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Abstract

In this chapter I review Bayesian statistics as used for induction

and relate it to logic�based abduction� Much reasoning under un�

certainty� including induction� is based on Bayes� rule� Bayes� rule

is interesting precisely because it provides a mechanism for abduc�

tion� I review work of Buntine that argues that much of the work

on Bayesian learning can be best viewed in terms of graphical models

such as Bayesian networks� and review previous work of Poole that re�

lates Bayesian networks to logic�based abduction� This lets us see how

much of the work on induction can be viewed in terms of logic�based

abduction� I then explore what this means for extending logic�based

abduction to richer representations� such as learning decision trees

with probabilities at the leaves� Much of this paper is tutorial in na�

ture� both the probabilistic and logic�based notions of abduction and

induction are introduced and motivated�

� Introduction

This paper explores the relationship between learning �induction� and ab	
duction� I take what can be called the Bayesian view� where all uncertainty
is re
ected in probabilities� In this paper I argue that� not only can ab	
duction be used for induction� but that most current learning techniques
�from statistical learning to neural networks to decision trees to inductive
logic programming to unsupervised learning� can be best viewed in terms of
abduction�
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��� Causal and Evidential Modelling and Reasoning

In order to understand abduction and its role in reasoning� it is important
to understand ways to model� as well as ways to reason� In this section
we consider reasoning strategies independently of learning� and return to
learning in Section ����

Many reasoning problems can be best understood as evidential reasoning
tasks�

De�nition ��� An evidential reasoning task is where some parts of a
system are observed and you want to make inferences about other �hidden�
parts�

Example ��� The problem of diagnosis is an evidential reasoning task�
Given observations about the symptoms of a patient or artifact� we want to
determine what is going on inside the system to produce those symptoms�

Example ��� The problem of perception �including vision� is an eviden	
tial reasoning task� In the world the scene produces the image� but the
problem of vision is� given an image� determine what is in the scene�

Evidential reasoning tasks are often of the form where there is a cause	e�ect
relationship between the parts� In diagnosis we can think of the disease
causing the symptoms� In vision we can think of the scene causing the image�
By causation�� I mean that di�erent diseases can result in di�erent symptoms
�but changing the symptoms doesn�t a�ect the disease� and di�erent scenes
can result in di�erent images �but manipulating an image doesn�t a�ect the
scene��

There are a number of di�erent ways of modelling such a causal domain

causal modelling where we model the function from causes to e�ects� For
example� we can model how diseases or faults manifest their symptoms�
We can model how scenes produce images�

evidential modelling where we model the function from e�ects to causes�
For example we can model the mapping from symptoms to diseases� or
from image to scene�

�See http���singapore�cs�ucla�edu�LECTURE�lecture sec��htm for a fascinating
lecture by Judea Pearl on causation�
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Figure � Causal and evidential reasoning

Independently of these two modelling strategies� we can consider two reason	
ing tasks

Evidential Reasoning given an observation of the e�ects� determine the
causes� For example� determine the disease from the symptoms� or the
scene from the image�

Causal Reasoning given some cause� make a prediction of the e�ects� For
example� predicting symptoms or prognoses from a disease� or predict	
ing an image from a scene� This is often called simulation�

In particular� much reasoning consists of evidential reasoning followed by
causal reasoning �see Figure ��� For example� a doctor may observe a patient�
determine possible diseases� then make predictions of other symptoms or
prognoses� This then can feedback to making the doctor look for the presence
or absence of these symptoms� forming the cycle of perception ����� Similarly�
a robot can observe its world� determine what is where� and act on its beliefs�
leading to further observations�

There are a number of combinations of modelling and reasoning strategies
that have been proposed

� The simplest strategy is to do evidential modelling and only evidential
reasoning� Examples of this are neural networks ���� and old	fashioned
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expert systems such as Mycin ���� A neural network for character recog	
nition may be able to recognise an �A� from a bitmap� but could not
say what an �A� looks like� In Mycin there are rules leading from
the symptoms to the diseases� but the system can�t tell you what the
symptoms of some disease are�

� The second strategy is to model both causally and evidentially and to
use the causal model for causal reasoning and the evidential model for
evidential reasoning� The main problem with this is the redundancy
of the knowledge� and its associated problem of consistency� although
there are techniques for automatically inferring the evidential model
from the causal model for limited cases ���� �� ��� ���� Pearl ���� has
pointed out how naive representations of evidential and causal knowl	
edge can lead to problems�

