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Abstract

Arti�cial intelligence researchers have been designing representa�
tion systems for default and abductive reasoning� Logic Programming
researchers have been working on techniques to improve the e�ciency
of Horn Clause deduction systems� This paper describes how one
such default and abductive reasoning system �namely Theorist� can
be translated into Horn clauses �with negation as failure�� so that we
can use the clarity of abductive reasoning systems and the e�ciency
of Horn clause deduction systems� We thus show how advances in
expressive power that arti�cial intelligence workers are working on
can directly utilise advances in e�ciency that logic programming re�
searchers are working on� Actual code from a running system is given�

� Introduction

Many people in Arti�cial Intelligence have been working on default reasoning
and abductive diagnosis systems ���� ��� �� ��	
 The systems implemented
so far �eg
� ��� �� ��� ��� ��	� are only prototypes or have been developed in

�
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ways that cannot take full advantage in the advances of logic programming
implementation technology


Many people are working on making logic programming systems more
e�cient
 These systems� however� usually assume that the input is in the
form of Horn clauses with negation as failure
 This paper shows how to
implement the default reasoning system Theorist ���� ��� ��	 by compiling
its input into Horn clauses with negation as failure� thereby allowing direct
use advances in logic programming implementation technology
 Both the
compiler and the compiled code can take advantage of these improvements


This work should be seen as an instance of Stickel�s ���	 proposal for a
Prolog technology theorem prover
 Rather than redesigning and extending
a Prolog compiler ���	� this is done by compiling to Prolog�
 Rather than
concentrating on the needs for theorem proving� this work has concentrated
on the needs for representing common sense knowledge� in particular for
default and abductive reasoning


We have been running this implementation on standard Prolog compilers�
and it outperforms all other default reasoning systems that the author is
aware of
 It is� arguably� not restricted to the control structure of Prolog

There is nothing in the compiled code which forces it to use Prolog�s depth�
�rst search strategy� all it requires is the implementation of Horn clauses with
negation as failure
 Logic programmers and other researchers are working
on alternate control structures which seem very appropriate for default and
abductive reasoning
 Advances in parallel inference �e
g
� ���	�� constraint
satisfaction ��� ��	 and dependency directed backtracking ��� � �	 should be
applicable to the code produced by this compiler


We are thus e�ecting a clear distinction between the control and logic of
our default reasoning systems ���	
 We can let the control people concentrate
on improving the e�ciency of Horn clause systems� which will be directly
applicable to those of us building richer representation systems
 The Theorist
system has been designed to allow maximum �exibility in control strategies
while still giving us the power of assumption�based reasoning required for
default and abductive reasoning


This is a step towards having representation and reasoning systems which

�Independently and subsequently Stickel ���� has also developed a compiler from a
Theorem prover to Prolog� He has� however� concentrated on the needs for theorem
proving applications� These are not emphasised in this paper �see section ���
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are designed for correctness being able to use the most e�cient control strate�
gies
 We want the best of expressibility and e�ciency


� Theorist Framework

Theorist ���� ��� ��	 is designed to be a very simple logical reasoning sys�
tem for default and abductive reasoning
 It is based on the idea of theory
formation from a �xed set of possible hypotheses


We assume a �rst order language ��	 with a countable set of constant
symbols �see section �
� for the syntax accepted by this implementation�
 A
ground instance of a formula is obtained by substituting variable free terms
of the language for variables in the formula


The user provides�

F is a set of closed formulae called the facts
 These are intended to be
true in the world being modelled
 F is assumed to be consistent


� is a set of �possibly open� formulae which act as possible hypotheses


De�nition ��� A scenario of �F ��� is a set D of ground instances of
elements of � such that D � F is consistent


De�nition ��� If g is a closed formula� an explanation of g from �F ���
is a scenario of �F ��� which� together with F � implies g


That is� g can be explained from �F ��� if there is a set D of ground instances
of elements of � such that

F �D j� g and
F �D is consistent

D is an explanation of g


De�nition ��� An extension of �F ��� is the set of logical consequences
of the F together with a maximal �with respect to set inclusion� scenario of
�F ���
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In other papers we have described how the Theorist framework can be
the basis of default and abductive reasoning systems ���� ��� ��	
 If we are
using Theorist for prediction then possible hypotheses can be seen as defaults
���� ��	
 This is also a framework for abductive reasoning where the possible
hypotheses are the base causes we are prepared to accept as to why some
observation was made ���	
 In this paper we refer to possible hypotheses as
defaults� but the implementation can be used for either


One restriction that can be made with no loss of expressive power is to
restrict possible hypotheses to just atomic forms with no structure ���	
 This
is done by naming the defaults


��� Syntax

The syntax of Theorist is designed to be of maximum�exibility
 Virtually any
syntax is appropriate for formulae� the formulae are translated into Prolog
clauses without mapping out subterms
 The theorem prover implemented in
the Compiler can be seen as a non�clausal theorem prover ��	


Variables� constants� function symbols� predicate symbols� terms and
atomic symbols �atoms� are de�ned as in Prolog ���	
 A well formed formula
�a w� � is made up of arbitrary combinations of implication ������ ������
disjunction ��or�� ��� conjunction ��and�� ���� ���� and negation ��not��
���� of atomic symbols
 As in Prolog� There is no explicit quanti�cation�
all facts are assumed to be universally quanti�ed and all queries existentially
quanti�ed


names are atomic symbol with only free variables as arguments

The following gives the syntax of the Theorist code�

fact w�

where w is a w�� means that ��w� � F �� i
e
� the universal closure of
w is a fact


default d�

where d is a name� means that d � �� i
e
� d is a possible hypothesis


�
�w is the universal closure of w� That is� all variables in w are universally quanti	ed�

If V are the free variables in w� ��w� is �V w� Similarly �w is the existential closure of
w
 all variables are existentially quanti	ed�
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default d � w�
where d is a name and w is a w� means w� with name d can be used
in a scenario if it is consistent
 Formally it means d � � and ���d�
w�� � F 


explain w�

where w is an arbitrary w�� gives all explanations of �w


predict w�

where w is a arbitrary ground w�� returns �yes� if w is in every ex�
tension of �F ��� and �no� otherwise
 If it returns �yes�� a set of
explanations is returned� if it returns �no� then a scenario from which
g cannot be explained is returned �this follows the framework of ���	�


� Overview of Implementation

In this section we assume that we have a �rst order predicate calculus deduc�
tion system �denoted �� which has the following properties �such a deduction
system will be de�ned in the next section��

�
 It is sound �i
e
� if A � g then A j� g�


�
 It is complete in the sense that if g follows from a consistent set of
formulae� then g �or some formula more general than g� can be proven

That is� if A is consistent and A j� g then A � g


�
 If A � g then A�B � g� i
e
� adding in extra facts will not prevent the
system from �nding a proof which previously existed


�
 It can return instances of certain predicates used in the proof


The basic idea of the implementation follows the de�nition on explain�
ability�

Procedure ��� � to explain g from �F ���

�This is called a procedure as� in general� it is not decidable whether an atom can be
explained�
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�
 try to prove g fromF��
 If no proof exists� then g cannot be explained

If there is a proof� let D be the set of instances of elements of � used
in the proof
 We then know

F �D j� g

by the soundness of our proof procedure


�
 show D is consistent with F by failing to prove it is inconsistent
 As F
is consistent� the completeness of our proof procedure will ensure that
if F �D is inconsistent� a proof for �D from F will be found


��� Consistency Checking

The following two theorems are important for implementing the consistency
check�

Lemma ��� IfA is a consistent set of formulae andD is a �nite set of ground
instances of possible hypotheses� then if we impose arbitrary ordering on the
elements of D � fd�� ���� dng

A �D is inconsistent
if and only if

there is some i� � � i � n such that A � fd�� ���� di��g is consistent and
A � fd�� ���� di��g j� �di


Proof� If A �D is inconsistent there is some least i such that
A�fd�� ���� dig is inconsistent
 Then we must haveA�fd�� ���� di��g
is consistent �as i is minimal� and A � fd�� ���� di��g j� �di �by
inconsistency�
 �

This lemma says that we can show that F � fd�� ���� dng is consistent if
we can show that for all i� � � i � n� F �fd�� ���� di��g �� �di
 If our theorem
prover can show there is no proof of all of the �di� then we have consistency


This lemma indicates that we can implement Theorist by incrementally
failing to prove inconsistency
 We need to try to prove the negation of the
default in the context of all previously assumed defaults
 Note that this
ordering is arbitrary


The following theorem expands on how explainability can be computed�



A Theorist to Prolog Compiler �

Theorem ��� If F is consistent� g cannot be explained from �F ��� if and
only if there is a ground proof of g from F � D where D � fd�� ���� dng is a
set of ground instances of elements of � such that F 	 fd�� ���� di��g �� �di
for all i� � � i � n


Proof� If g can be explained from F ��� there is a set D of
ground instances of elements of � such that F � D j� g and
F � D is consistent
 So there is a ground proof of g from F �
D
 By the preceding lemma F � D is consistent so there can
be no sound proof of inconsistency
 That is� we cannot prove
F � fd�� ���� di��g � �di for any i
 �

This leads us to the re�nement of procedure �
��

Procedure ��� to explain g from �F ���

�
 Build a ground proof of g from �F ���
 Make D the set of instances
of elements of � used in the proof


�
 For each i� try to prove �di from F � fd�� ���� di��g
 If all such proofs
fail� D is an explanation for g


Note that the ordering imposed on the D is arbitrary
 A sensible one
is the order in which the elements of D were generated
 Thus when a new
hypothesis is used in the proof� we try to prove its negation from the facts
and the previously used hypotheses
 These proofs are independent of the
original proof and can be done as they are generated as in negation as failure
�see section �
��� or can be done concurrently


��� Variables

Theorem �
� says that g can be explained if there is a ground proof
 A
problem arises in translating the preceding procedure �which assumes ground
proofs� into an procedure which does not build ground proofs �eg
� a standard
resolution theorem prover�� as we may have variables in the forms we are
trying to prove the negation of


A problem arises when there are variables in the di generated
 Consider
the following example�
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Example ��� Let � � fp�X�g
 That is� any instance of p�X� can be used
if consistent
 Let F � f�Y �p�Y �� g���p�a�g
 That is� g is true if there is
a Y such that p�Y �


According to our semantics� g can be explained with the explanation
fp�b�g� which is consistent withF �consider the interpretation I � f�p�a�� p�b�g
on the domain fa� bg�� and implies g


However� if we try to prove g� we generate D � fp�Y �g where Y is free
�implicitly a universally quanti�ed variable�
 The existence of the fact �p�a�
should not make it inconsistent� as g can be explained


So we need to generate a ground proof of g
 This leads us to�

Procedure ��� To determine if g can be explained from �F ���

�
 generate a proof of g using elements of F and � as axioms
 Make D�

the set of instances of � used in the proof�

�
 form D� by replacing free variables in D� with unique constants��

�
 add D� to F and try to prove an inconsistency �as in the previous case�

If a complete search for a proof fails� g is explained


This procedure can now be directly implemented by a resolution theorem
prover


Example ��	 Consider example �
�
 If we try to prove g� we use the hy�
pothesis instance p�Y �
 This means that g is provable from any instance of
p�Y �
 To show g cannot be explained� we replace Y with a constant �
 p���
is consistent with the facts
 Thus g is explained


��� Incremental Consistency Checking

Procedure �
 assumed that we only check consistency at the end
 We cannot
replace free variables by a unique constant until the end of the computation


�This is justi	ed here as the desire to build a ground proof� It can also be justi	ed by
noticing that free variables in defaults are existentially quanti	ed �we only need to assume
that some individual exists�� To show this is inconsistent we Skolemise the existentially
quanti	ed variable�
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This procedure can be further re�ned by considering cases where we can
check consistency at the time the hypothesis is generated


Lemma �
� shows that we can check consistency incrementally in what�
ever order we like
 The problem is to determine whether we have generated
the �nal version of a set of hypotheses
 If there are no variables in our set of
hypotheses� then we can check consistency as soon as they are generated
 If
there are variables in a hypothesis� then we cannot guarantee that the form
generated will be the �nal form of the hypothesis


Example ��
 Consider the two alternate sets of facts�

� � f p�X� g

F� � f �X p�X� 	 q�X�� g�

�p�a��

q�b� g

F� � f �X p�X� 	 q�X�� g�

�p�a��

q�a� g

Suppose we try to explain g by �rst explaining p and then explaining q

Once we have generated the hypothesis p�X�� we have not enough informa�
tion to determine whether the consistency check should succeed or fail
 The
consistency check for F� should succeed �i
e� we should conclude with a con�
sistent instance� namely X � b�� but the consistency check for F� should fail
�there is no consistent value for the X which satis�es p and q�
 We can only
determine the consistency after we have proven q


There are two obvious solutions to this problem� the �rst is to allow the
consistency check to return constraints on the values
 An alternate solution
is to delay the evaluation of the consistency check until all of the variables
are bound �as in ���	�� or until we know that the variables cannot be bound
any more
 In particular we know that a variable cannot be bound any more
at the end of the computation


The implementation described in this paper does the simpler form of in�
cremental consistency checking� namely it computes consistency immediately
for those hypotheses with no variables and delays consistency checking until
the end for hypotheses containing variables at the time they are generated
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Even though it may be desirable to detect when all of the variables in a
term become instantiated� it was decided that this would impose too great
an overhead in current Prolog systems�

��� Comparison with other implementations

This speci�cation can be seen a a re�nement of Reiter�s ���	 top�down proof
procedure for normal defaults without prerequisites� but with a further re�
�nement of how to handle variables


This procedure is also related to the algorithms of Pople ���	 and Cox
and Pietrzykowski ��	
 Neither of these have a prede�ned set of possible
hypotheses� but rather they allow the assumption of hypotheses on syntactic
grounds �e
g
� there is no way to derive them�


� The Deduction System

In this section we describe the deduction system that we assumed in the
previous section
 This implementation is based on model elimination� in
particular the MESON proof procedure ���� ��	
 This is complete in the
sense that if g logically follows from some consistent set of clauses A� then
there is a MESON proof of g from A


SLD resolution of Prolog ���	 can be seen as MESON with the contrapos�
itive and ancestor search removed


To implement MESON in Prolog ���	� we add two things

�
 we use the contrapositive of our clauses
 If we have the clause

L� 
 L� 
 ���
 Ln

then we create the n rules

L� � �L� 	 ��� 	 �Ln

L� � �L� 	 �L� 	 ���	 �Ln

���

Ln � �L� 	 ��� 	 �Ln��

Each of these can be used to prove the left hand literal if we know the
other literals are false
 Here we are treating the negation of an atom
as a di�erent Prolog atom
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�
 the ancestor cancellation rule
 While trying to prove L we can assume
�L
 We have a subgoal proven if it uni�es with the negation of an
ancestor in the proof tree
 This is an instance of proof by contradiction

We can see this as assuming �L� when we have proven L we discharge
the assumption
 We only make the assumption when we know it can
be discharged


One property of the deduction system that we want is the ability to
implement de�nite clauses with a constant factor overhead over using Prolog

One way to do this is to keep two lists of ancestors of any node� P the
positive �non negated atoms� ancestors and N the negated ancestors
 Thus
for a positive subgoal we only need to search for membership in N and for a
negated subgoal we only need to search P 
 When we have de�nite clauses�
there are no negated subgoals� and so N is always empty
 Thus the ancestor
search always consists of checking for membership in an empty list
 The
alternate contrapositive form of the clauses are never used


Alternate� more complicated ways to do ancestor search have been inves�
tigated ���	� but this implementation uses the very simple form given above


��� Disjunctive Answers

For the compiler to work properly we need to be able to return disjunctive
answers
 We need disjunctive answers for the case that we can prove only a
disjunctive form of the query


