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Abstract

This paper presents a simple logical framework for default rea-
soning. The semantics is normal first order model theory; instead
of changing the logic, the way in which the logic is used is changed.
Rather than expecting reasoning to be just deduction (in any logic)
from our knowledge, we examine the consequences of viewing reason-
ing as a very simple case of theory formation. By treating defaults as
predefined possible hypotheses we show how this idea subsumes the
intuition behind Reiter’s default logic. Solutions to multiple extension
problems are discussed. A prototype implementation, called Theorist,
executes all of the examples given.

1 Introduction

There are arguments that we need to have at least the first order predicate
calculus in any representation system that is capable of reasoning about indi-
viduals and relations amongst individuals [Hayes77, Moore82, Genesereth87].
There has, however, been a perceived problem with using traditional logic
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for commonsense reasoning, as it is monotonic (as we add new axioms to
a logic the set of logical consequences increases but people seem to re-
vise old opinions with new knowledge). There have been many proposals
for augmenting classical logic to allow it to do non-monotonic reasoning
[Reiter80, McDermott80, McCarthy86, Moore85].

If one accepts the importance of logic (and the importance of meaning
and semantics), there seems to be two approaches to solving this problem of
non-monotonicity:

1. The first is to claim that there is obviously something wrong with
(say) classical logic and so there is a need to define a new logic to han-
dle nonmonotonic reasoning (e.g., [Reiter80, McDermott80, Moore85,
Delgrande87]). If one was to follow this path, then one would define a
syntax, semantics and a proof procedure and have theorems of sound-
ness and completeness for this logic.

2. An alternative is to say that there is nothing wrong with classical logic;
we should not expect reasoning to be just deduction from our knowl-
edge. Circumscription [McCarthy86] can be seen in this light: defaults
are implicit assumptions; we have to make these assumptions explicit
by adding the circumscription formula. From the completed knowledge
base we can then do deduction.

The proposal in this paper follows this second approach (but in a very dif-
ferent way to circumscription, although some of the details on how to use
it are very similar). I argue that, rather than being a problem with logic,
nonmonotonicity is a problem of how logic is used. This follows in the spirit
of [Israel80].

There are arguments that say that a reasoning system must do some
hypothesising and testing. There has been much study of this, particularly
in the area of scientific theory formation [Popper59, Quine78, Hempel65,
Rescher70].

Here we consider the simplest case of hypothetical reasoning, namely
where the user provides the form of possible hypotheses they are prepared to
accept in an explanation. We deliberately avoid the most difficult question
of science, namely “How can we generate the hypotheses?”.

We show that this idea of theory formation from a fixed set of possi-
ble hypotheses is a natural and simple characterisation of default reasoning.
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Rather than defining a new logic for default reasoning, we would rather say
that it is the natural outcome of considering reasoning, not as deduction, but
as theory formation. It is logic which tells us what our theory predicts.

The thesis this paper is trying to defend is If one allows hypothetical
reasoning then there is no need to define a new logic to handle nonmonotonic
reasoning.

We give a semantics for our proposal, and show how this can be incor-
porated into a system for default reasoning. A programming methodology
is given which, if followed, allows one to avoid many problematic multiple
extensions.

2 Semantics

The intuitive idea is, given a set of observations to be explained, a set of
facts known to be true, and a pool of possible hypotheses, to find an expla-
nation which is a set of instances of possible hypotheses used to predict the
expected observations (i.e., together with the facts implies the observations)
and is consistent with the facts (i.e., does not predict anything known to be
false). This explanation should be viewed as a “scientific theory” based on a
restricted set of possible hypotheses. It is also useful to view the explanation
as a scenario in which some goal is true. The user provides what is acceptable
in such scenarios.

The framework is presented in terms of the first order predicate calculus,
although the idea is independent of the particular logic used. We want a set
of possible hypotheses which (together with the facts) implies the goal and
does not imply an absurdity (or something known to be false).

We assume that we are given a first-order language over a countable
alphabet [Enderton72]. By a formula we mean a well formed formula in this
language. By an instance of an formula we mean a substitution of terms in
this language for the free variables in the formula.

We assume we are given the following sets

F is a set of closed formulae, which we are treating as “facts”. We assume
the facts are consistent. These are intended to be statements which are
true in the intended interpretation. More precisely these are statements
we are not prepared to give up for some application.
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∆ is a set of formulae, called the set of possible hypotheses. Any ground
instance of these can be used as a hypothesis if it is consistent.