� The third strategy is to model causally and use di�erent reasoning
strategies for causal and evidential reasoning� For causal reasoning we
can directly use the causal model� and for evidential reasoning we can
use abduction�

This leads to an abstract formulation of abduction that will include both
logical and probabilistic formulations of abduction

De�nition ��� Abduction is the use of a model in its opposite direction�
That is� if a model speci�es how x gives a y� abduction lets us infer x from
y� Abduction is usually evidential reasoning from a causal model��

If we have a model of how causes produce e�ects� abduction lets us infer
causes from e�ects� Abduction depends on an implicit assumption of com	
plete knowledge of possible causes ��� ���� when an e�ect is observed� one of
its causes must be present�

��� Learning as an evidential reasoning task

In this section we explore learning as an evidential reasoning task� Given a
task� a prior belief or bias� and some data� the learning task is to produce

�Neither the standard logical de�nition of abduction nor the probabilistic version of
abduction �presented below� prescribe that the given knowledge is causal� It shouldn�t be
surprising that the formal de�nitions don�t depend on the knowledge base being causal
as the causal relationship is a modelling assumption� We don�t want the logic to impose
arbitrary restrictions on modelling�
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an updated theory of the data �the posterior belief� that can be used in the
task�

In order to make this clear� we must be very careful to distinguish

� the task being learned

� the task of learning itself�

This distinction is very important when the task being learned is also an evi	
dential reasoning task �e�g�� learning to do diagnosis� or learning a perceptual
task��

The task of learning can be seen as an evidential reasoning task where
the model �causes� the data� The aim of learning is given the data� to �nd
appropriate models �evidential reasoning�� and from the model�s� to make
prediction on unseen cases �causal reasoning��

When we look at learning as an evidential reasoning task� not surpris	
ingly� we �nd learning methods that correspond to the two strategies that
allow causal and evidential reasoning �the second and third strategies of the
previous section��

The second strategy of the previous section is to build special	purpose
reasoning strategies to carry out the evidential reasoning task �i�e�� inferring
the model from the data� that is separate from the causal reasoning task
�predicting new data from the model�� Examples of such special purpose
mechanisms are decision	tree learning algorithms such as C��� ���� and CART
���� and backpropagation for neural network learning �����

The rest of this paper will show how the third strategy of the previous
section� namely causal modelling and using di�erent strategies for causal and
evidential reasoning� can be used for learning� and can be carried out with
both logical and probabilistic speci�cations of abductive reasoning� Such a
strategy implies that we need a speci�cation of the models to be learned and
what these models predict in order to build a learning algorithm�

� Bayesian Probability

In this section we introduce and motivate probability theory independently
of learning� The interpretation of probability theory we use here is called
Bayesian� personal� or subjective probability� as opposed to the frequentist in	
terpretation of probability as the study of the frequency of repeatable events�
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Probability theory ���� is a study of belief update� how an agent�s knowl	
edge a�ects its beliefs� An agent�s probability of a proposition is a measure
of how much the proposition is believed by the agent� Rather than consider	
ing an agent maintaining one coherent set of beliefs �for example� the most
plausible way the world could be based on the agent�s knowledge�� Bayesian
probability speci�es that an agent must consider all possible ways that the
world could be and their relative plausibilities� This plausibility when nor	
malised to the range ����� so that the values for all possible situations sum
to one is called a probability�

There are a number of reasons why we would be interested in probability�
including

� An agent can only act according to its beliefs and its goals� An agent
doesn�t have access to everything that is true in its domain� but only to
its beliefs� An agent must somehow be able to decide on actions based
on its beliefs�

� It is not enough for an agent to have just a single model of the world in
which it is interacting and act on that model� It also needs to consider
what other alternatives may be true� and make sure that its actions are
not too disastrous if these other contingencies happen to arise�

A classic example is wearing a seat belt� an agent may assume that
it won�t have an accident on a particular trip� but wears a seat belt
to cover the possibility that it does have an accident� Under normal
circumstances� the seat belt is a slight nuisance� but if there is an
accident� the agent is much better o� when it is wearing a seat belt�
Whether the agent wears a seat belt depends on how inconvenient it is
when there is no accident� how much better o� the agent would be if
they were wearing a seat belt when there is an accident� and how likely
an accident is� This tradeo� between various outcomes� their relative
desirability� and their likelihood is the subject of decision theory�

� As we will see below� probabilities are what can be obtained from data�
Probability lets us explicitly model noise in data� and lets us update
our beliefs based on noisy data�

The formalisation of probability theory is simple�
A random variable is a term in a language that can take one of a

number of di�erent values� The set of all possible values a variable can take
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is called the domain of the variable� We write x � v to mean the proposition
that variable x has value v� A Boolean random variable is one where the
domain is ftrue� falseg� Often we write x rather than x � true and �x
rather than x � false� A proposition is a Boolean formula made from
assignments of values to variables�

Some example random variables may be a patient�s blood pressure at
���p�m� on July ��� ����� the value of the Australian dollar relative to
the Canadian dollar on January �� ����� whether a patient has cancer at
a particular time� whether a light is lit at some time point� or whether a
particular coin lands heads on a particular toss�

There is nothing random about random variables� We introduce them
because it is often useful to be able to refer to a variable without specifying
its value�

Suppose we have a set of random variables� A possible world speci�es
an assignment of one value to each random variable� If w is a world� x is a
random variable and v is a value in the domain of x� we write

w j� x � v

to mean that variable x is assigned value v in world w� We can allow Boolean
combinations on the right	hand side of j�� where the logical connectives have
their standard meaning� for example�

w j� � � � i� w j� � and w j� �

So far this is just standard logic� but using the terminology of random vari	
ables�

Let�s de�ne a nonnegative measure ��w� to each world w so that the mea	
sures of the possible worlds sum� to �� The use of � is purely by convention�
we could have just as easily used ���� for example�

The probability of proposition �� written P���� is the sum of the mea	
sures of the worlds in which � is true

P��� �
X
wj��

��w��

The most important part of Bayesian probability is conditioning on ob	
servations� The set of all observations is called the evidence� If you are

�When there are in�nitely many possible worlds� we need to use some form of measure
theory� so that the measure of all of the possible worlds is �� This requires us to assign
probabilities to measurable sets of worlds� but the general idea is essentially the same�
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given evidence e� conditioning means that all worlds in which e is false are
eliminated� and the remaining worlds are renormalised so that their prob	
abilities sum to �� This can be seen as creating a new measure �e de�ned
by

�e�w� �

�
� if w �j� e
��w��P�e� if w j� e

We can then de�ne the conditional probability of a given e� written P�aje�
in terms of the new measure

P�aje� �
X
wj��

�e�w��

Example ��� The probability P�sneeze � yesjcold � severe� speci�es� out
of all of the worlds where cold is severe� what proportion have sneeze with
value yes� It is the measure of belief in the proposition sneeze � yes given
that all you knew was that the cold was severe� The probability P�sneeze �
yesjcold �� severe� considers the other worlds where the cold isn�t severe�
and speci�es the proportion of these in which sneeze has value yes� This
second probability is independent of the �rst�

��� Bayes� Rule

Given the above semantic de�nition of conditioning� it is easy to prove

P�hje� �
P�h � e�

P�e�
�

Rewriting the above formula� and noticing that h� e is the same proposition
as e � h� we get

P�h � e� � P�hje��P�e�

� P�ejh��P�h�

We can divide the right hand sides by P�e�� giving

P�hje� �
P�ejh��P�h�

P�e�

if P�e� �� �� This equation is known as Bayes� theorem or Bayes� Rule�
It was �rst given in this generality by Laplace �����
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It may seem puzzling why such an innocuous looking equation should
be so celebrated� It is important because it tells us how to do evidential
reasoning from a causal knowledge base� Bayes� rule is an equation for

abduction� Suppose P�ejh� speci�es a causal model� it gives the propensity
of e�ect e in the context when h is true� Bayes� rule speci�es how to do
evidential reasoning� it tells us how to infer the cause h from the e�ect e�

The numerator is the product of the likelihood� P�ejh�� which speci�es
how well the hypothesis h predicts the evidence e� and the prior probabil	
ity� P�h�� that speci�es how much the hypothesis was believed before any
evidence arrived�

The denominator� P�e�� is a normalising constant to ensure that the prob	
abilities are well formed� If fh�� � � � � hkg are a set of pairwise incompatible
�hi and hj cannot both be true if i �� j� and covering �one hi must be true�
set of hypotheses� then

