
Representing diagnostic knowledge for probabilistic Horn abduction

David Poole
Department of Computer Science,
University of British Columbia,

Vancouver, B.C., Canada V6T 1Z2
poole@cs.ubc.ca

Abstract

This paper presents a simple logical framework for ab-
duction, with probabilities associated with hypotheses.
The language is an extension to pure Prolog, and it
has straight-forward implementations using branch and
bound search with either logic-programming technology
or ATMS technology. The main focus of this paper is
arguing for a form of representational adequacy of this
very simple system for diagnostic reasoning. It is shown
how it can represent model-based knowledge, with and
without faults, and with and without non-intermittency
assumptions. It is also shown how this representation
can represent any probabilistic knowledge representable
in a Bayesian belief network.

1 Introduction

Determining what is in a system from observations (di-
agnosis and recognition) are an important part of AI.
There have been many logic-based proposals of what a
diagnosis is [Reiter, 1987; de Kleer and Williams, 1987;
Poole, 1989; de Kleer et al., 1990]. One problem with
these proposals is that for any problem of a reasonable
size there are far too many “logical possibilities” to han-
dle (for a human or a computer). For example, when
considering fault models [de Kleer and Williams, 1989;
Poole, 1989], there is almost always an exponential num-
ber of logical possibilities (e.g., each component could be
in its normal state or in the abnormal unknown state).
For practical problems, we find that many of the log-
ically possible diagnoses are so unlikely that it is not
worth considering them. There is a problem, however,
in removing the unlikely possibilities a priori: it may
happen that the unlikely occurrence is the actual truth
in the world.

Such analysis of the combinatorial explosions would
tend to suggest that we need to take into account prob-
abilities of the diagnoses [de Kleer and Williams, 1987;
Peng and Reggia, 1990; Neufeld and Poole, 1987], and
not generate the unlikely diagnoses. Similar experi-
ence has been found in natural language understanding
[Hobbs et al., 1988; Goldman and Charniak, 1988].

Probabilistic models of diagnostic reasoning [Pearl,
1988; Heckerman and Horvitz, 1990; Andreassen et al.,
1987], being purely propositional by nature, do not
have the modelling power of the logic-based models.
This paper points to one direction in which probabilis-
tic diagnostic frameworks can be extended to a non-
propositional form.

This paper presents a very simple form of abduction,
where the background knowledge is Horn, and the as-
sumptions are atomic. Associated with hypotheses are
probabilities. The main features of the approach are:

• We are trying to carry out a empirical study of auto-
mated reasoning. In order to carry this out we try
to determine where very simple frameworks work
and fail. The best way to show that we need cer-
tain features is to try to do without them. It is in
this spirit that we try to use the simplest frame-
work that seems plausible, and only add features
when they can be demonstrated to be needed.

• We are trying to get a good compromise between
representational (epistemic) adequacy and proce-
dural (heuristic) adequacy [McCarthy and Hayes,
1969].

• As a prima facie case for representational adequacy,
we note that the language incorporates pure Pro-
log as a special case, and also an ATMS1 [Reiter
and de Kleer, 1987], and the language can repre-
sent any probabilistic information that can be rep-
resented in a Bayes net [Pearl, 1988] (see section 4).
We also demonstrate representational adequacy by
showing how some common diagnostic representa-
tional problems can be represented in this frame-
work. The representational adequacy can only be
verified empirically, and we are currently trying to
test the framework on a variety of problems.

• It is straight forward to implemented using either
logic programming [Poole, 1991] or ATMS [de Kleer,

1Note that we are using the assumption based framework
as the object language and not as a book keeping mechanism
for a problem solver.



1986] technology. In this paper we use a specifi-
cation of what is to be implemented that is inde-
pendent of the actual implementation strategy used.
Once we have the specification of what it is we want
to compute, we can then compare different imple-
mentation strategies to determine which is more ef-
ficient in space and/or time.

In all of the implementations, we do not generate the
unlikely explanations unless we need to. Hopefully
we can cut down on the combinatorial explosions
that are inherent in considering the set of all logi-
cally possible explanations, but this is beyond the
scope of this paper.

2 The System

2.1 Abductive Framework

The formulation of abduction used is in terms of Theorist
[Poole et al., 1987; Poole, 1988a].

Given a language L, and a consequence relation (writ-
ten |=) on L, and an abductive scheme is a pair 〈F,H〉
where F and H are sets of sentences in L.