Definition 1 a scenario of F , ∆ is a set D∪F where D is a set of ground
instances of elements of ∆ such that D ∪ F is consistent.

Definition 2 If g is a closed formula then an explanation of g from F , ∆
is a scenario of F , ∆ which implies g.

That is, g is explainable from F , ∆ if there is a set D of ground instances of
elements of ∆ such that

F ∪D |= g and
F ∪D is consistent

F ∪D is an explanation of g.
The first condition says that D predicts g, and the second says that D

does not predict something which we know is false.

Definition 3 an extension of F , ∆ is the set of logical consequences of a
maximal (with respect to set inclusion) scenario of F , ∆.

The question that arises is whether this is really a semantics. It is cer-
tainly not as complex as other semantics; it is trying to inherit all of its
semantics from the first order predicate calculus.

Semantics is the linking of symbols and sentences in our language with
the semantic domain. The semantic domain I am interested in is the real
world. This is not a subset of the Herbrand Universe, some Kripke structure
or some other mathematical structure (though it may have some relation to
such structures), but rather a world consisting of trees and chairs and people
and diseases. It is this world that my robot must walk in, and this world
that my diagnostic program must reason about to determine what is wrong
with a patient.

The joy of classical (Tarskian) semantics is that if I choose a denotation
for the symbols in my language (i.e., for each symbol in my language I decide
that it denotes an individual or relation in the world), and write down in
axioms statements true in the world, then all theorems of my axioms will
also be true in the world.
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Defaults do not exist in the world. “Birds fly” is not a statement which
is true or not of a world; in the world there are birds, some fly and some
don’t. Defaults are assumptions used in building our theory of the world.
When we have this theory (a theory being the set of logical consequences of
a scenario), then we can talk about semantics and logical consequence. It is
these scenarios which have a semantic link to the world.

2.1 Properties of the Definitions

One interesting question is whether scenarios are finite. Note that an exten-
sion is not finite nor necessarily finitely axiomatisable (that is, there may not
be a finite D such that the extension is the logical consequence of F ∪D).

The following lemma follows directly from the compactness theorem of
the first order predicate calculus [Enderton72, p. 136].

Lemma 1 If g is explainable from F , ∆ then it is explainable using a finite
scenario.

The following lemma trivially holds.

Lemma 2 (monotonicity) If D1 ⊆ D2 and F ∪D1 |= α then F ∪D2 |= α

There is a very close connection between explainability and being in an
extension:

Theorem 3 α is explainable if and only if α is in some extension.

Proof: If α is explainable, there exists a scenario S which
implies α. Any extension of S, ∆ is an extension of F , ∆ which
contains α by lemma 2. One exists as S is an extension.

Conversely, suppose that α is in some extension. Then α ∈
Th(S)1 for some scenario S. So, S is consistent and S |= g,
so S is an explanation for α. 2

1If A is a set of formulae, Th(A) is the set of logical consequences of A.
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3 Default Reasoning

Here we show that, if the possible hypotheses are defaults, the semantics
above gives an account for default reasoning.

We are considering defaults to be possible hypotheses which can be used
in an explanation. Explainability corresponds to following from the default
assumptions. A default is something that someone is prepared to accept as
part of an explanation of why something is expected to be true.

When considering possible hypotheses to be defaults, the thing to be
explained is intended to be something which we are predicting, rather than
something we are actually observing.

Example 1 Consider the statement “birds fly”. This can be expressed as
the default:

∆ = {bird(x)⇒ flies(x)}

This means that, for a particular value b of x, if bird(b) can be proven,
so can flies(b), as long as the default has not been contradicted for that
particular b. If bird(b) and ¬flies(b) are provable, the default is contradicted
for that particular b, and so cannot be used.

Suppose that, together with the above assumption, we have the facts that
emus are birds which do not fly, Polly is an emu and Tweety is a bird. This
can be expressed as:

F = { ∀x emu(x)⇒ bird(x),
∀x emu(x)⇒ ¬flies(x),
emu(polly),
bird(tweety)}

flies(tweety) is explainable by

{bird(tweety)⇒ flies(tweety)}

which is consistent with the facts. This should be translated as meaning that
we expect tweety to fly as tweety is a bird and we know birds, by default
fly, and there is no reason to believe that tweety doesn’t fly. flies(polly) is
potentially explainable by

{bird(polly)⇒ flies(polly)}



A Logical Framework for Default Reasoning 7

but this is not consistent with the facts, as its negation can be proved. So
flies(polly) is not explainable.