For example� if we can prove p�a� 
 p�b� for the query �p�X�� then we
want the answer X � a or b
 This can be seen as �if the answer is not a then
the answer is b�


To have the answer a�
 ���
an� we need to have a proof of �If the answer
is not a� and not a� and 


 and not an�� then the answer is an�
 We collect
instances of the top level goal that we are assuming are not true in order to
prove an instance of the top level goal


This idea is implemented by being able to assume an instance of the
negation of the top level goal as long as we add it to the set of answers
 To
do this we carry the alternate answers that we are assuming in proving the
top level goal
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��� Conversion to Clausal Form

It is desirable to convert an arbitrary well formed formula into clausal �or
rule� form without mapping out subterms
 Instead of distributing� this can
be done by creating a new term to refer to the disjunct


Once a formula is in negation normal form� then the normal way to con�
vert to clausal form ��	 is to convert something of the form

� 
 �� 	 ��

by distribution into
�� 
 �� 	 �� 
 ��

and so mapping out subterms

An alternate ��	 is to create a new relation p parameterised with the

variables in common with � and � 	 �
 We can then replace � 	 � by p and
then add

��p 
 �� 	 ��p 
 ��

to the set of formulae

This is essentially the same idea that most Prolog implementations use

to implement a disjunction in the body of a rule
 It is interesting to note
that it does work in general ��	


This is implemented using Prolog �or�� instead of actually building the p

We build up the clauses so that the computation runs without any multiply�
ing out of subterms
 This is an instance of the general procedure of making
clausal theorem provers into non�clausal theorem provers ��	


� Details of the Compiler

In this section we give actual code which converts Theorist code into Prolog
code
 The compiler is described here in a bottom up fashion� from the
construction of the atoms to compilation of general formulae


The compiler is written in Prolog and the target code for the compiler is
Prolog code �in particular Horn clauses with negation as failure�
 There are
no �cuts� or other non�logical �features� of Prolog which depend on Prolog�s

�If the underlying Prolog does not have disjunction� it can be easily added by de	ning
the clause �p� q�� p and �p� q�� q�
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Figure �� Steps of the compiler

search strategy in the compiled code �although there is in the compiler�

Each Theorist w� gets locally translated into a set of Prolog clauses


Figure � shows the forms that the formulae take� and the procedures that
e�ect the change� between the user giving the facts and defaults and the
resulting code being put in the Prolog database or written to a �le


The term �rule� is used as a technical term for an intermediate form

One formula produces many rules
 Note that when we are using rules� we
have already formed contrapsotives


��� Target Atoms

For each Theorist predicate symbol r there are � target predicate symbols�
with the following informal meanings�

prove r meaning r can be proven from the facts� and a given set of hypothe�
ses


prove not r meaning �r can be proven from the facts and a given set of
hypotheses


ex r meaning r can be explained from �F ���


ex not r meaning �r can be explained from �F ���


The arguments to these built predicate symbols contain all of the infor�
mation needed to prove or explain instances of the source predicates


����� Proving

For relation r��args�� in the source code we want to produce object code
which says that r��args�� �or its negation� can be proven from the facts
and the current set of assumed hypotheses


For the source relation
r��args��
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�which is to mean that r is a relation with �args� being the sequence of its
arguments�� we have the corresponding target relations

prove r��args�� Ths�Anc�

prove not r��args�� Ths�Anc�

which are to mean that r �or �r� can be proven from the facts and ground
hypotheses Ths with ancestor structure Anc
 These extra arguments are�

Ths is a list of ground instances of defaults
 These are the defaults we
have already assumed and so de�ne the context in which to prove
r��args��


Anc is a structure of the form anc�P�N� where P and N are lists of atoms

Interpreted procedurally� P is the list of positive �not negated� ances�
tors of the goal in a proof and N is the list of negated ancestors in a
proof
 As described in section � we conclude some goal if it uni�es with
its negated ancestors


Declaratively�

prove r��args�� Ths� anc�P�N��

is true when

F j�

�
� �
h�Ths

h

�
A 	

�
��
p�P

�p

�
A 	

� �
n�N

n

�
� r��args��

The de�nition of prove not r is the same except that �r��args�� ap�
pears in the place of r��args��


����� Explaining

There are two target relations for explaining associated with each source
relation r
 These are ex r and ex not r


For the source relation�
r��args��
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we have two target new relations for explaining r�

ex r��args�� Ths�Anc�Ans�

ex not r��args�� Ths�Anc�Ans�

These mean that r��args�� �or �r��args��� can be explained� with

Ths is the structure of the incrementally built hypotheses used in explaining
r
 There are two statuses of hypotheses we use� one the defaults that
are ground and so can be proven consistent at the time of generation�
the other the hypotheses with free variables at the time they are needed
in the proof� for which we defer consistency checking �in case the free
variables get instantiated later in the proof�
 Ths is essentially two
di�erence lists� one of the ground instances of defaults already proven
consistent and one of the deferred defaults
 Ths is of the form

ths�T�� T��D��D��

which is to mean� procedurally� that T� is the list of consistent ground
hypotheses before we try to explain r� and T� is T� together with the
consistent ground hypotheses assumed to explain r
 Similarly� D� is
the list of deferred hypotheses before we consider the goal and D� is
D� and the deferred hypotheses used in proving r


Anc contains the ancestors of the goal
 As for proving� this is a pair of the
form anc�P�N� where P is the list of positive ancestors of the goal� and
N is the list of negated ancestors of the goal


Ans contains the answers we are considering in di�erence list form ans�A�� A���
where A� is a disjunct of the answers before proving the goal� and A�

is the answers after proving the goal


The semantics of

ex r��args�� ths�T�� T��D��D��� anc�P�N�� ans�A�� A���

is de�ned by

F j�

�
� �
g�T�

g

�
A 	

�
� �
h�D�

h

�
A 	

�
��
p�P

�p

�
A 	

� �
n�N

n

�
� r��args�� 
A�
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where T�  T�� D�  D� and A�  A�� and such that

F � T� is consistent

The de�nition of ex not r is the same except that �r��args�� appears
in the place of r��args��


����� Building Atoms

The procedure new lit�Pre�x� Reln� Newargs� Newreln� constructs a new
atom� Newreln� with predicate symbol made up of Prefix prepended to
the predicate symbol of Reln� and taking as arguments the arguments of
Reln together with Newargs
 For example�

�� new lit��ex ��reln�a�b�c���T�A�B	�N�


yields

N � ex reln�a�b�c�T�A�B�

The procedure is de�ned as follows��

new�lit	Prefix� Reln� NewArgs� NewReln
 ��

Reln ��� Pred � Args��

name	Pred�PredName
�

append	Prefix� PredName� NewPredName
�

name	NewPred�NewPredName
�

append	Args� NewArgs� AllArgs
�

NewReln ��� NewPred � AllArgs��

��� Compiling Rules

The next simplest compilation form we consider is the intermediate form
called a �rule�
 Rules are statements of how to conclude the value of some
relation
 Each Theorist fact corresponds to a number of rules �one for each
literal in the fact�
 Each rule gets translated into Prolog rules to explain and
prove the head of the rule


�The verbatim code is actual implementation code given in standard Edinburgh nota�
tion� I assume that the reader is familiar with such notation�
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Rules use the intermediate form called a �literal�
 A literal is either an
atomic symbol or of the form n�A� where A is an atomic symbol
 A rule is
either a literal or of the form H � Body �written �if	H�Body
�� where H is
a literal and Body is formed from conjunctions and disjunctions of literals


We translate rules of the form

h��x��� b���x���� b���x���� ���� bn��xn���

into the internal form �assuming that h is not negated�

ex h��x�� ths�T�� Tn�D��Dn�� anc�P�N�� ans�A�� An�� � �
ex b���x��� ths�T�� T��D��D��� anc��h��x��jP 	� N�� ans�A�� A����
ex b���x��� ths�T�� T��D��D��� anc��h��x��jP 	� N�� ans�A�� A����
����
ex bn��xn�� ths�Tn��� Tn�Dn���Dn�� anc��h��x��jP 	� N�� ans�An��� An���

That is� we explain h if we explain each of the bi� accumulating the ex�
planations and the answers
 Note that if h is negated� then the head of
the clause will be of the form ex not h� and the ancestor form will be
anc�P� �h��x��jN 	�
 If any of the bi are negated� then the corresponding
predicate will be ex not bi


Example ��� the rule

gr�X�Y �� f�X�Z�� p�Z� Y �

gets translated into

ex gr�X�Y� ths�D�E�F�G�� anc�H� I�� ans�J�K�� � �
ex f�X�Z� ths�D�M�F�N�� anc��gr�X�Y �jH	� I�� ans�J�O���
ex p�Z� Y� ths�M�E�N�G�� anc��gr�X�Y �jH	� I�� ans�O�K���

To explain gr we explain both f and p
 The initial assumptions for f should
be the initial assumptions for gr� and the initial assumptions for p should be
the initial assumptions plus those made to explain f 
 The resulting assump�
tions after proving p are the assumptions made in explaining gr


Example ��� the fact

father�randy� jodi�
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gets translated into

ex father�randy� jodi� ths�T� T�D�D�� B� ans�A�A���

We can explain father�randy� jodi� independently of the ancestors� we need
no extra assumptions� and we create no extra answers


Similarly we translate rules of the form

h��x��� b���x���� b���x���� ���� bN��xn���

into

prove h��x�� T� anc�P�N�� � �
prove b���x��� T� anc��h��x��jP 	� N���
����
prove bn��xn�� T� anc��h��x��jP 	�N���

Example ��� the rule

gr�X�Y �� f�X�Z�� p�Z� Y �

gets translated into

prove gr�X�Y�D� anc�H� I�� � �
prove f�X�Z�D� anc��gr�X�Y �jH	� I���
prove p�Z� Y�D� anc��gr�X�Y �jH	� I���

That is� we can prove gr if we can prove f and p
 Having gr�X�Y � in the
ancestors means we can prove gr�X�Y � by assuming �gr�X�Y � and then
proving gr�X�Y �


Example ��� the fact

father�randy� jodi�

gets translated into

prove father�randy� jodi�A�B��

Thus we can prove father�randy� jodi� for any explanation and for any an�
cestors
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Disjuncts in the source body ��� get mapped into Prolog�s disjunction

The answers and assumed hypotheses should be accumulated from whichever
branch was taken
 This is then executed without mapping out subterms


Example ��� The rule

p�A�� q�A�� �r�A�� s�A�� t�A���m�A��

gets translated into

prove p�A�B� anc�C�D�� � �
prove q�A�B� anc��p�A�jC	�D���
� prove r�A�B� anc��p�A�jC	�D���

prove s�A�B� anc��p�A�jC	�D��
� prove t�A�B� anc��p�A�jC	�D����
prove m�A�B� anc��p�A�jC	�D���

ex p�A� ths�B�C�D�E�� anc�F�G�� ans�H� I�� � �
ex q�A� ths�B� J�D�K�� anc��p�A�jF 	�G�� ans�H�L���
� ex r�A� ths�J�M�K�N�� anc��p�A�jF 	� G�� ans�L�O���

ex s�A� ths�M�P�N�Q�� anc��p�A�jF 	� G�� ans�O�R��
� ex t�A� ths�J� P�K�Q�� anc��p�A�jF 	� G�� ans�L�R����
ex m�A� ths�P�C�Q�E�� anc��p�A�jF 	�G�� ans�R� I��

Note that P is the resulting explanation from either executing r and s or
executing t from the explanation J 


����� The Code to Compile Rules

The following relation builds the desired structure for the bodies�

make bodies�B�T� �Ths�Anc�Ans	� P roveB�ExB�

where B is a disjunct�conjunct of literals �the body of the rule�� T is a
scenario used in proving B� Ths is a theory structure for explaining� Anc
is an ancestor structure �of form anc�P�N��� Ans is an answer structure
�of form ans�A�� A���
 This procedure makes ProveB the body of forms
prove bi �or prove not bi�� and ExB a body of the forms ex bi
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make�bodies		H�B
� T� ths	T��T��D��D�
� Anc� ans	A��A�
��

	ProveH�ProveB
� 	ExH�ExB

 ��

��

make�bodies	H�T�ths	T��T��D��D�
�Anc�ans	A��A�
��ProveH�ExH
�

make�bodies	B�T�ths	T��T��D��D�
�Anc�ans	A��A�
��ProveB�ExB
�

make�bodies		H�B
�T�Ths�	ProveH�ProveB
�	ExH�ExB

 ��

��

make�bodies	H�T�Ths�ProveH�ExH
�

make�bodies	B�T�Ths�ProveB�ExB
�

make�bodies	n	A
� T� Ths�Anc�Ans�� ProveA� ExA
 ��

��

new�lit	�prove�not��� A� T�Anc�� ProveA
�

new�lit	�ex�not��� A� Ths�Anc�Ans�� ExA
�

make�bodies	A� T� Ths�Anc�Ans�� ProveA� ExA
 ��

new�lit	�prove��� A� T�Anc�� ProveA
�

new�lit	�ex��� A� Ths�Anc�Ans�� ExA
�

The procedure rule�R� declares R to be a fact rule
 R is either a literal
or of the form if�H�B� where H is a literal and B is a body


prolog cl�C� is a way of asserting to Prolog the clause C
 This can either
be asserted or written to a �le to be consulted or compiled
 The simplest
form is to just assert C


make anc�H� is a procedure which ensures that the ancestor search is set
up properly for H
 It is described in section �
�� and can be ignored on �rst
reading


rule	if	H�B

 ��

��

make�anc	H
�

make�bodies	H�T�Ths�Anc�Ans��ProveH�ExH
�

form�anc	H�Anc�Newanc
�

make�bodies	B�T�Ths�Newanc�Ans��ProveB�ExB
�

prolog�cl		ProveH��ProveB

�

prolog�cl		ExH��ExB

�
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rule	H
 ��

make�anc	H
�

make�bodies	H�T�ths	T�T�D�D
���ans	A�A
��ProveH�ExH
�

prolog�cl	ProveH
�

prolog�cl	ExH
�

form anc�L�A�� A�� means that A� is the ancestor form for subgoal L
with previous ancestor form A�


form�anc	n	G
� anc	P�N
� anc	P�G�N�

 �� ��

form�anc	G� anc	P�N
� anc	G�P��N

�

��� Forming Contrapositives

For facts we convert the user syntax into negation normal form �section 
���
form the contrapositives� and declare these as rules


Note that here we choose an arbitrary ordering for the clauses in the
bodies of the contrapositive forms of the facts
 No attempt has been made to
optimise this� although it is noted that some orderings may be more e�cient
than others �see for example ���	 for a discussion of such issues�


The declarations are as follows�

declare�fact	F
 ��

nnf	F�even�N
�

rulify	N
�

nnf �W��Parity�Nnf � �section 
�� means that Nnf is the negation normal
form of W� if Parity�even and of �W� if Parity�odd
 Note that we rulify
the normal form of the negation of the formula


rulify�N� where N is the negation of a fact in negation normal form �see
section 
��� means that all rules which can be formed from N �by allowing
each atom in N being the head of some rule� should be passed on to rule so
they can be compiled further
 This procedure is de�ned by induction on the
structure of the �rst argument


rulify		A�B

 �� ��

contrapos	B�A
�



A Theorist to Prolog Compiler ��

contrapos	A�B
�

rulify		A�B

 �� ��

rulify	A
�

rulify	B
�

rulify	n	A

 �� ��

rule	A
�

rulify	A
 ��

rule	n	A

�

contrapos�D�T � where �D�T � is �the negation of� a formula in negation
normal form means that all rules which can be formed from �D�T � with head
of the rule coming from T should be formed
 Think of D as the literals for
which the rules with them as heads have been formed� and T as those which
remain to be as the head of some rule
 This procedure considers the cases
that T could be in


contrapos	D� 	L�R

 �� ��

contrapos		R�D
�L
�

contrapos		L�D
�R
�

contrapos	D�	L�R

 �� ��

contrapos	D�L
�

contrapos	D�R
�

contrapos	D�n	A

 �� ��

rule	if	A�D

�

contrapos	D�A
 ��

rule	if	n	A
�D

�

Example ��� if we are to rulify the negation normal form

n�p�A��� q�A�� �r�A�� s�A�� t�A���m�A�

we generate the following rule forms� which can then be given to rule
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p�A�� q�A�� �r�A�� s�A�� t�A���m�A�
n�q�A��� �r�A�� s�A�� t�A���m�A�� n�p�A��
n�r�A��� s�A��m�A�� q�A�� n�p�A��
n�s�A��� r�A��m�A�� q�A�� n�p�A��
n�t�A��� m�A�� q�A�� n�p�A��
n�m�A��� �r�A�� s�A�� t�A��� q�A�� n�p�A��

Note that we always create as many rules as there are literals in the
original formula �given that we do not allow equivalences or exclusive�or�


��� Possible Hypotheses

The other class of things we have to worry about is the class of possible
hypotheses
 As described in ���	 and outlined in section �� we only need
worry about atomic possible hypotheses


If d��args�� is a possible hypothesis �default�� then we want to form the
target code as follows�

�
 We can prove a hypothesis if we have already assumed it�

prove d��args�� Ths�Anc� � �
member�d��args��� Ths��

�
 We can explain a default if we have already assumed it�

ex d��args�� ths�T� T�D�D�� Anc� ans�A�A�� � �
member�d��args��� T ��

�
 We can explain a hypothesis by assuming it� if it has no free variables�
we have not already assumed it and it is consistent with everything
assumed before�

ex d��args�� ths�T� �d��args��jT 	�D�D�� Anc� ans�A�A�� � �
variable free�d��args����
n�member�d��args��� T �
n� prove not d��args�� �d��args��jT 	� anc��	� �	���
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�
 If a hypothesis has free variables� it can be explained by adding it to
the deferred defaults list �making no assumptions about its consistency�
this will be checked at the end of the explanation phase��

ex d��args�� ths�T� T�D� �d��args��jD	� Anc� ans�A�A�� � �
n�variable free�d��args����

The following compiles defaults into such code�

declare�default	D
 ��

make�anc	D
�

new�lit	�prove���D�T����Pr�D
�

prolog�cl		Pr�D �� member	D�T


�

new�lit	�ex���D� ths	T�T�Defer�Defer
� �� ans	A�A
�� ExD
�

prolog�cl		ExD �� member	D� T


�

new�lit	�ex���D� ths	T�D�T��Defer�Defer
� �� ans	A�A
�� ExDass
�

new�lit	�prove�not���D� D�T��anc	���
��Pr�not�D
�

prolog�cl		ExDass �� variable�free	D
� ��member	D�T
�

��Pr�not�D

�

new�lit	�ex���D� ths	T�T�Defer�D�Defer�
� �� ans	A�A
�� ExDefer
�

prolog�cl		ExDefer �� �� variable�free	D


�

Example ��	 The default

birds�y�A�

gets translated into

prove birds�y�A�B�C� � �
member�birds�y�A�� B�

ex birds�y�A� ths�B�B�C�C��D� ans�E�E�� � �
member�birds�y�A�� B�

ex birds�y�A� ths�B� �birds�y�A�jB	� C�C��D� ans�E�E�� � �
variable free�birds�y�A���
n�member�birds�y�A�� B��
n�prove not birds�y�A� �birds�y�A�jB	� anc��	� �	��

ex birds�y�A� ths�B�B�C� �birds�y�A�jC	��D� ans�E�E�� � �
n�variable free�birds�y�A��
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��� Ancestor Search

Our model elimination theorem prover must recognise that a goal has been
proven if it uni�es with an ancestor in the search tree
 To do this� it keeps
two lists of ancestors� one containing the positive �non negated� ancestors
and the other the negated ancestors
 At run�time it searches one of these
lists for an ancestor that uni�es with the current goal


At compile time we add such rules for each predicate symbol
 When the
ancestor search rules for predicate p are de�ned� we assert ancestor recorded�p��
so that we do not attempt to rede�ne the ancestor search rules


make anc�L� tells the system that it should make the ancestor search
rules for the literal L
 This is called for each predicate that is used in a rule
�section �
�� or default �section �
��


make�anc	Name
 ��

ancestor�recorded	Name
�

��

make�anc	n	Goal

 ��

��

make�anc	Goal
�

make�anc	Goal
 ��

Goal ��� Pred�Args��

same�length	Args�Nargs
�

NG ��� Pred�Nargs��

make�bodies	NG���ths	T�T�D�D
�anc	P�N
�ans	A�A
��ProveG�ExG
�

make�bodies	n	NG
���ths	T�T�D�D
�anc	P�N
�ans	A�A
��ProvenG�ExnG
�

prolog�cl		ProveG �� member	NG�N


�

prolog�cl		ProvenG �� member	NG�P


�

prolog�cl		ExG �� member	NG�N


�

prolog�cl		ExnG �� member	NG�P


�

assert	ancestor�recorded	NG

�

Example ��
 If we call

make anc�gr�A�B��

we create the Prolog clauses
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prove gr�A�B�C� anc�D�E�� � �
member�gr�A�B�� E��

prove not gr�A�B�C� anc�D�E�� � �
member�gr�A�B��D��

ex gr�A�B� ths�C�C�D�D�� anc�E�F �� ans�G�G�� � �
member�gr�A�B�� F ��

ex not gr�A�B� ths�C�C�D�D�� anc�E�F �� ans�G�G�� � �
member�gr�A�B�� E��

This is only done once for the gr relation


��� Explaining Observations

expl�G�T�� T�� Ans� means that T� is an explanation of Ans �Ans being the
disjunct of alternate answers� from the facts given T� is already assumed

The query G is an arbitrary w�


expl	G�T��T��Ans
 ��

ground	N
�

declare�fact	����	newans	N�G
 � G

�

ex�newans	N�G�ths	T��T���D
�anc	���
�ans	G�Ans

�

ground	D
�

check�consis	D�T�T�
�

check consis�D�T�� T��� where D is a set of hypotheses and T� is a set
of hypotheses consistent with the facts� is true if T� is T� together with D
and is consistent with the facts


check�consis	��T�T
�

check�consis	H�D��T��T
 ��

new�lit	�prove�not��� H�T��anc	���
�� Pr�n�H
�

�� Pr�n�H�

check�consis	D�H�T���T
�

ground�D� means that D is made ground by substituting unique con�
stants for the variables


To obtain disjunctive answers we have to know if the negation of the top
level goal is called
 This is done by declaring the fact newans�N�G� � G�
and if we ever try to prove the negation of a top level goal� we add that
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instance to the list of alternate answers
 The index N is used to ensure that
di�erent proofs do not interfere with each other� we only want to use the new
possible answer for the correct goal


�� dynamic ex�not�newans���

ex�not�newans	N�G�ths	T�T�D�D
�anc	Pos�Neg
�ans	A�	G�A


 ��

member	newans	N��
�Pos
�

Although it does not make a di�erent to correctness� it is important for
e�ciency to remove old instances of rules for newans
 We currently do this
by making sure that we always �nd all proofs and then removing the asserted
clauses
 This can be done simply by writing prolog cl such that it retracts
the clause when it is backtracked over


� Interface

In this section a minimal interface is given
 We try to give enough so that
we can understand the conversion of the w� form into negation normal form
��	 and the parsing of facts and defaults
 There is� of course� much more in
any usable interface than described here


��� Syntax Declarations

All of the declarations we use will be de�ned as operators
 This will allow us
to use in�x forms of our w�s� for extra readability
 Here we use the standard
Edinburgh operator declarations which are given in the spirit of being enough
to make the rest of the description self�contained


�� op	�����fx�fact
�

�� op	�����fx�default
�

�� op	�����fx�predict
�

�� op	�����fx�explain
�

�� op	�����xfx��
�

�� op	�����xfx���
�

�� op	�����xfx���
�

�� op	�����xfy�or
�

�� op	�����xfy�and
�
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�� op	�����xfy��
�

�� op	����fy��
�

�� op	����fy�not
�

��� Converting to Negation Normal Form

We want to convert an arbitrarily complex formula into a standard form
called negation normal form
 Negation normal form ��	 of a formula is a
logically equivalent formula consisting of conjunctions and disjunctions of
literals �either an atom or of the form n�A� whereA is an atom�
 The relation
de�ned here puts formulae into negation normal form without distributing

Usually we want to �nd the negation normal form of the negation of the
formula� as this is the form suitable for use in the body of a rule


The predicate used is of the form

nnf�Fla� Parity�Body�

where

Fla is a formula with input syntax

Parity is either odd or even and denotes whether Fla is in the context of
an odd or even number of negations


Body is a tuple which represents the negation normal form of the negation
of Fla if Parity is even and the negation normal form of Fla if Parity
is odd


This is de�ned by covering all of the forms that the formula could take


nnf		X �� Y
� P�B
 �� ��

nnf		Y or not X
�P�B
�

nnf		Y �� X
� P�B
 �� ��

nnf		Y or not X
�P�B
�

nnf		X � Y
� P�B
 �� ��

nnf		X and Y
�P�B
�

nnf		X � Y
� P�B
 �� ��

nnf		X and Y
�P�B
�

nnf		X � Y
� P�B
 �� ��
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nnf		X or Y
�P�B
�

nnf		X and Y
�P�B
 �� ��

opposite�parity	P�OP
�

nnf		not X or not Y
�OP�B
�

nnf		X or Y
�even�	XB�YB

 �� ��

nnf	X�even�XB
�

nnf	Y�even�YB
�

nnf		X or Y
�odd�	XB�YB

 �� ��

nnf	X�odd�XB
�

nnf	Y�odd�YB
�

nnf		� X
�P�B
 �� ��

nnf		not X
�P�B
�

nnf		not X
�P�B
 �� ��

opposite�parity	P�OP
�

nnf	X�OP�B
�

nnf	F�odd�F
�

nnf	n	F
�even�F
 �� ��

nnf	F�even�n	F

�

opposite�parity	even�odd
�

opposite�parity	odd�even
�

Example ��� the w�

�a or not b� and c � d and �not e or f�

with parity odd gets translated into

d� �n�e�� f��n�a�� b�n�c�

the same w� with parity even �i
e
� the negation of the w�� has negation
normal form�

�n�d�� e� n�f��� �a�n�b��� c

��� Theorist Declarations

The following de�ne a subset of the Theorist declarations
 Essentially these
operators just call the appropriate compiler instruction
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fact F �� declare�fact	F
���

default N � H ��

��

declare�default	N
�

declare�fact		H ��N

�

��

default N ��

declare�default	N
�

��

The explain command writes out all explanations for instances of the
query�

explain G ��

expl	G���D�A
�

write	D�� is an explanation for ��A�
�

fail�

��� Prediction

In ���	 we present a sceptical view of prediction� arguing that one should
predict what is in every extension
 This� propositionally at least� corresponds
to circumscription ���	
 The following theorem proved in ���� theorem �
	 �a
similar theorem has been given by Ginsberg ���	 for circumscription under
the unique names and domain closure assumptions� gives us a hint as to how
prediction can be implemented


Theorem ��� g is in every extension of �F ��� i� there exists a set  of
explanations of g such that there is no scenario of �F ��� inconsistent with
every member of  
�

We can use theorem 
� to consider another way to view membership in
every extension
 Consider two antagonistic agents Y and N trying to deter�
mine whether g should be predicted or not
 Y comes up with explanations
of g� and N tries to �nd where these explanations fall down �i
e
� tries to �nd

�In other words there is no explanation of the negation of the disjunct of the elements
of �
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a scenario S which is inconsistent with all of Y �s explanations�
 Y then tries
to �nd an explanation of g given S
 If N cannot defeat Y �s explanations
then g is in every extension �one of Y �s explanations is in every extension��
and if Y cannot �nd an explanation from some S constructed by N then g
is not in every extension �in particular g is not in any extension of S�


A direct implementation of such a procedure would have the protocol
���	�

� First Y �nds an explanation of g� then N tries to �nd an explanation
of the negation of that explanation


� When N succeeds in �nding a counter argument Y retries to �nd an�
other explanation


� When Y succeeds in �nding another explanation� N is restarted to
�nd an explanation for the negation of this explanation �as well as the
negation of the other explanations�


Unfortunately the protocol of having two processes where one is retried
when the other succeeds cannot be implemented in sequential Prolog�


There seems to be two ways to implement the procedure in sequential
Prolog�

�
 We can let the Y process run its full course and then let N �nd counter
explanations to all of the explanations


�
 We can letN be the master process that calls Y to produce explanations
as needed


The following sections give implementations of both of these approaches

Note that both of these implementations only work for testing whether a
ground atom is in all extensions
 They do not do answer extraction ���	


��� Generate Explanations First

The following code implements the idea of generating all explanations of the
query� and then �nding counter arguments
 What we really want is for the

�The problem is that we need two stacks for the processes� as one is expanding and
shrinking when the other is waiting for a retry�
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�rst �bagof� to generate the explanations in a demand�driven fashion� and
then just print the explanations needed


predict�G� is true for ground G is G is in all extensions of the facts and
possible hypotheses

predict G ��

bagof	E�expl	G���E�G
�Es
�

predct	G�Es
�

predct�G�Es� whereEs is the set of explanations ofG determines whether
there is a counter to all of the explanations Es


predct	G�Es
 ��

find�counter	Es���S
���

write	�No� ��G�� cannot be explained from ��S�
�

predct	G�Es
 ��

write	�Yes� ��G�� is in all extensions� Explanations are���Es�
�

find counter�Es� S�� S�� where Es is a list of explanations� and S� is a
scenario� is true if S� is a scenario that is a superset of S� that is inconsistent
with every element of Es


find�counter	��S�S
�

find�counter	E�R��S��S�
 ��

member	D�E
�

expl	n	D
�S��S��n	D

�

find�counter	R�S��S�
�

��� Generate Explanations on Demand

The alternate de�nition is where N is the master process and can call Y
to generate new explanations
 The ine�ciency here is due to Y having to
restart from scratch each time
 The other thing we need to notice is that N
should not consider every permutation of explanations if it fails to �nd an
explanation
 This is why there is a cut after generating Y �s explanations


pred��G�S� is true if G is in every extension of �F � S���


pred�	G�S
 ��

expl	G���E�G
�
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check�consis	E�S��
�

��

�� 		 member	D�E
�

expl	n	D
�S�S��n	D

�

�� pred�	G�S�


�

This prccedure is similar to the previous de�nition except when we are
trying to �nd an alternate explanation given a counter argument
 Instead
of considering the next element in the list of all explanations� we generate a
new explanation from scratch


This procedure is much more e�cient that the �rst one when there are
many explanations but only one or a few are needed in order to establish
that the goal is in all extensions
 However� it is much less e�cient than the
�rst procedure if many of the explanations are needed in order to establish
that the goal is in all extensions


Note that both of these procedures are concrete implementations of the
abstract dialectical procedure for implementingmembership in all extensions

This abstract procedure could be more accurately implemented by having
multiple processes each computing explanations


��� Comparison with other implementations

Independently of the work described in this paper� others have developed
very similar procedures to the one presented here� as implementations of
circumscription ���� ��	
 These� however have not at all concentrated on
e�ciency issues as we have here
 The algorithms of both Ginsberg ���	 and
Przymusinski ���	 can be seen as variants of the �rst way �generating all
explanations �rst� to implement membership in all extensions


To aid the reader we give a vocabulary transform to understand the dif�
ference between Przymusinski�s algorithm and ours


First note that �xed predicates can be treated in Theorist by having both
the predicate and its negation as a possible hypothesis ��	


Second� where this treat the problem of explanation as assuming hypothe�
ses to imply a goal�

F j� h� 	 h� 	 ��� 	 hn � g

it can also be viewed as �nding the consequence of the negated goal

F j� �g � �h� 
 �h� 
 ��� 
 �hn
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Our sets of explanations are implicitly disjoined� whereas in the consequence
form they are conjoined


Our implementation of explanation can be seen as a MESON version
of Przymusinski�s MILO resolution which is based on ordered linear resolu�
tion
 The MILO leaves correspond to explanations �but negated as above�

Deriv�T�C� is the negation of the disjunct of explanations


One main di�erence is that we try to check consistency as soon as possible�
if an explanation is inconsistent� we want to know so that the search space
can be reduced


Przymusinski�s algorithm ���	 and Ginsberg�s algorithm ���	 correspond
to the �rst implementation of membership in all extensions


� Re�nements

In this paper we have given the bare bones of our compiler
 The details should
be enough to build an implementation
 There are a number of re�nements
that we have implemented that are not presented here
 Most of these are
compiler switches� so that these re�nements can be turned on and o� for
experimental purposes


��� Sound Uni�cation

The theorem prover we have given here is not sound because of the lack
of the �occurs�check� in Prolog uni�cation
 We have not concentrated on
it here as it is well covered by Stickel ���� ��	
 Like Stickel� the Theorist
implementation uses the idea of Plaisted ���	
 When compiling rules� if there
are two occurrences of a variable in the head of a clause� they are made into
di�erent variables and are uni�ed at run time� with an occurs check


For the common�sense reasoning examples we have been using� the occurs
check has not been found to be a problem
 Unlike theorem proving applica�
tions� we tend not to �nd �tricky� deductions �although I am sure we will
be able to �nd them�
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��� Depth	bound and Iterative Deepening

The second aspect that Stickel ���� ��	 concentrated on was in the incom�
pleteness of Prolog in that it can search in�nite search branches even if there
is a solution
 We have implemented a depth�bound search by modifying
make anc to add a rule to cut the search if a depth�bound is exceeded
 Iter�
ative deepening can be implemented using this depth�bound by increasing it
iteratively
 The only problem is that we have to know whether a failure was
due to natural causes �in which case it should be regarded as a �nite failure��
or whether it was due to the depth�bound being reached �in which case the
depth�bound should be increased�


Again the pro�le of problems we have been considering has been di�erent
from theorem proving problems �e
g
� in Stickel�s tests ���	�
 Rather than
all of our problems having trees with a large branching factor and some
proofs at low depths� often the system is used more like a more powerful
logic programming language� where the users ensure that the search trees
are sparse �which is what we encourage them to do�
 As �rst pointed out by
Meltzer ���	� depth�bounds seem to be almost essential for any hypothetico�
deductive account of reasoning
 We are trying to empirically verify this� by
trying to determine when a depth�bound is appropriate and needed


��� Loop Check

Once we have an ancestor search� it is an easy matter to add a �loop check�

This is implemented by having make anc add a rule that cuts the search
space if there is an ancestor in the tree that is identical	 to the current
subgoal ���	
 This is accomplished by searching the opposite ancestor list to
that searched by the ancestor search


��� Combining Explanation and Prediction

One useful architecture for default and abductive reasoning is where ex�
planation and prediction are combined into one system ���� ��	
 Given an
observation� we abduce to causes and then predict what follows from these
hypothesises causes
 To implement this� for each Theorist predicate p we cre�
ate Prolog predicates prove p �p can be proven from the facts�� ex p �p can

�Using the ���� of Edinburgh�syntax Prologs�



A Theorist to Prolog Compiler �

be explained using defaults and conjectures�� predict p �p can be explained
using defaults only�� and their negative forms
 The ex p and predict p pred�
icates are like the ex p predicates used in this paper except they use di�erent
sets of possible hypotheses


��� Incremental Explanations and Observations

When explaining observations in abductive reasoning� we would like to be
able to incrementally add observations to be explained
 One of the ideas
we are experimenting with is to maintain the set of minimal and least pre�
sumptive ���	 explanations so that new observations can be explained incre�
mentally from the previous explanations
 Whether such an idea can work in
general� or whether one always runs out of space is something we are trying
to investigate


��� Simplifying and Pruning Explanations

The implementation �nds one explanation for each proof
 This does not guar�
antee that the explanations found will be either minimal or least presumptive
���	
 We make sure that we do not have repeated instances of assumptions
in the same explanation� another proof� however� may have needed a subset
of the explanations


Removing redundant explanations can be done at the end of the proof�
but it would undoubtedly be better to not generate explanations that would
be pruned
 We are currently investigating two di�erent strategies to handle
this
 The �rst is to use the idea of the previous section to �nd all explanations
of part of the observations� prune the explanations that are not minimal and
then try and explain further observations
 The second idea is to build partial
explanations� and to prune as soon as possible ���	


��� Explaining Answers

One feature of an expert system that makes it useful is the ability to ex�
plain answers
 It is easy to add an extra argument to the Prolog predicates
produces to return the proof tree� so that a Shapiro�like ��	 debugging al�
gorithm can be used
 So far we have only built a simple debugger that can
allow the user to traverse a proof tree




A Theorist to Prolog Compiler ��

��
 Answer Extraction

One of the features of Theorist is that it always returns an explanation

What one knows is that there is a logical implication from the explanation
given to the goal presented
 Thus instead of the system making defeasible
inferences� the explicit assumptions are returned so that the user can decide
whether or not to accept them
 This is most important for the membership
in all extensions� where we either return the explanations that support the
goal �and whose negation cannot be explained�� or the scenario from which
the goal cannot be explained


One of the problems with the algorithm presented is that it returns a set
of all explanations for the goal� rather than a minimal set of explanations
of the goal
 This also manifests itself in the inability to return disjunctive
answers from membership in all extensions ���	


��� Re�ned Ancestor Search

One of the big problems that has not been addressed in this paper is the prob�
lem of removing redundant proofs
 This has been found in practice� to be
one of the biggest problems of using the MESON proof procedure
 The prob�
lem is that whenever there is an ancestor resolution� there is always another
proof tree that does the same ancestor resolution� but with the contrapositive
of the intermediate rules
 This problem also manifests itself in having non
minimal disjunctive answers and being able to prove di�erent permutations
of disjunctive answers
 While we could have solved this problem by hiding
it in the simpli�cation of explanations and answers� we preferred to have the
problem in the open so that it could be solved in a clean way
 One suggestion
for solving this problem has been given by Spencer ���	


� Runtime Considerations

What is given here is the core part of our current implementation of Theorist

This code has been used with Waterloo Unix Prolog� Quintus Prolog� C�
prolog and Mac�Prolog
 For those Prologs with compilers we can compile
the resulting code from this translator as we could any other Prolog code�
this makes it very fast indeed




A Theorist to Prolog Compiler ��

The resulting code when the Theorist code is of the form of de�nite clauses
�the only case where a comparison makes sense� as it is what the two systems
have in common�� runs at about one quarter the speed of the corresponding
interpreted or compiled code of the underlying Prolog system
 About half
of this extra cost is for the extra arguments to unify
 The other factor is for
one membership of an empty list for each procedure call� for each procedure
call� we do one extra Prolog call to determine if the subgoal is a member
of the negative ancestor list� which immediately fails
 For de�nite clauses�
contrapositives of the clauses are never used


It may seem as though Theorist is always slower than Prolog
 At one
level of description this is obvious� as Theorist compiles to Prolog� it cannot
be faster
 It sometimes occurs that the natural Theorist description of a
problem compiles into such e�cient code� that it takes a very convoluted
Prolog program to produce the same e�ciency
 One example of this is for
the n�queens problem��


Example 
�� Consider the Theorist representation of the � queens problem

r�N� is true if there is a queen in row N 
 q�M�N� is true if there is a queen
in column M and row N 
 The facts specify the constraints on queens� in a
standard way of stating how constraints on the numerical values of rows and
columns
 As the described implementation of Theorist does not use built�in
functions� we axiomatise addition of positive integers pplus


fact r	�
 and r	�
 and r	�
 and r	�
 and r	�
 and r	�
 and r	�


and r	�
 �� goal�

fact q	X�Y
 �� r	Y
�

default q	��X
�

default q	��X
�

default q	��X
�

default q	��X
�

default q	��X
�

default q	��X
�

default q	��X
�

default q	��X
�

fact not q	X�Y
 �� q	X�Z
� lt	Z�Y
�

�	Of course one would not really want to use depth�	rst search for this problem� but
that is not the point here�
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fact not q	X�Y
 �� q	W�Z
 �

	 pplus	X�D�W
�	pplus	Y�D�Z
� pplus	Z�D�Y



� pplus	W�D�X
�pplus	Y�D�Z
 
�

fact lt	X�Y
 �� pplus	X�Z�Y
�

fact pplus	������
�

fact pplus	������
�

 other relations for pplus

fact pplus	�����
�

fact pplus	�����
�

The reason that this is e�cient for a depth��rst search is that the use of
incremental consistency checking means that bad partial solutions are pruned
as quickly as possible
 To do this in Prolog requires a much less intuitive
de�nition than the Theorist one presented here


	 Conclusion

This paper has described in detail how we can translate Theorist code into
Prolog so that we can use the advances in Prolog implementation technology


We are currently working on many applications of default and abductive
reasoning
 Hopefully with compilers based on the ideas presented in this
paper we will be able to take full advantage of advances in Prolog imple�
mentation technology while still allowing �exibility in speci�cation of the
problems to be solved


Appendix
 A Detailed Example

Consider the Theorist code�

fact emu�A� �� bird�A�

default birds�y�A�� bird�A� �� �ies�A�

fact not �birds�y�A� and emu�A��

fact emu�tweety�

fact bird�polly�


This appendix will show the exact code that this Theorist fragment gets
compiled to according to the code in this paper
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fact emu�A� �� bird�A�


gets translated into the forms for computing ancestor search for birds�

prove�bird	A�B�anc	C�D

 ��

member	bird	A
�D
�

prove�not�bird	A�B�anc	C�D

 ��

member	bird	A
�C
�

ex�bird	A�ths	B�B�C�C
�anc	D�E
�ans	F�F

 ��

member	bird	A
�E
�

ex�not�bird	A�ths	B�B�C�C
�anc	D�E
�ans	F�F

 ��

member	bird	A
�D
�

the rules for explaining and proving something is a bird�

prove�bird	A�B�anc	C�D

 ��

prove�emu	A�B�anc	bird	A
�C��D

�

ex�bird	A�B�anc	C�D
�E
 ��

ex�emu	A�B�anc	bird	A
�C��D
�E
�

the ancestor search for emus�

prove�emu	A�B�anc	C�D

 ��

member	emu	A
�D
�

prove�not�emu	A�B�anc	C�D

 ��

member	emu	A
�C
�

ex�emu	A�ths	B�B�C�C
�anc	D�E
�ans	F�F

 ��

member	emu	A
�E
�

ex�not�emu	A�ths	B�B�C�C
�anc	D�E
�ans	F�F

 ��

member	emu	A
�D
�

and the rules for explaining and proving something is a not an emu�

prove�not�emu	A�B�anc	C�D

 ��

prove�not�bird	A�B�anc	C�emu	A
�D�

�

ex�not�emu	A�B�anc	C�D
�E
 ��

ex�not�bird	A�B�anc	C�emu	A
�D�
�E
�

The input�

default birds�y�A�� bird�A� �� �ies�A�
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gets translated into

default birds�y�A�


which compiles into�

prove�birdsfly	A�B�anc	C�D

 ��

member	birdsfly	A
�D
�

prove�not�birdsfly	A�B�anc	C�D

 ��

member	birdsfly	A
�C
�

ex�birdsfly	A�ths	B�B�C�C
�anc	D�E
�ans	F�F

 ��

member	birdsfly	A
�E
�

ex�not�birdsfly	A�ths	B�B�C�C
�anc	D�E
�ans	F�F

 ��

member	birdsfly	A
�D
�

prove�birdsfly	A�B�C
 ��

member	birdsfly	A
�B
�

ex�birdsfly	A�ths	B�B�C�C
�D�ans	E�E

 ��

member	birdsfly	A
�B
�

ex�birdsfly	A�ths	B�birdsfly	A
�B��C�C
�D�ans	E�E

 ��

variable�free	birdsfly	A

�

��member	birdsfly	A
�B
�

��prove�not�birdsfly	A�birdsfly	A
�B��anc	���

�

ex�birdsfly	A�ths	B�B�C�birdsfly	A
�C�
�D�ans	E�E

 ��

��variable�free	birdsfly	A

�

and the fact rule

�ies�A��bird�A��birds�y�A��

which is compiled into

prove�flies	A�B�anc	C�D

 ��

member	flies	A
�D
�

prove�not�flies	A�B�anc	C�D

 ��

member	flies	A
�C
�

ex�flies	A�ths	B�B�C�C
�anc	D�E
�ans	F�F

 ��

member	flies	A
�E
�

ex�not�flies	A�ths	B�B�C�C
�anc	D�E
�ans	F�F

 ��

member	flies	A
�D
�
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prove�flies	A�B�anc	C�D

 ��

prove�bird	A�B�anc	flies	A
�C��D

�

prove�birdsfly	A�B�anc	flies	A
�C��D

�

ex�flies	A�ths	B�C�D�E
�anc	F�G
�ans	H�I

 ��

ex�bird	A�ths	B�J�D�K
�anc	flies	A
�F��G
�ans	H�L

�

ex�birdsfly	A�ths	J�C�K�E
�anc	flies	A
�F��G
�ans	L�I

�

and the fact rule

�bird�A�� ��ies�A��birds�y�A��

which is compiled into

prove�not�bird	A�B�anc	C�D

 ��

prove�not�flies	A�B�anc	C�bird	A
�D�

�

prove�birdsfly	A�B�anc	C�bird	A
�D�

�

ex�not�bird	A�ths	B�C�D�E
�anc	F�G
�ans	H�I

 ��

ex�not�flies	A�ths	B�J�D�K
�anc	F�bird	A
�G�
�ans	H�L

�

ex�birdsfly	A�ths	J�C�K�E
�anc	F�bird	A
�G�
�ans	L�I

�

and the fact rule

�birds�y�A�� ��ies�A��bird�A��

which is compiled into

prove�not�birdsfly	A�B�anc	C�D

 ��

prove�not�flies	A�B�anc	C�birdsfly	A
�D�

�

prove�bird	A�B�anc	C�birdsfly	A
�D�

�

ex�not�birdsfly	A�ths	B�C�D�E
�anc	F�G
�ans	H�I

 ��

ex�not�flies	A�ths	B�J�D�K
�anc	F�birdsfly	A
�G�
�ans	H�L

�

ex�bird	A�ths	J�C�K�E
�anc	F�birdsfly	A
�G�
�ans	L�I

�

The next declaration is

fact not �birds�y�A� and emu�A��


This gets translated into
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prove�not�birdsfly	A�B�anc	C�D

 ��

prove�emu	A�B�anc	C�birdsfly	A
�D�

�

ex�not�birdsfly	A�ths	B�C�D�E
�anc	F�G
�ans	H�I

 ��

ex�emu	A�ths	B�C�D�E
�anc	F�birdsfly	A
�G�
�ans	H�I

�

prove�not�emu	A�B�anc	C�D

 ��

prove�birdsfly	A�B�anc	C�emu	A
�D�

�

ex�not�emu	A�ths	B�C�D�E
�anc	F�G
�ans	H�I

 ��

ex�birdsfly	A�ths	B�C�D�E
�anc	F�emu	A
�G�
�ans	H�I

�

fact emu�tweety�


gets translated into

prove�emu	tweety�A�B
�

ex�emu	tweety�ths	A�A�B�B
�C�ans	D�D

�

fact bird�polly�


gets translated into

prove�bird	polly�A�B
�

ex�bird	polly�ths	A�A�B�B
�C�ans	D�D

�
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