Definition 2.1 [Poole et al., 1987; Poole, 1988a] If g is
a ground formula, an explanation of g from 〈F,H〉 is a
set D ⊆ H such that

• F ∪D |= obs and

• F ∪D 6|= ⊥

where ⊥ is an atom representing false. The first condi-
tion says that, D is a sufficient cause for obs, and the
second says that D is possible (i.e., F ∪D is consistent).

Definition 2.2 A minimal explanation of g is an ex-
planation of g such that no strict subset is also an ex-
planation.

Associated with each minimal explanation D, is a
measure µ(D) [Neufeld and Poole, 1987]. This measure
could be an assumption cost that is added [Hobbs et al.,
1988], but in this paper we investigate the use of proba-
bility as a measure over explanations.

2.2 Probabilistic Horn abduction

In probabilistic Horn abduction we restrict the language
L to be Horn clauses.

We use the normal Prolog definition of an atomic sym-
bol [Lloyd, 1987]. A Horn clause is of the form:

a.

a ← a1 ∧ ... ∧ an.

false ← a1 ∧ ... ∧ an.

where a and each ai are atomic symbols. false is a special

atomic symbol that is not true in any interpretation2.
All variables in F are assumed universally quantified.

We restrict the elements of H to be ground instances
of atoms. If we are given a set of open atoms as possible
hypotheses we mean the the set of ground instances of
these atoms.

2.3 Probabilities

The measure we use is the probability of the explanation.
Associated with each possible hypothesis (i.e., with

each ground instance of an open possible hypothesis) is
a prior probability. The aim is to compute the posterior
probability of the explanations given the observations.
Abduction gives us what we want to compute the prob-
ability of and probability theory gives a measure over
the explanations [Neufeld and Poole, 1987].

We use the declaration

assumable(h, p).

where h can contain free variables, to mean each ground
instance of h is in H with prior probability p.

To compute the posterior probability of an explana-
tionH = {h1, ..., hn} given observation obs, we use Bayes
rule and the fact that P (obs|H) = 1 as the explanation
logically implies the observation:

P (H|obs) =
P (obs|H)× P (H)

P (obs)

=
P (H)
P (obs)

The value, P (obs) is the prior probability of the obser-
vation, and is a constant factor for all explanations. We
compute the prior probability of the conjunction of the
hypotheses using:

P (h1 ∧ ... ∧ hn−1 ∧ hn) = P (hn|h1 ∧ ... ∧ hn−1)
×P (h1 ∧ ... ∧ hn−1)

The value of P (h1 ∧ ... ∧ hn−1) forms a recursive call,
with P (true) = 1. The only other thing that we need to
compute is

P (hn|h1 ∧ ... ∧ hn−1)

The first thing to notice is that if hn is inconsistent with
the other hypotheses, then its probability is zero. These
are exactly the cases that are removed by the incon-
sistency check. Similarly if hn is implied be the other
hypotheses, its probability is one. This will never be the
case if the explanations are minimal. While any method
can be used to compute this conditional probability, the

2Notice that we are using Horn clauses differently from
how Prolog uses Horn clauses. In Prolog, the database con-
sists of definite clauses, and the queries provide the negative
clauses [Lloyd, 1987]. Here the database consists of definite
and negative clauses, and we build a constructive proof of an
observation.



assumption of conditional independence is often an ap-
propriate assumption in many domains [de Kleer and
Williams, 1987; Peng and Reggia, 1990]. We make this
assumption here and in later sections we show how to al-
low arbitrary probabilistic interactions, without chang-
ing the underlying system. The system uses the following
assumption:

Assumption 2.3 Logically independent instances of
hypotheses are probabilistically independent.

Definition 2.4 A set H of hypotheses are logically in-
dependent (given F ) if there is no S ⊂ H and h ∈ H\S
such that

F ∪ S |= h or F ∪ S |= ¬h

The assumptions in a minimal explanation are always
logically independent. Minimality ensures that no hy-
pothesis in an explanation can be implied by other hy-
potheses in the explanation. Consistency ensures the
negation of a hypothesis cannot be implied by other hy-
potheses.

Under assumption 2.3, if {h1, ..., hn} are part of a min-
imal explanation, then

P (hn|h1 ∧ ... ∧ hn−1) = P (hn)

thus

P (h1 ∧ ... ∧ hn) =
n∏

1=1

P (hi)

To compute the prior of the explanation we multiply the
priors of the hypotheses. The posterior probability of
the explanation is proportional to this.

One problem that arises is in determining the value of
P (obs).

