PM(Q = q | E) = PM+(Q+ = q |
E+). Because PM(Q | E) is a probability distribution over
range(Q), it follows that PM+(Q+ =⊥ | E+) = 0.

We proceed to show other simple identities that hold in the
corresponding EBNM+.
Proposition 2. Let M be an OGBN and M+ be the cor-
responding extended belief network. For any variable Q
and well-defined evidence E such that E |= ¬dom(Q) and
PM(E)> 0, PM+(Q+ =⊥ | E+) = 1.

Proof. Consider any q 6=⊥. By Lemma 2, PM+(E+∧Q+ =
q) = 0 since E ∧Q = q is not realistic. It follows that

PM+(E+) = ∑
v

PM+(E+∧Q+ = v)

= PM+(E+∧Q+ =⊥).

This result gives

PM+(Q+ =⊥ | E+) = PM+(E+∧Q+ =⊥)
PM+(E+)

= 1.

An immediate consequence of Proposition 2 is that, when
E |= ¬dom(Q), PM+(Q+ = q | E+) = 0 for any q 6=⊥.

Lemma 4. LetM be an OGBN andM+ be the correspond-
ing EBN. For any variable Q and well-defined evidence E
such that E 6|= ¬dom(Q) and PM(E) > 0, PM+(Q+ = q |
E+) = PM+(dom(Q)+∧Q+ = q | E+) for any q 6=⊥.

Proof. It suffices to show that PM+(¬dom(Q)+ ∧Q+ = q |
E+) = 0 for any q 6=⊥.

If E |= dom(Q), it is an immediate result that
PM+(¬dom(Q)+∧Q+ = q | E+) = 0. Otherwise,

PM+(¬dom(Q)+∧Q+ = q | E+)

=
PM+(E+∧¬dom(Q)+∧Q+ = q)

PM+(E+)
.

By Theorem 2, PM+(E+ ∧¬dom(Q)+ ∧Q+ = q) = 0, and
the result follows.

Lemma 5. Let M be an OGBN and M+ be the corre-
sponding EBN. For any variable Q and well-defined evi-
dence E such that PM(E) > 0, PM+(Q+ = ⊥ | E+) = 1−
PM+(dom(Q)+ | E+).

Proof. If E |= dom(Q), then PM+(dom(Q)+ | E+) = 1, and
by Corollary 3, PM+(Q+ =⊥ | E+) = 0.

If E |= ¬dom(Q), then PM+(dom(Q)+ | E+) = 0, and by
Proposition 2, PM+(Q+ =⊥ | E+) = 1.

Otherwise, E 6|= dom(Q) and E 6|= ¬dom(Q).

PM+(Q+ =⊥ | E+) (4)

= ∑
S+

PM+(Q+ =⊥ | E+∧S+)×PM+(S+ | E+) (5)

= ∑
S ′

PM+(Q+ =⊥ | E+∧S ′)×PM+(S ′ | E+) (6)

= ∑
S ′

PM+(S ′ | E) (7)

= PM+(¬dom(Q)+ | E+) (8)

= 1−PM+(dom(Q)+ | E+), (9)

where S+ is any conjunction of variable assignments such
that vars(S+) = vars(dom(Q)+) \ vars(E+), and S ′ is any
S+ such that E+ ∧ S+ |= ¬dom(Q)+. Equation 6 follows
because, by Corollary 3, PM+(Q+ = ⊥ | E+ ∧S+) = 0 for
any S+ such that E+ ∧S+ |= dom(Q)+; Equation 7 follows
since, by Proposition 2, PM+(Q+ =⊥ | E+∧S ′) = 1. (Note
that E+∧S+ includes all variables in vars(dom(Q)+), and so
E+∧S+ 6|= dom(Q)+⇔E+∧S+ |= ¬dom(Q)+.)

We now apply the previous results to prove the validity
of the inference scheme 3Q-INFERENCE by showing that
any query results in identical posterior probabilities with an
OGBN and with its corresponding EBN.