P�e� �
X
hi

P�ejhi��P�hi�

If you are only interested in comparing hypotheses this denominator can be
ignored�

��� Bayesian Learning

Bayesian learning� or Bayesian statistics ��� ��� ��� ��� is the method for
using Bayes� rule for evidential reasoning for the evidential reasoning task of
learning�

Bayes� rule is

P�hje� �
P�ejh��P�h�

P�e�
�

If e is the data �all of the training examples�� and h is a hypothesis� Bayes�
rule speci�es how� given the model of how the hypothesis h produces the
data e and the prior propensity of h� you can infer how likely the hypothesis
is� given the data�

One of the main reasons why this is of interest is that the hypotheses can
be noisy� an hypothesis can specify a probability distribution over the data it
predicts� Moreover� Bayes� rule allows us to compare those hypotheses that
predict the data exactly �where P�ejh� � �� amongst themselves and with
the hypotheses that specify any other probability of the data�
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Example ��� Suppose we are doing Bayesian learning of decision trees� and
are considering a number of de�nitive decision trees �i�e�� they predict clas	
si�cations with � or � probabilities� and thus have no room for noise�� For
each such decision tree h� either P�ejh� � � or P�ejh� � �� Bayes theorem
tells us that those that don�t predict the data have posterior probability ��
and those that predict the observed data have posterior probabilities pro	
portional to their priors� Thus the prior probability speci�es the learning
bias �for example� towards simpler decision trees�� out of all of the trees that
match the data� which are to be preferred� Without such a bias� there can be
no learning as every possible function can be represented as a decision tree�
Bayes rule also speci�es how to compare simpler decision trees that may not
exactly �t the data �e�g�� if they have probabilities at the leaves� with more
complex ones that exactly �t the data� This gives a principled way to handle
over�tting�

Example ��� The simplest form of Bayesian learning with probabilistic hy	
potheses is when there is a single binary event that is repeated and statistics
are collected� That is� we are trying to learn probabilities� Suppose we have
some object that can fall down such that either there is some distinguishing
feature �which we will call heads� showing on top� or there is not heads �which
we will call tails� showing on top� We would like to learn the probability that
there is a heads showing on top� Suppose our hypothesis space consists of
hypotheses that specify P�heads� � p where heads is the proposition that
says heads is on top� and p is a number that speci�es the probability of a
heads on top� Implicit in this hypothesis is that repeated tosses are indepen	
dent�� Suppose we have on observation e consisting of a particular sequence
of outcomes with n outcomes with heads true and out of m outcomes� Let
hp be the hypothesis that P�heads� � p for some � � p � �� Then we have�
by elementary probability theory�

P�ejhp� � pn��� p�m�n

Suppose that our prior probability is uniform on ������ That is� we consider
each value for P�heads� to be equally likely before we see any data�

Figure � shows the posterior distributions for various values of n and m�
Note that the only hypotheses that are inconsistent with the observations

�Bayesian probability doesn�t require independent trials� You can model the interde�
pendence of the trials in the hypothesis space�
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are P�heads� � � when n � � and P�heads� � � when m � �� Note that if
the prior isn�t very biased� it soon gets dominated by the data�

Bayesian learning has been applied to many representations including
decision trees ���� neural networks ����� Bayesian networks ����� and unsuper	
vised learning ���� All we need is a way to specify what a particular decision
tree� neural network� Bayesian network� or logic program predicts �this is well
de�ned by the de�nition of the representation�� as well as a prior probability
on the di�erent representations�

Prior probabilities may seem to be problematic� but are important for
avoiding over�tting� They give a principled way to do what would otherwise
have to be done by some ad hoc mechanism� such as pruning decision trees
or limiting the size of neural networks� For example� if there is noise in the
data� a more detailed decision tree can always be made to �t the data better�
but usually has worse predictive properties on unseen examples� A prior
probability on decision trees provides a bias that lets us tradeo� �tting the
training data with simplicity of the trees ����

Bayesian leaning is closely related to the minimum description length
�MDL� principle� If we were to choose the most likely hypothesis given the
data� �called the maximum a posteriori probability� or MAP� hypothesis�� we
can use

arg max
h

P�hje�

� arg max
h

P�ejh��P�h�

P�e�

� arg max
h

P�ejh��P�h�

� arg max
h

� log
�
P�ejh� �� log

�
P�h�

The latter is the number of bits it takes to describe the data in terms of the
model plus the number of bits it takes to describe the model� Thus the best
hypothesis is the one that gives the shortest description of the data in terms
of that model�

�We don�t have to do this� In particular� it is the posterior distribution of the hypotheses
that we want to use to make decisions� rather than the most likely hypothesis�
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� Bayesian Networks

Probability speci�es a semantic construction and not a representation of
knowledge� A Bayesian network ���� is a way to represent probabilistic knowl	
edge� The idea is to represent a domain in terms of random variables and to
explicitly model the interdependence of the random variables in terms of a
graph� This is useful when a random variable only depends on a few other
random variables� as occurs in many domains�

Suppose we decide to represent some domain using the random variables
x�� � � � � xn� If we totally order the variables� it is easy to prove that

P�x�� � � � � xn�

� P�x��P�x�jx��P�x�jx�� x�� � � �P�xnjx� � � � xn���

For each variable xi suppose there is some minimal set �xi
� fx�� � � � � xi��g

such that

P�xijx�� � � � � xi��� � P�xij�xi
�

That is� once you know the values of the variables in �xi
� knowing the values

of other predecessors of xi in the total ordering will not change your belief in
xi� The elements of the set �xi

are known as the parents of variable xi� We
say xi is conditionally independent of its predecessors given its parents�
We can create a graph where there is an arc from each parent of a node
into that node� Such a graph� together with the conditional probabilities for
P�xij�xi

� for each variable xi is known as a Bayesian network or a belief
network ���� ����

There are a few important points to notice about a Bayesian network

� By construction� the graph de�ning a Bayesian network is acyclic�

� Di�erent total orderings of the variables can result in di�erent Bayesian
networks for the same underlying distribution�

� The size of the conditional probability table P�xij�xi
� is exponential in

the number of parents of xi�

Typically we try to build Bayesian networks so that the total ordering implies
few parents and a sparse graph�

Bayesian networks are of interest because they can be constructed taking
into account just local information� the information that has to be speci�ed
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is reasonably intuitive� and there are many domains that have concise rep	
resentations as Bayesian networks� There are algorithms that can exploit
the sparseness of the graph for computational gain ���� �� ���� exploit the
skewness of distributions ���� or use the structure for stochastic simulation
���� ��� ���

� Bayesian learning and logic�based abduc�

tion

So far we have given an informal characterisation of Bayes� rule as a rule for
abduction� Poole ���� has shown a direct correspondence between Bayesian
networks and logic	based conceptions of abduction� Buntine ��� has shown
how Bayesian networks form a representation for many inductive learning
tasks� In this section we put these together to show how inductive learning
tasks can be related to logic	based abduction� In the following section� we
expand on this mapping to discuss some of the issues of this book relating
abduction and induction�

��� Logic Programs� Abduction and Bayesian Networks

This section overviews the relationship between Bayesian networks and logic	
based abduction ����� In particular� I give the translation of Bayesian net	
works into probabilistic Horn abduction ����� a form of probabilistic logic
programs�

Suppose variable a has parents b�� � � � � bk in a Bayesian network� As part
of the Bayesian network are probabilities of the form

P�a � vjb� � v�� � � � � bk � vk� � p

These can be translated into rules of the form

a � v 	 b� � v� � � � � � bk � vk � h� ���

which can be treated as normal logical rules where h is assumable�
In probabilistic Horn abduction �and its successor the independent choice

logic ����� which can handle more general rules� including negation as failure�
as well as di�erent agents choosing assumptions�� the assumables are struc	
tured in terms of a choice space� C� which is a set of alternatives �called
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disjoint sets in ������ where an alternative is a set of ground atoms� Each
member of an alternative is assumable and can only appear in one alterna	
tive� The integrity constraints are that the elements of an alternative are
pairwise inconsistent�

An independent choice logic theory is speci�ed by a choice space and an
acyclic logic program that doesn�t imply any element of an alternative� The
semantics is de�ned in terms of possible worlds� There is a possible world
for each selection of one element from each alternative� What is true in a
possible world is given by the stable model of the logic program and the
atoms selected� The logic is abductive in the sense that the explanations of g
form a concise speci�cation of the possible worlds in which g is true ���� ����

We place a probability over the assumables so that the probability of
the elements of an alternative sum to one� We assume that the di�erent
alternatives are probabilistically independent �the alternatives correspond to
random variables��

In term of representing the Bayesian network above� there is an alternative
for each assignment of values to the parents of a� For each such alternative�
there is an element of the alternative for each value of a� The probability
of the assumable h �from equation ���� is the same as the probability of the
corresponding conditional probability in the Bayesian network

P�h� � P�a � vjb� � v�� � � � � bk � vk�

The abductive characterisation of probabilistic Horn abduction is straight	
forward� For any proposition h� the probability of h can be computed from
the set of minimal explanations of h� The minimal explanations are disjoint
�by the way the rules were constructed�� and so the probability of h is the
sum of the probabilities of the minimal explanations for h� The probability
of an explanation is the product of the probabilities of the assumables� That
is

P�h� �
X

e is a minimal explanation of h

P�e�

where the probability for explanation e is given by

P�e� �
Y
n�e

P�n�

In ���� it was proved that the Bayesian network and the abductive charac	
terisation result in the same probabilities�
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Suppose we want to compute a probability given evidence� we have

P�hje� �
P�h � e�

P�e�

Thus this can be seen in terms of abduction as given evidence e� �rst explain
the evidence �this gives P�e��� and from the explanations of the evidence�
explain h �this gives P�h � e��� Note that the explanation of h � e are the
explanations of e extended to also explain h� In terms of a Bayesian network�
you can �rst go backwards along the arrows to explain the evidence� and
then go forward along the arrows to make predictions� Thus not only can
Bayes� rule be seen as a rule for abduction� but Bayesian networks can be
seen a representation for abduction� Note that this reasoning framework of
using abduction for evidential reasoning and assumption	based reasoning for
causal reasoning �see Figure ��� which is what the above analysis gives us for
Bayesian networks� has also been proposed in the default reasoning literature
���� ��� ����

The logic programs have a standard logical meaning and can be extended
to include �universally quanti�ed� logical variables� in the usual way� The
only di�erence to standard logic programs� is that some of the premises are
hypotheses that may have an associated probability�

��� Bayesian networks and induction

Buntine ��� argues that Bayesian networks �as well as related chain graphs�
form a good representation for many induction tasks� That is� he argued that
Bayesian networks can form a representation for the evidential reasoning task
of learning�

Note that this is very di�erent from the problem of learning Bayesian
networks themselves for which there are Bayesian and non	Bayesian tech	
niques �see ���� for a review of learning Bayesian networks�� Buntine was
using Bayesian networks to represent the task of learning� independently of
the task being learned�

�It is important not to confuse logical variables� which stand for individuals� and ran�
dom variables� In this paper� I will follow the Prolog convention of having logical variables
in upper case�

�In the independent choice logic �	�
� we can also have negation as failure in the rules�
The notion of abduction needs to be expanded to allow abduction through the negation
�	�
�
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Figure � Bayesian network for coin tossing� with and without plates

Buntine used the notion of plates which were repeated copies of a network�

Example ��� Figure � shows a Bayesian network for the coin tossing of
Example ���� The probability of heads on example i� which in the left	hand
side of Figure � is shown as headsi� is a random variable that depends only
on �� the probability of heads appearing on a coin toss� The right	hand side
of Figure � shows the same network using plates� where there is one copy of
the boxed node for each example�

Given the logic	programming characterisation of Bayesian networks� we
can use universally quanti�ed logical variables in the rules to represent the
plates of Buntine�

Example ��� Let�s write the example of Figure � in terms of probabilistic
Horn abduction� First we can represent each arc to an example as the rule

heads�E�	 happens to turn heads�E�P � � prob of heads�P �

tails�E�	 happens to turn tails�E�P �� prob of heads�P �

where heads�E� is true if example E shows a heads� and tails�E� is true if
example E shows a tails�

The corresponding alternatives are


E
Pfhappens to turn heads�E�P �� happens to turn heads�E�P �g � C

That is� we can assume that example E turns heads or assume it turns tails�
We then have the probabilities

P�happens to turn heads�E�P �� � P

��



P�happens to turn tails�E�P �� � �� P

We also have the alternative that corresponds to the � in Figure �

fprob of heads�P �  � � P � �g � C

That is you can assume any single probability in the range ��� ���
Suppose you have example e�� � � � � ek� and have observed say

heads�e��� tails�e��� tails�e��� � � �

The explanations of this observation are of the form

fhappens to turn heads�e�� P �� happens to turn tails�e�� P ��

happens to turn tails�e�� P �� � � � �

prob of heads�P �g

for each P � ��� ��� Suppose there were n heads and m tails in the k � n�m
examples� then the probability of this explanation is