When using abduction we often assume that the di-
agnoses are covering. This can be a valid assumption
if we have anticipated all eventualities, and the observa-
tions are within the domain of the expected observations
(usually if this assumption is violated there are no ex-
planations). This is also supported by recent attempts
at a completion semantics for abduction [Poole, 1988b;
Console et al., 1989; Konolige, 1990]. The results show
how abduction can be considered as deduction on the
“closure” of the knowledge base that includes statements
that the given causes are the only causes. The closure
implies the observation are logically equivalent to the
disjunct of its explanations. We make this assumption
explicit here:

Assumption 2.5 The diagnoses are covering.

For the probabilistic calculation we make an additional
assumption:

Assumption 2.6 The diagnoses are disjoint (mutually
exclusive).

It turns out to be straightforward to ensure that these
properties hold, for observations that we can anticipate3.
We make sure that the rules for each possible subgoal are
disjoint and covering (see section 3.1).

Under these assumptions, if {e1, ..., en} is the set of all
explanations of obs:

P (obs) = P (e1 ∨ e2 ∨ ... ∨ en)
= P (e1) + P (e2) + ...+ P (en)

2.4 Implementation

The very simple definition of the framework makes im-
plementation straight forward (although some difficult
problems do arise in trying to make it very efficient).
We are currently experimenting with implementations
based on Logic programming technology and based on
ATMS technology (similar to [de Kleer and Williams,
1989]). Both implementations keep a priority queue of
sets of hypotheses that could be extended into explana-
tions (“partial explanations”). At any time the set of all
the explanations is the set of already generated expla-
nations, plus those explanations that can be generated
from the partial explanations in the priority queue. It
is possible to put a bound on the probability mass in
the queue, and this allows us to estimate errors on the
results before the computation is completed (forming an
“anytime” algorithm). See [Poole, 1992] for details.

The difference between these two represents a differ-
ence between “interpreted” and “compiled” approaches
[Reiter and de Kleer, 1987]. As far as the rest of the
paper is concerned, it is irrelevant as to how the system
is implemented. Given a specification of what it is we
want to compute we can now experiment with trade-offs
between various implementation strategies.

Note that the problem is NP-complete [Provan, 1988],
thus we are never going to expect efficient polynomial
worst-case algorithms. The best we can expect is good
average-case behaviour; but this is, of course, what we
are interested in.

3 Representational Methodology

Once we have a tool, it is important to know how to
use it. The problem of a representational methodology
[Poole, 1990] is an important and much overlooked part
of automated reasoning research.

It may seem that the assumptions used in designing
the system were so restrictive that the system would be
useless for real problems. In this section, I argue that
this is not the case.

3.1 Disjoint and Covering Explanations

For our probabilistic analysis (section 2.3), we assumed
that the explanations were disjoint and covering. If we

3Like other systems (e.g., [Pearl, 1988]), we have to as-
sume that unanticipated observations are irrelevant.



want our probabilities to be correct4, we must ensure
that the explanations are disjoint and covering.

If the rules for an atom a are not covering, we
can invent another cause for the goal representing “all
the other possible causes” of the atom [de Kleer and
Williams, 1989; Poole, 1989], and add

a← some other reason for a.
assumable(some other reason for a, p).

Where p is the prior probability that something else
would have caused a.

We can locally ensure that any explanations gener-
ated are disjoint. The following proposition can be easily
proved:

Proposition 3.1 If for any two rules with the same con-
sequent (a ← b1, and a ← b2), the antecedents are in-
consistent (F |= b1 ∧ b2 ⇒ false), then the minimal
explanation are disjoint.

Although disjointedness of explanations places a re-
striction on the knowledge base, it does not place a re-
striction on the sorts of knowledge that we can represent.
In general, if we have rules

a ← b1.

...
a ← bn.

these can be made disjoint by adding hypotheses
h1, ..., hn to the rules

a ← h1 ∧ b1.
...

a ← hn ∧ bn.

and making sure these rules are disjoint by having, for
each different i and j, the fact

false ← hi ∧ hj .

We need to associate a probability with each hypoth-
esis such that

∑
i P (hi) = 1. This probability represents

the probability that the particular body was “the cause”
for a.

Sometimes we can make the rules naturally disjoint,
by ordering the rules and making sure that the bodies of
rules are false if the bodies of previous rules are true.

Example 3.2 Suppose we want to represent an “and-
gate” that should have value 0 if either of the inputs are
zero. Suppose we represent the proposition that port

4It may be the case that they are “good enough” for any
decisions that we may want to make, even though they are
not accurate.