Proof of Theorem 3. We prove by considering the three dis-
tinct cases.

Case 1: M.Ont |= E → ¬dom(Q). 3Q-INFERENCE spec-
ifies P(Q+ = ⊥ | E) = 1. By Proposition 2, PM+(Q+ = ⊥ |
E+) = 1.

Case 2: M.Ont |= E → dom(Q). 3Q-INFERENCE spec-
ifies, for any q 6= ⊥, P(Q+ = q | E) = PM(Q = q | E) and



P(Q+ =⊥ | E)= 0. By Corollary 3, for any q 6=⊥, PM(Q+ =
q | E+) = PM+(Q+ = q | E+) and thus PM+(Q+ =⊥ | E+) =
0.

Case 3: M.Ont 6|= E → ¬dom(Q) and M.Ont 6|= E →
dom(Q). 3Q-INFERENCE specifies P(Q+ = ⊥ | E) = 1−
PM(dom(Q) | E) and, for any q 6= ⊥, P(Q+ = q | E) =
PM(dom(Q) | E)×PM(Q = q | dom(Q)∧E).

By Corollary 2 and Lemma 5,

1−PM(dom(Q) | E) = 1−PM+(dom(Q)+ | E+)
= PM+(Q+ =⊥ | E+).

Since dom(Q) ∧ E is well-defined, Corollary 3 gives
PM(Q = q | dom(Q)∧E) = PM+(Q+ = q | dom(Q)+ ∧E+)
for any q 6=⊥. Together with Corollary 2, it follows that

PM(dom(Q) | E)×PM(Q = q | dom(Q)∧E)
= PM+(dom(Q)+ | E+)×PM+(Q+ = q | dom(Q)+∧E+)
= PM+(dom(Q)+∧Q+ = q | E+)
= PM+(Q+ = q | E+),

where the final equality follows from Lemma 4.

We show that inference algorithms for belief networks can
be used for OGBNs to compute the correct probabilities.
Theorem 4. Let M+ be an OGBN. Suppose we treated
the graph structure and CPDs of M+ as for a regular be-
lief network (i.e., ignoring whether the variables are well-
defined and the missing possible value “undefined”), called
M′. Let S be a well-defined conjunction forM+, PM′(S) =
PM+(Smax).

Proof. Since the probability of S is the sum of the probabili-
ties of all maximal well-defined conjunctions that entail S, it
suffices to show that PM′(Smax) = PM+(Smax) for any maxi-
mal well-defined conjunction Smax.

Let Smax ≡ Xπ(1) = xπ(1) ∧ ·· · ∧Xπ(k) = xπ(k). PM′(Smax)
can be computed by summing the probabilities of all full con-
junctions that entail Smax, or equivalently, by “summing out”
variables not in vars(Smax):

PM′(Smax) (10)

= ∑
{x j∈range(X j):
X j /∈vars(Smax)}

PM′(S f ull) (11)

= ∑
{x j∈range(X j):
X j /∈vars(Smax)}

n

∏
i=1

PM′(Xi = xi | ci) (12)

=
k

∏
i=1

PM′(Xπ(i) = xπ(i) | cπ(i)) ∑
{x j}

∏
j

PM′(X j = x j | c j)

(13)
= PM+(Smax). (14)

where ci is the parent context for Xi such that S f ull |= ci.
Equation 13 follows since, by construction, cπ(i) does not in-
volve any X j /∈ vars(Smax) (even if X j is a parent variable of
Xπ(i)). Equation 14 follows since the exact same conditional
probabilities are used.

This essentially means that, althoughM′ can encode arbi-
trary probabilities for conjunctions that are not well-defined,
we can still apply any belief network algorithm to an OGBN
in 3Q-INFERENCE, as we only make probabilistic queries
that are well defined by the ontology. Note that this is not
true even for realistic conjunctions because for M′, unlike
how M is defined, the probability of a realistic conjunction
is not just the sum of the probabilities of all maximal well-
defined conjunctions that entail it.