P n � �� � P �m � q

where q is P�prob of heads�P ���

� Combining induction and abduction

In terms of abduction� the basic idea of this model of induction is to have some
assumptions that are speci�c to each example� and some assumptions that
are speci�c to the model being learned� For each example� you make some
model	speci�c assumptions and some example	speci�c assumptions �that also
depend on the model assumptions�� When explaining a number of examples�
they each have their own example	speci�c assumptions� but must share the
model assumptions�

Buntine ��� has shown how many di�erent learning algorithms from neural
networks to unsupervised learning can be put into this framework�

��



��� Learning decision trees

In this section we will sketch how the same framework can be used for more
complicated examples� where the models must be constructed� rather than
having a �xed number of parameters to be estimated� Here the 
exibility of
representation in terms of logic	based abduction can be seen to have great
advantages over the use of plates ����

Let�s look at the same framework for Bayesian learning of decision trees
with probabilities at the leaves	 ���� To keep this simple let�s suppose that
all attributes are Boolean�

We use the relation prop�Ex�Att� V al� that is true when example Ex has
value V al on attribute Att� Suppose a decision tree is either a number or is
of the form if�C� Y T�NT � where C is an attribute Y T and NT are trees�

We need to write rules that specify the value of the classi�cation based
on the tree

prop�Ex� classification� V �	 tree�T �� tree predicts�T�Ex� V ��

It is straightforward to de�ne what a tree predicts

tree predicts�if�C� Y esT�NoT �� Ex� V �	

prop�Ex�C� true� �

tree predicts�Y esT�Ex� V ��

tree predicts�if�C� Y esT�NoT �� Ex� V �	

prop�Ex�C� false� �

tree predicts�NoT�Ex� V ��

tree predicts�N�Ex� V �	

number�N� �

predicts prob�Ex�N� V ��

where


Ex
Nfpredicts prob�Ex�N� true�� predicts prob�Ex�N� false�g � C

such that

P�predicts prob�Ex�N� true�� � N

P�predicts prob�Ex�N� false�� � � �N

�Note that when these decision trees are translated into rules� probabilistic Horn ab�
duction theories result� But here we are using probabilistic Horn abduction to represent
the learning task� not the task being learned�

��



Similarly we need ways to abduce what the trees are� and �the more di�cult�
problem of assigning the priors on the decision trees�

The most likely explanation of a set of classi�cations on examples results
in the most likely decision tree given those examples�

��� Generalization

It has often been thought that probability is unsuitable for generalization as
the generalization 
X r�X� must have a lower probability than any set of
examples r�e��� � � � � r�ek�� as the generalization implies the examples� While
the statement of probability is correct� it is misleading because it is not
the hypothesis and the evidence that we want to compare but the di�erent
hypotheses�
�

The di�erent hypotheses may be� for example

�� r�X� is always true�

�� r�X� is sometimes true �and it just happened to be true for examples
e�� � � � � ek��

�� r�X� is always false�

This can be represented as having the alternatives

fr always true� r sometimes true� r always falseg � C


Xfr happens true�X�� r happens false�X�g � C

with some probabilities associated with the assumables� and the rules

r�X�	 r always true�

r�X�	 r sometimes true � r happens true�X��

For any set of �all positive� observations r�e��� � � � � r�ek�� there are two com	
peting explanations

fr always trueg

fr sometimes true� r happens true�e��� � � � � r happens true�ek�g

�	It is interesting to note that in the abductive framework the hypothesis always implies
the evidence� and so it is always less likely� But this is exactly what we want from learning�
we want the learned hypothesis to make risky prediction� that could be wrong� on unseen
data�

��



If there are no extreme �� or �� probabilities� with enough positive examples�
the conclusion that r is always true will be the most likely hypothesis� Thus
we can make universal generalizations within this framework�

� Conclusion

This paper has related the Bayesian approach to learning with logic	based ab	
duction� In particular� I have sketched the the relationship between Bayesian
leaning and the graphical models of Buntine ��� and the relationship between
graphical models and abductive logic programming of Poole ����� It should
be emphasised that� while each of the links has been developed� the chain has
not been fully investigated� This paper should be seen as a starting point�
rather than a survey of mature work�
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