G has output V at time T as val(G,V, T ). We can en-
sure that the explanations are disjoint locally by ensur-
ing that only one body can ever be true:

val(out(G), 0, T ) ← and gate(G) ∧ ok(G)
∧val(input(1, G), 0, T ).

val(out(G), 0, T ) ← and gate(G) ∧ ok(G)
∧val(input(1, G), 1, T )
∧val(input(2, G), 0, T ).

val(out(G), 1, T ) ← and gate(G) ∧ ok(G)
∧val(input(1, G), 1, T )
∧val(input(2, G), 1, T ).

This has repercussions in biasing the most likely ex-
planation to the first rule which is more general than
the others. To make it more fair the first rule could
be split into two cases depending on the value of in-
put 2. This problem of the most likely diagnosis de-
pending on the representation seems endemic to ap-
proaches that try to find the diagnosis (either explana-
tion or interpretation) that is “most likely” [Pearl, 1988;
Poole and Provan, 1990].

3.2 Parametrizing Hypotheses

The next important part of the methodology for ab-
duction concerns parametrizing possible hypotheses and
the interaction with the independence assumption. I
have argued elsewhere [Poole, 1989; Poole, 1990] that
there is much power obtainable and subtlety involved in
parametrizing hypotheses appropriately.In this section
we expand on previous analysis [Poole, 1990], and show
how probabilities affect parametrization considerations
by considering some case studies on different proposals.

3.2.1 Hypotheses with indeterminate output

As an example, suppose we have a gate G that takes
two values as input, and outputs a value that can be in
the range 1 to n. Suppose we want to represent the gate
being in an unknown state (this is applicable whether or
not we have fault models [de Kleer and Williams, 1989;
Poole, 1989]). Suppose we represent the proposition that
gate G has output V at time T as val(G,V, T ).

We cannot representing the hypothesis that the gate
is in the unknown state by using the hypothesis u(G)
and the fact

val(out(G), V, T )← u(G).

The problem is that the above fact states that a gate in
the unknown state produces all values of output, rather
than saying that it produces some output. Knowing a
gate is in an unknown state does not imply any value for
the output.

When there are no probabilities involved [Poole, 1990;
Poole, 1989] we parametrize the hypothesis by the values



on which it depends. This could be done by having the
hypothesis produces(G,V, T ) and the rule

val(out(G), V, T )← produces(G,V, T ).

We would say that a port has only one value at a time
by having the constraint

false← val(P, V1, T ) ∧ val(P, V2, T ) ∧ V1 6= V2

Suppose we know that gate g1 has probability ε of
being in the unknown state. If we assume that each
possible output value has equal chance, and that there
are n possible output values, then the prior probability
that it produces output value V is ε/n.

assumable(u(g1, V, T ),
ε

n
)

When we have more than one observation, there is
another problem. For the probabilities we assumed that
the hypotheses were independent. We would not expect
that

P (u(g1, 1, t2)|u(g1, 1, t1)) = P (u(g1, 1, t2))

Once we know that the gate is in an unknown state at
time t1 it should not be so unlikely that it is in an un-
known state at time t2. Put another way, once we have
paid the price once for assuming that the gate is in an
unknown state at time t1 we should not pay the price
again for assuming that it is in an unknown state at
time t2.

To work in general, we need a mixture of the above two
ideas. Suppose a gate G has probability of ε of being in
the unknown state, and that there are n possible output
values, each of which has an equal prior chance of being
produced by a gate in the unknown state. This can be
represented as the hypotheses

assumable(u(G), ε)
assumable(produces(G,V, T ), 1

n )

and the rule

val(out(G), V, T )← u(G) ∧ produces(G,V, T ).

u(G) means G is in the unknown state, and
produces(G,V, T ) means that given gate G is broken,
it produces value V at time T . We assume once that
the gate is broken, and then make other assumptions of
what values it is producing at different times.

It is interesting to note that this analysis of dividing
by n can be done when building the knowledge base and
does not need to be carried out dynamically (as [de Kleer
and Williams, 1989] seem to need to do ). This means
that distributions other than the uniform distribution
can be given if appropriate.

3.2.2 Intermittent versus non-intermittent
faults

Because of the way we parametrized the hypotheses,
the above representation of faults says that the out-
put is only a function of the time. The hypothesis
prod(G,V, T ) and the above rules places no constraints
on the values of the outputs at different times. This is
a way to represent the fact that the gate can have an
intermittent fault (it depends only on the time of ob-
servation). There is no constraint that says the gate
produces the same output when given the same inputs
at different times.