4 A comparison with Reiter’s logic

We make two comparisons with Reiter’s default logic [Reiter80]. In this
section we show that the above logic is a restricted case of his normal defaults,
and section 8 shows how to get the power of more general defaults without
sacrificing the simple semantics.

The default w ∈ ∆ is a syntactic variant of Reiter’s normal default

: M w

w

Reiter’s logic for closed defaults is defined in terms of “extensions”. In
this section we show that our own notion of an extension (definition 3) in
terms of a maximal scenario corresponds to Reiter’s definition in terms of
fixed points.

The following theorem parallels the definition of a closed extension given
in [Reiter80]. This shows that our definition of an extension in terms of
maximal theories corresponds to his definition in terms of fixed points.

Theorem 4 Suppose E is an extension of F , ∆. Then

1. F ⊆ E

2. Th(E) = E

3. If α is a ground instance of an element of ∆, and ¬α 6∈ E then α ∈ E

Furthermore E is minimal with respect to the above three properties.

Proof: If E is an extension of of F , ∆, then E = Th(F ∪ D)
for some (possibly infinite) maximal set D of ground instances of
elements of ∆.

1. follows since F ⊆ Th(F ∪D) for any D

2. follows from the properties of Th, since Th(Th(S)) = Th(S)
for any S.
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3. Suppose α is a ground instance of a possible hypothesis, and
¬α 6∈ E. If α 6∈ E, then F ∪D ∪ {α} is a strict superset of
F ∪D and is consistent (as ¬α 6∈ Th(E)) which contradicts
the maximality of E.

To show E = Th(F ∪ D) is minimal with respect to the above
three properties, suppose E ′ ⊆ E, E 6⊆ E ′; and E ′ is a set with the
above three properties. There must be some ground instance α of
an element of ∆ such that α ∈ D and α 6∈ E ′ (as if every element
of D is in E ′, we have F ∪ D ⊆ E ′ and so E = Th(F ∪ D) ⊆
Th(E ′) = E ′). α is a ground instance of a possible hypothesis,
and ¬α 6∈ E ′ (as E ′ ⊆ E and ¬α 6∈ E (as α ∈ E and E is
consistent)). But α 6∈ E ′, contradicting 3, so no such E ′ can
exist. 2

5 Naming Defaults

One of the things that turns out to be useful is the ability to name defaults.
These will be names parameterised by the free variables in a default. There
are three reasons for wanting to do this

1. They make it better for printing explanations;

2. When implementing our system we need only worry about the name,
and can essentially compile out the structure of defaults. I show (the-
orem 5) that no power is lost by restricting the system to very simple
forms of defaults.

3. We want to be able to explicitly talk about a default so that we can,
for example, explicitly say when it is not applicable. This is useful for
solving multiple extension problems.

If w[x] is a default with free variables x = x1, ..., xn, then we can name
w with pw(x1, ..., xn) where pw is an n-ary predicate symbol not appearing
elsewhere in the system (i.e., in F and ∆).

In this section, we want to show how to use a name. Essentially we make
∆ contain only the name of defaults, and have the name implying the default
as a fact. First, we want to show that restricting ∆ to names does not reduce
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the power, or change the semantics of the system. We then discuss how to
use the name to solve multiple extension problems. The use of naming is
very closely related to McCarthy’s abnormality predicate [McCarthy86], and
indeed the translation is similar to that of [Grosof84] and the use of the
APPL predicate of [Brewka86].

Given F and ∆, define

∆′ = {pw(x) s.th. w[x] ∈ ∆}

F ′ = F ∪ {∀x pw(x)⇒ w[x] s.th. w[x] ∈ ∆}
That is F ′, ∆′ is the system where all defaults are named, and they replace
the defaults in ∆. The following theorem shows that this can always be done
without any unexpected side effects.

Theorem 5 (Renaming) If the predicate symbols pw do not appear in F ,
∆ or g, then g is explainable from F and ∆ if and only if g is explainable
from F ′ and ∆′.

Proof: Suppose g is explainable from F and ∆, then there is
some explanation D = {w[c]} where w[x] ∈ ∆, such that F∪D |=
g and F ∪D is consistent.