We can give the non-intermittency assumption by say-
ing that the fault only depends on the input and not
on the time. This can be done instead by having the
hypothesis prod(G,V, I1, I2) (meaning gate G produces
output V when given I1 and I2 as input) and a rule

val(out(G), V, T ) ← u(G) ∧ prod(G,V, I1, I2)
∧val(input(1, G), I1, T )
∧val(input(2, G), I2, T ).

With the same integrity constraint as before, it is in-
consistent to assume that the gate has different outputs
for the same input.

3.3 Causation events

When using abduction we run into the problem of a cause
not actually implying a symptom. For example, having
a cold does not imply sneezing, but could cause sneezing.
To implement this idea we introduce another hypothesis
that the cold caused the sneezing. This idea is analogous
to the notion of a “causation event” of Peng and Reggia
[1990].

To implement the causation events, we can use
the relations has disease(D) to mean that the pa-
tient has disease D; actually causes(D,M) to mean
that disease D “actually caused” manifestation M ; and
has manifestation(M) to mean that the patient has
manifestation M .

We can say that a manifestation is caused by the dis-
ease that actually causes it by:

has manifestation(M) ← has disease(D)
∧actually causes(D,M).

We can use the rule to say that there is only one actual
cause of a manifestation by:

false ← actually causes(D1,M)
∧actually causes(D2,M)
∧different(D1, D2).

This rule ensures that the explanations for having a
manifestation are disjoint.

The conjunction

has disease(D) ∧ actually causes(D,M)



corresponds to Peng and Reggia [1990]’s causation event
M : D. The completion semantics of abduction [Poole,
1988b; Console et al., 1989; Konolige, 1990] show that,
under the covering explanation assumption, we implic-
itly have the relationship

manifestation(M) ≡
∨

j( has disease(Dj)
∧actually causes(Dj ,M))

We have the possible hypothesis

assumable(actually causes(di,mj), pij)

where pij is the “conditional causal probability” (“causal
strength”) of [Peng and Reggia, 1990]. It can be seen
as the fraction of the cases of di being true that mj is
actually caused by di.

We also have the possible hypotheses

assumable(has disease(di), pi)

where pi is the prior probability of the disease di.

4 Representing Bayesian networks

In this section we give the relationship between Bayesian
networks and our probabilistic abduction. The analysis
here is, in some sense, the dual of the analysis given by
Charniak and Shimony [1990]. We show how any proba-
bilistic knowledge that can be represented in a Bayesian
network, can be represented in our formalism.

Suppose we have a Bayes net with random variables
a1, ..., an, such that random variable ai can have values
vi,1, ..., vi,ni . We will represent random variable ai hav-
ing value vi,j as the proposition ai(vi,j).

The first thing we need to do is to state that the values
of variables are mutually exclusive. For each i and for
each j, k such that j 6= k, we have the rule

false← ai(vi,j) ∧ ai(vi,k)

A Bayes net [Pearl, 1988] is a directed acyclic network
where the nodes represent random variables, and the arcs
represent a directly influencing relation. Terminal nodes
of a Bayes net are those variables that do not influence
any other variables. A composite belief [Pearl, 1987] is
an assignment of a value to every random variable.

Suppose variable a is directly influenced by variables
b1, ..., bm in a Bayes network. This can represented in
our system by the rule:

a(V )← b1(V1) ∧ ... ∧ bm(Vm) ∧ caused a(V, V1, ..., Vm)

Here the intended interpretation of

caused a(V, V1, ..., Vm)

is that a has value V because b1 has value V1,..., and bm
has value Vm.

Associated with the Bayes net is a contingency table
[Pearl, 1988] which gives the marginal probabilities of the
values of a depending on the values of b1, ..., bm. This
will consist of probabilities of the form

P (a = v|b1 = v1, ..., bm = vm) = p

This is translated into the assertion

assumable(caused a(v, v1, v2, ..., vm), p).

The following propositions can be proved [Poole,
1992]:

Lemma 4.1 The minimal explanations of the terminal
variables having particular values correspond to the com-
posite beliefs in the Bayes net with the terminals having
those values. The priors for the explanations and the
composite beliefs are identical.

As the same procedure can be used to get from the
priors of composite hypotheses and explanations to the
posteriors given some observations, the following theo-
rem is a direct corollary of lemma 4.1.

Theorem 4.2 If the observed variables include all ter-
minal variables, the composite beliefs with the observed
variables having particular values correspond exactly to
the explanations of the observations, and with the same
posterior probability.

If the observed variables do not include all terminal
values, we need to decide what it is that we want the
probability of [Poole and Provan, 1990]. If we want to
commit to the value of all variables, as in the composite
belief of Pearl [1988], then we consider the set of possible
observations that include assigning values to terminal
nodes. That is, if o was our observation that did not not
include observing a value for variables ai, then we need
to consider the observations o ∧ ai(vi,1), ..., o ∧ ai(vi,ni

).
To find the accurate probabilities we need to normalise
over the sum of all of the explanations. Whether or not
we want to do this is debatable.

It is not only the probability of a composite hypothesis
that has a characterisation in terms of explanations.

Let expl(a) be the set of minimal explanations of
proposition a. Define

M(a) =
∑

E∈expl(a)

P (E)

Lemma 4.3 IfH is a set of assignments to variables in a
Bayesian Network, and H ′ is the analogous propositions
to H in the corresponding probabilistic Horn abduction
system, then

P (H) =M(H ′)

A simple corollary of the above lemma can be used
to determine the posterior probability of a hypothesis
based on some observations:



Theorem 4.4

P (xi(vi)|obs) =
M(obs ∧ xi(vi))
M(obs)

The denominator can be obtained by finding the ex-
planations of the observations (or can be approximated
by finding some of the explanations that cover some
proposition of the probability mass). The numerators
can be obtained by explaining xi(vi) from these expla-
nations (see [Poole, 1991]).

What is important about the comparison with the
Bayes net is that any probability distribution that can
be represented as a Bayes net can be represented using
the probabilistic Horn abduction. The opposite is not
the case, however, because our Horn abduction is not
restricted to a propositional language.

5 Comparison with other diagnostic
systems

The closest work to that presented here, namely the work
of de Kleer and Williams [1987; 1989] and Peng and Reg-
gia [1990], both incorporate probabilistic knowledge to
find the most likely diagnoses.

5.1 de Kleer and Williams

de Kleer and Williams [1987; 1989] have explored the
idea of using probabilistic information in consistency-
based diagnosis (see [Poole, 1988b; Poole, 1989; Console
et al., 1989; Konolige, 1990] for comparisons between
abductive and consistency-based diagnoses).

They differ from us in what they compute the prob-
ability of. de Kleer and Williams are finding the most
likely interpretations (this is the same as the diagnoses
of Peng and Reggia [1990] and the composite beliefs of
Pearl [1987], but is different to the kernel or minimal di-
agnoses of de Kleer, Mackworth and Reiter [1990]). We
are computing the most likely explanations; we want to
remain agnostic about the value of the irrelevant hy-
potheses. de Kleer and Williams cannot distinguish be-
tween the remaining diagnoses that differ in substantial
ways from the most likely interpretation, and those that
differ only in varying values that are irrelevant to the
diagnosis. In our system, hypotheses that are not part
of an explanation are ignored, and play no part in the
probability of a diagnosis.

We differ in the use of the assumption-based frame-
work. We are using the assumption-based reasoning,
with variables, as the object language. They use the
ATMS as a book keeping mechanism for their diagnostic
engine.

5.2 Peng and Reggia

Peng and Reggia [1990] also consider an abductive def-
inition of diagnosis and incorporate probabilities, and
best-first search. Like [de Kleer and Williams, 1989;

Pearl, 1987] they are trying to find probabilities of in-
terpretations. We also do not assume that the set of
manifestations is complete. The main difference, how-
ever, is in the underlying language. They use the notion
of “hyper-bipartite” graphs made up of causation rela-
tions on sets of manifestations (can be observed), dis-
orders (can be hypothesised), and pathological states.
We, however, allow the full power of Horn clauses. We
can represent the probabilistic knowledge of Peng and
Reggia (see section 3.3).

6 Conclusion

This paper presented a simple but powerful mechanism
for diagnostic reasoning and showed how it can be used
to solve diagnostic representation problems. One main
advantage of the simple specification of what we want
to compute is that we can investigate different imple-
mentation techniques to determine which works best in
practice.

One question that needs to be asked is whether a set
of most likely explanations is really what we want to
compute [Poole and Provan, 1990]. We conjecture that
for real problems, the probability mass of the most likely
explanations will be so close to one to make the question
moot. By ignoring the large number of very unlikely
explanations, we will not make many mistakes. Whether
this is true in practice remains to be seen.

We are also investigating the use of the abductive
framework for differential diagnoses, and for making de-
cisions, but that is beyond the scope of this paper.
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