Let D′ = {pw(c) s.th. w[c] ∈ D}. To show F ′∪D′ |= g. Suppose,
on the contrary, F ′ ∪D′ ∪ {¬g} is true in interpretation I. Now
F and ¬g are true in I. For each w[c] in D, we know pw(c) and
pw(x)⇒ w[x] is true in I and so w[c] is true in I, which makes I
a model of F ∪D ∪ {¬g}, a contradiction to F ∪D |= g. So no
such model can exist, so F ′ ∪D′ |= g.

To show F ′∪D′ is consistent, suppose I is a model of F ∪D. Let
I ′ be an interpretation which is identical to I except that pw(c)
is true in I ′ exactly when w(c) is true in I. Then I ′ is a model
for F ′∪D′, as F is true in I ′ (as pw(c) does not appear in F , and
F is true in I), pw(x) ⇒ w[x] is true in I ′ by definition, and D′

is true in I ′ as D is true in I.

For the only-if half of the theorem, suppose g is explainable from
F ′ and ∆′. Then there is some D′ such that F ′ ∪ D′ |= g and
F ′∪D′ is consistent. Let D = {w[c] s.th. pw(c) ∈ D′}. By a dual
argument to that above, F ∪D |= g and F ∪D is consistent. 2
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This shows that we can work in the named system as well as in the
general system, and that we are not restricting the power of the system by
only having atoms as defaults.

6 A Programming Language for Defaults

So far we have given a semantics for default reasoning. In this section we
present a programming language for default reasoning (called Theorist), and
give a programming methodology, such that problems of undesirable multiple
extensions can be solved.

We define a very simple language, with the following declarations2:

fact w.
where w is a formula, means “∀w”∈ F .

default n.
where n is a name (predicate with only free variables as arguments)
means n ∈ ∆.

default n : w.
where w is a formula, and n is a name with the same free variables as
w, means that w is a default, with name n. Formally this means that
n ∈ ∆ and “∀n⇒ w”∈ F .

explain g.
where g is a formula, asks whether we can explain ∃g from the F and
∆. A consistent explanation is returned.

Within the programming language, we follow the Prolog convention of
having variables in uppercase, constants in lower case, and unbound vari-
ables being implicitly universally quantified. We also use the symbol “←” as
material implication, read “if”.

Example 2 the birds flying example above could be given as:

2∀w is the universal closure of w. That is, if w is a formula with free variables v, then
∀w means ∀v w. Similarly ∃w is the existential closure of w, that is ∃v w.
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default birdsfly(X) : flies(X)← bird(X).
fact ¬flies(X)← emu(X).
fact bird(X)← emu(X).
fact bird(tweety).
fact emu(polly).

Here the query

explain flies(tweety).

comes back with the answer “yes”, assuming {birdsfly(tweety)}. Note that
the explanation gives the assumptions used to support our prediction. It
tells us the reason we are predicting the result. We predict Tweety flies, as
Tweety is a bird, and birds fly.

The query

explain flies(polly).

comes back with the answer “no” (meaning that it could not be explained).

6.1 Programming Methodology and Multiple Exten-
sion Problems

The idea of writing programs in this system is to add generalised knowledge
as defaults, and to add knowledge that we know is true as facts. Also we
add knowledge as to when a default is not applicable (by using the name of
a default), as follows

If we have formula w which we want to use as a default, and we know
that it is not applicable under condition c, we can give the system,

default n : w.
fact ¬n← c.

We are saying that we can assume n and so infer w. This is inconsistent
(and so cannot be used) if we can prove ¬w or if we prove c. The second
rule corresponds to the cancellation of inheritance axioms of [McCarthy86,
p. 93].

Example 3 Consider the following:
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default mammals-don’t-fly(X) : ¬flies(X)← mammal(X).
default bats-fly(X) : flies(X)← bat(X).
default dead-things-don’t-fly(X) : ¬flies(X)← dead(X).
fact mammal(X)← bat(X).
fact bat(dracula).
fact dead(dracula).

We can explain ¬flies(dracula) with

{mammals-don’t-fly(dracula)}

That is, we predict that Dracula does not fly because Dracula is a mammal,
and mammals, by default, don’t fly.

We can explain flies(dracula) with

{bats-fly(dracula)}

That is, we expect Dracula flies, because he is a bat, and bats typically can
fly.

We can also explain ¬flies(dracula) with

{dead-things-don’t-fly(dracula)}

We can predict that Dracula doesn’t fly as he is a dead bat, and dead bats
don’t fly by default.

If we don’t like the first explanation because we don’t want the first
default to be applicable to bats, we can add

fact ¬mammals-don’t-fly(X)← bat(X).

Thus if we can prove X is a bat then we cannot use the default that X
doesn’t fly because X is a mammal and mammals don’t fly.

If we don’t want the second explanation for dead bats we can add

fact ¬bats-fly(X)← dead(X).

In the resulting system, we can not explain flies(dracula) and can only
explain ¬flies(dracula), for the right reason: because he is a dead bat, and
dead bats typically don’t fly.
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Example 4 This example is from [Reiter81] where it is claimed that normal
defaults are not adequate to allow explicit exceptions to rules

default unemp-if-st(X) : ¬employed(X)← uni-student(X).
default emp-if-ad(X) : employed(X)← adult(X).
default ad-if-st(X) : adult(X)← uni-student(X).
fact uni-student(paul)

we can explain employed(paul) with

{emp-if-ad(paul), ad-if-st(paul)}

That is, we can predict that paul is employed as he is a student, and so, by
default an adult and so by default is employed.

We can explain ¬employed(paul) with

{unemp-if-st(paul)}

If we don’t like the first explanation because we don’t want the emp-if-ad
default to be applicable to university students, we can add

fact ¬emp-if-ad(X)← uni-student(X).

This makes the first explanation inconsistent.

Note that here we are talking about predicting using defaults rather than
explaining observations. In this case it is reasonable that there are some
cases where we can explain some proposition and its negation. This means
that we have evidence for both predictions and so, on semantic grounds none
is preferred (There may, however be heuristic grounds, e.g. probability, to
prefer one explanation over the other [Neufeld87]).

Example 5 Consider, for example, the quaker-republican example of [Reiter81]

default quakers-are-pacifists(X) : pacifist(X)← quaker(X).
default republican-so-not-pacifist(X) : ¬pacifist(X)← republican(X).
fact ¬quakers-are-pacifists(X)← republican(X).
fact ¬republican-so-not-pacifist(X)←quaker(X).
fact republican(ron).
fact quaker(george).
fact quaker(dick).
fact republican(dick).
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Here we can explain pacifist(george) with the explanation {quakers-are-
pacifists(george)}. We can explain ¬pacifist(ron) with the explanation
{republican-so-not-pacifist(ron)}. We cannot explain anything about Dick’s
pacifism.

7 Pruning the set of scenarios

The preceding section showed how many cases where it was deemed necessary
to have semi-normal defaults [Reiter81], can be solved without adding any-
thing beyond a simple form of normal defaults. There is however, a problem
which still arises.

Example 6 ([Etherington87b]) Consider the problem of being able to as-
sume that some person is a suspect. If we can show they are not guilty, then
they should not be a suspect, however we should not conclude that they are
guilty just because they are a suspect. In the first case we want some con-
straint on the possible scenarios, namely ¬guilty(X) ⇒ ¬suspect(X). We
want to eliminate any scenario in which someone is not guilty and still a
suspect. However we do not want this constraint as a fact, otherwise we can
conclude that someone is guilty because they are a suspect.

It seems as though we need a way to prune the set of scenarios which is not
just adding more facts.

A similar problem arises when cancelling defaults:

Example 7 Assume we have the following Theorist fragment

default birdsfly(X ) : flies(X)← bird(X).
fact ¬birdsfly(X)← emu(X).

This is meant to say that we can use birdsfly(X) to predict some bird flying,
but that this is not applicable if we can prove the X is an emu. There are,
however, other predictions which can be drawn from these.

From this we may assume birdsfly(b) for any b. This predicts ¬emu(b).
Thus we can explain ¬emu(b) for any b. One can argue that this is reasonable,
since if we can assume that birds fly and that this doesn’t apply to emus, we
are implicitly assuming that anything is not an emu.
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Using the default we can also explain ¬bird(b) from ¬flies(b). This also
could be argued to be reasonable, in much the same way as contrapositives
are sensible when doing deduction.

Example 8 Suppose that we want to have the default that if X is a person
then we can assume that they are not a diabetic. This can be expressed as

default not-diabetic-if-person(X) : ¬diabetic(X)← person(X).

This can be used to explain ¬diabetic(robin) from person(robin) but can
also be used to explain ¬person(john) from diabetic(john).

There seems to be two points of view of what is happening here. The
first is saying that there is nothing wrong here. When you are assuming that
if something was a bird it would fly, you are implicitly assuming that it is
not an emu. For the first example there is an incorrect interpretation of the
term “guilty”; “if someone is not guilty they are not a suspect” is false in the
intended interpretation. If we instead mean “possibly guilty” then there is no
problem. The problem with example 8 is that the restriction of person(X)
on the right hand side is irrelevant to the default (if it was not irrelevant then
the conclusion that non diabetics are not human is reasonable). In fact all of
the examples of [Reiter81] and [Etherington83] work using just the naming
conventions described in the last section.

There is also the point of view which says that the above derivations are
wrong. Users of the Theorist system have found that they needed a way to say
“this default should not be applicable in this case”, without any side effect of
doing this. In this section we define the notion of constraints which allow one
to do exactly this. They have been found to be a very useful mechanism in
practice. Other systems overcome such derivations by allowing the defaults
as rules which can only be used in one direction and have explicit exceptions
[Reiter80] or by having fixed and variable predicates [McCarthy86].

The idea is to define a set of constraints used to prune the set of scenarios.
They are just used to reject scenarios and cannot be used to explain anything.
Constraints are formulae with which scenarios must be consistent.

We introduce a set C of closed formulae called the set of constraints3.
The definition of scenario is revised as follows:

3[Gagné87] also describes such conditions, and calls these “the restrictive facts”.
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Definition 4 a scenario of F , C, ∆ is a set D ∪ F where D is a set of
ground instances of elements of ∆ such that D ∪ F ∪ C is consistent.

The definitions of explainable and extension are correspondingly changed.
The following is a corollary of theorem 3. The proof is a paraphrase of

the proof for theorem 3.

Corollary 6 In the system with constraints α is explainable if and only if α
is in some extension.

We extend the programming language to have the declaration:

constraint w.

where w is some formula (free variables are implicitly universally quantified)
to mean “∀w”∈ C.

We can use constraints to prevent a default d being applicable under
circumstances c, without allowing an explanation of ¬c by giving

constraint ¬d← c.

All this constraint does is to reject any scenario which implies both d and c.
It has no other affect.

We can prevent the use of the contrapositive of

default d : c← b.

(that is, we prevent the use of default d to derive ¬b from ¬c) by adding the
constraint

constraint ¬d← ¬c.

If we know that c is not true, we cannot use default d. The only affect this
constraint has is to not allow any scenario which implies both ¬c and d.

Note that here F ∪ D still has first-order semantics,so that a ← b and
¬b← ¬a are logically equivalent. We have added constraints to restrict the
circumstances in which the default can be used.

Example 9 From
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default birdsfly(X ) : flies(X)← bird(X).
constraint ¬birdsfly(X)← ¬flies(X).
fact bird(polly).
fact ¬flies(bruce).

we can explain flies(polly), but cannot explain ¬bird(bruce) (as we could
if the constraint was not there) or explain flies(david) (as we could if the
constraint was a fact).

Example 10 Consider example 3. We can change it to not allow contrapos-
itives or conclusions that something is not a bat or is not dead, by specifying
the following:

default mammals-don’t-fly(X) : ¬flies(X)← mammal(X).
constraint ¬mammals-don’t-fly(X)← flies(X).
default bats-fly(X) : flies(X)← bat(X).
constraint ¬bats-fly(X)← ¬flies(X).
constraint ¬mammals-don’t-fly(X)← bat(X).
default dead-things-don’t-fly(X) : ¬flies(X)← dead(X).
constraint ¬dead-things-don’t-fly(X)← flies(X).
constraint ¬bats-fly(X)← dead(X).
fact mammal(X)← bat(X).
fact mammal(bruce).
fact bat(paul).
fact bat(dracula).
fact dead(dracula).

Here we can conclude that Bruce cannot fly, that Paul can fly and that
Dracula cannot fly. For each of these we cannot also explain their negations.
We also claim that there are not any unexpected side effects.

8 Reiter’s General Defaults

In section 4 we showed how our defaults can be seen as a restriction of
Reiter’s normal defaults. In this section we want to argue that the extra
expressiveness of Reiter’s general defaults are not needed.

Reiter’s general defaults are of the form:
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α(x) : M β1(x), ...,M βn(x)

γ(x)

(where x is the set of free variables). This is intended to mean that if α(c)
is proven and the βi(c) are consistent then γ(c) can be inferred.

This can be simulated in Theorist by creating the name Mβi
for each βi

and the relations Mβi
(x) which we can assume any instance of as long as we

cannot prove the corresponding instance of ¬βi(x). This is done by having
for each i,

default Mβi
(x).

constraint ¬Mβi
(x)← ¬βi(x).

and the fact

fact γ(x)←Mβ1(x) ∧ ...Mβn(x) ∧ α(x).

This is very close to [Reiter80] if the defaults are semi-normal. For ex-
ample, the default

α(x) : M β(x) ∧ γ(x)

γ(x)

can be approximated using the above technique by creating the name Mβγ

with the following definitions

default Mβγ(x) : γ(x)← α(x).
constraint ¬Mβγ(x)← ¬β(x).
constraint ¬Mβγ(x)← ¬γ(x).

The first constraint says that we cannot use any instance of the default for
which we can prove ¬β. The second prevents the use of the contrapositive
of the default.

This translation is not exact. The following is an example where they pro-
duce different answers. I would argue that Reiter’s defaults gives unintuitive
results when they differ.

Example 11 Consider the case where we have, by default, emus and os-
triches both run, and we know that Polly is either an emu or an ostrich (they
do look similar). In Reiter’s notation this can be written as

emu(polly) ∨ ostrich(polly)
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emu(X) : M runs(X)

runs(X)

ostrich(X) : M runs(X)

runs(X)

we cannot derive runs(polly) in Reiter’s system as we cannot prove the an-
tecedent of either default. If we consider the Theorist translation we have

fact emu(polly) ∨ ostrich(polly).
default emus-run(X) : runs(X)← emu(X).
constraint ¬emus-run(X)← ¬runs(X).
default ostriches-run(X) : runs(X)← ostrich(X).
constraint ¬ostriches-run(X)← ¬runs(X).

From this we can explain runs(polly) with

{emus-run(polly), ostriches-run(polly)}

which is consistent (even if we have emus and ostriches are disjoint classes).
Note that the use of constraints is not what is important in this example,

but rather the special status of the preconditions of Reiter’s defaults.
Note also that slight changes to the representation of the domain makes

Reiter’s system give different answers. For example, if there was a class of big
birds with short feathers, which covered both emus and ostriches, and they,
by default run, then Reiter’s system can explain that Polly runs.

The second difference is that we do not have the problems of semi-normal
defaults not having extensions [Etherington87a]. Etherington give the fol-
lowing example:

: A ∧ ¬B

A
,

: B ∧ ¬C

B
,

: C ∧ ¬A

C

Using the above translation from general defaults, this is translated into4

default manb : a.
default mbnc : b.

4Note that we don’t need the constraint that ¬manb← ¬a as we have a← manb as a
fact.
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default mcna : c.
constraint ¬manb← b.
constraint ¬mbnc← c.
constraint ¬mcna← a.

Here we have three extensions, one for each case of assuming one of the
defaults. For example, we can assume manb, which allows us to predict a.
The first constraint says that we have implicitly assumed ¬b. The problem
with the semi-normal defaults not having an extension arises because they
have not allowed the recording of what assumptions have been implicitly
made.

Theorem 7 (Monotonicity of Defaults) Adding defaults can only increase
the number of things explainable, adding constraints can only decrease the
number of things explainable.

Proof: Suppose g is explainable from F , ∆, C. Then there is
some D, a set of instances of elements of ∆ such that F ∪D |= g
and F ∪D∪C is consistent. If ∆ ⊆ ∆′ then g is explainable from
F , ∆′, C using the same D. If C ′ ⊆ C, then g is explainable from
F , ∆, C ′ as F ∪D |= g and F ∪D ∪ C ′ is consistent. 2

Corollary 8 there is always an extension if F ∪ C is consistent.

One useful case for which we can guarantee this is if

1. the explicit facts (those added with the fact declaration) are consistent,

2. all of the constraints are of the form ¬d← c where d is a default name,
and

3. there are no default names appearing in the explicit facts. This means
the only default names in F are there by virtue of being in a default
declaration.

This is because the interpretation which is the model of the explicit facts,
but with all default names false is a model of F ∪ C.

The translation of Reiter’s defaults follows this convention, and so if the
facts are consistent, there is always an extension.

Theorem 7 has consequences beyond just ensuring that we have exten-
sions. Consider the following example:
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Example 12 Suppose we have a system with the defaults

A : B

B
,
A : C

C
,
C : ¬B ∧D

D

According to the semantics of [Reiter80] there is one extension containing B
and C and not D. The first default forces the third default to be inapplicable.

In our translation, we have two extensions, one containing B and C, and
the other containing C and D. The second extension is obtained by using
the third default which implicitly assumed that B is false, and so making the
first default inapplicable.

8.1 Inheritance Networks

Another interesting feature of our translation of semi-normal defaults is in
the translation of inheritance networks with exceptions [Etherington87a]. We
can follow Etherington’s translations, but do the translation defined above
from semi-normal defaults into Theorist5. This is done by having the defaults
named, so that the default IS-A from A to B becomes the declaration

default b-if-a(X) : b(X)← a(X).
constraint ¬b-if-a(X)← ¬b(X).

the default ISN’T-A similarly has the translation

default not-b-if-a(X) : ¬b(X)← a(X).
constraint ¬not-b-if-a(X)← b(X).

The exception links translate into into constraints. The arc from node c
to the arc representing the default named d (given the name in the default
above) becomes

constraint ¬d← c.

Here we have modular statements with each arc in the inheritance hi-
erarchy becoming a small number of rules in the default system. There
are no translated rules which depend on other arcs. This translation thus
overcomes the objections that Touretzky has to Etherington’s translation
[Etherington87a, p. 63-64].

5We assume that the reader is familiar with the translation in [Etherington87a, p. 56].
We use only the different convention of having variables in upper case.
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9 Implementation

The implementation of Theorist is very simple, is closely related to the top
down default proof of [Reiter80], and is described elsewhere [Poole87a].

To find an explanation of g, we attempt to prove g with the facts, F ,
and possible hypotheses, ∆, as axioms. We make D0 the set of instances of
elements of ∆ used in the proof, and make D1 a grounding of D0 (replacing
all free variables with unique constants). We then know

F ∪D1 |= g

We can use a complete theorem prover to prove that F ∪ C∪D1 is consistent,
by failing to prove it is inconsistent. In general this is undecidable, but has
not been a problem in the domains we have considered.

There is currently an interpreter for Theorist [Poole87a], based on a com-
plete theorem prover written in Prolog. There is also a compiler which trans-
forms Theorist facts, constraints and defaults into Prolog. We are currently
working on a system based on truth maintenance and dependency directed
backtracking [Doyle79, de Kleer85]. We are also building a system which
does concurrent consistency checking.

We have avoided the problems that arise with existential and univer-
sally quantified variables in defaults [Poole87b] by requiring that we only use
ground instances of defaults in theories.

10 Conclusion and Future Work

We have presented here a thesis that the problem of default reasoning is not
a problem with logic, but with how logic is used. Not many people would
disagree with the proposition that we need to do some sort of hypothetical
reasoning; we are investigating what can be done with a very simple form,
namely where we have the user providing the possible hypotheses they are
prepared to accept in an explanation. We have shown how the use of theory
formation, using constrained forms of hypotheses, can be used as a basis for
default reasoning.

A simple “semantics” was proposed and compared in detail to the pro-
posal of [Reiter80]. This has the advantage of simplicity, of being defined in
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terms of a semantic characterisation rather than just a proof procedure, and
of not needing to change the underlying semantics to do default reasoning.

This approach gives us a neat way to examining other problems. One
of the interesting questions concerns the comparison of scenarios. That is,
determining when one scenario is “better” than another for some purpose.
[Poole85] argues that the problem of inheritance in semantic nets can be
best done by preferring the most specific theory. That is, when there is
specific knowledge and more general knowledge available, then we prefer to
use the most specific knowledge. [Goebel87] shows how the multiple exten-
sion problem in axiomatising the frame axioms can be solved in the Theorist
framework by preferring the chronologically maximally persistent theory. For
a diagnostic system we may prefer the most likely explanation [Neufeld87].

This theory provides the basis for the Theorist system [Poole87a], which
we are using for a variety of domains, including diagnosis, building user
models, problem solving by analogical reasoning, pronoun resolution and
diagnosis of students with learning disabilities.
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