A simple approach to Bayesian network computations

Keywords:
networks, algorithm

Nevin Lianwen Zhang
Department of Computer Science

Hong Kong University of Science and Technology
Clear Water Bay, Kowloon, Hong Kong

Abstract

The general problem of computing poste-
rior probabilities in Bayesian networks is
NP-hard (Cooper 1990). However efficient
algorithms are often possible for particular
applications by exploiting problem struc-
tures. It is well understood that the key
to the materialization of such a possibil-
ity 1s to make use of conditional indepen-
dence and work with factorizations of joint
probabilities rather than joint probabilities
themselves. Different exact approaches can
be characterized in terms of their choices of
factorizations. We propose a new approach
which adopts a straightforward way for fac-
torizing joint probabilities. In comparison
with the clique tree propagation approach,
our approach is very simple. It allows the
pruning of irrelevant variables, it accommo-
dates changes to the knowledge base more
easily. 1t is easier to implement. More
importantly, it can be adapted to utilize
both intercausal independence and condi-
tional independence in one uniform frame-
work. On the other hand, clique tree prop-
agation is better in terms of facilitating pre-
computations.

reasoning under uncertainty, Bayesian

David Poole
Department of Computer Science
University of British Columbia
Vancouver, B.C., V6T 172, Canada

1 Introduction

Several exact approaches to the computing of pos-
terior probabilities in Bayesian networks have been
proposed, studied, and some of them implemented.
The one that is most well known is clique tree propa-
gation, which has been developed over the past few
years by Pearl (1988), Lauritzen and Spiegehalter
(1988), Shafer and Shenoy (1988), and Jensen et al
(1990). Other approaches include Shachter’s arc rever-
sal node reduction approach (Shachter 1988), symbolic
probabilistic inference first proposed by D’Ambrosio
(Shachter et al 1990), recursive decomposition by
Cooper (1992), and component tree propagation by
Zhang and Poole (1992).

This paper grew out of an attempt to understand those
approaches and the relationships among them. We
asked ourselves: are there any common principles that
underlie all those approaches? If yes, what are the
choices that render them different from one another?
What are the advantages and disadvantages of these
choices? Are there any better choices and/or any bet-
ter combinations of choices?

Shachter et al (1992) has demonstrated the similarities
among the various approaches. In this paper, we are
more interested in the differences among them.

Cooper (1990) has proved that the general problem
of computing posterior probabilities in Bayesian net-
works 1s NP-hard. In particular applications, however,
it 1s often possible to compute them efficiently by ex-
ploiting the problem structures. The key technique
that enables the materialization of such a possibility,
as pointed out by Shafer and Shenoy (1988), is to work
with factorizations of joint probabilities rather than
the joint probabilities themselves. What all the ex-
act approaches have in common is that they all adopt
this technique, while they differ in their own choices
of factorizations.

These understandings lead to a new approach that
chooses a straightforward factorization for joint prob-
abilities. Though very simple, the new approach
has several advantages over clique tree propagation

in terms of pruning irrelevant variables, accommodat-
ing changes to the knowledge base and easiness of im-
plementation. It also leads to a uniform framework
for utilizing both conditional and intercausal indepen-
dence. The only disadvantage we can think of is that
it does not facilitate precomputation.

The organization of the paper is as follows. Prelimi-
nary definitions are given in section 2. Section 3 re-
views results concerning the irrelevance of variables
to a query. After the removal of irrelevant variables,
queries about posterior probabilities can be trans-
formed into a standard form, i.e queries about mar-
ginal probabilities. For technical convenience, further
exposition will be carried out in terms of potentials
rather the probabilities (section 4). In section 5, we il-
lustrate the technique of working with factorizations of
joint potentials. The subproblem of data management
is identified in section 6. Clique tree propagation is
one solution to this subproblem. A new and very sim-
ple solution is proposed in section 7, which is based on
a simple way for factorizing joint potentials. In section
8, we compare the solution to clique tree propagation.
Some conclusions are provided in section 9.

2 Preliminaries

We begin by giving a definition of Bayesian networks.
A Bagyesian network N is a triplet (V, A, P), where

1. V 1s a set of variables.

2. A is a set of arcs, which together with V' consti-
tutes a directed acyclic graph G = (V, A).

3. P = {P(v|my) : v € V}, where m, stands for
the set of parents of v. In words, P is the set
the conditional probabilities of the all variables
given their respective parents .

Figure 1 show a simple Bayesian network net1 with
seven variables a, b, ¢, d, e, f, and ¢g. The network
contains the following prior and conditional probabil-
ities: P(a), P(fl|a), P(bla), P(c|b), P(d|b), P(e|ec,d),
and P(g|f,e).

Note that variables in a Bayesian network will be re-
ferred as nodes when they are viewed as members of
the underlying graph. Also note that the graphical
structure of a Bayesian network can be read from the
set of the prior and conditional probabilities. So, we
can use the symbol A to refer to the set of prior and
conditional probabilities P without causing any con-
fusion.

The prior joint probability Py of a Bayesian network
N is defined by

!Note that when v is a root, m, is empty. In such a
case, the expression P(v|r,) simply stands for the prior
probability of v.

©

netl net2 net3

Figure 1: Bayesian network and irrelevant variables.

Py(V) =[] P(vlm). (1)

veEV

For example, the prior joint probability P,.¢; of neti
is given by

Ppetn(a,bye,de, fog)=
P(a)P(fla)P(bla)P(c|b)P(d[b)P(elc,d)P(g]f,e).

For any subset X of V', the marginal probability Py(X)
is defined by

Py(X)= > Py(V).

Some variables may be observed to have specific val-
ues. For example, the variable b in net1 may be ob-
served to be a specific value by. Let Y C V be the
set of variables observed and Y; be the corresponding
set of values. Let X C V be the set of variables of
interest. The posterior probability Py (X|Y = Yy) of
X 1s defined by

Py(X,)Y =Yy)
Py XY =Y)) = —F7. 2
The problem of concern to this paper is how to com-
pute Py(X|Y = Yy)?

3 Irrelevant variables and standard
queries

Given a query to a Bayesian network A, it is often
possible to graphically identify certain variables be-
ing irrelevant to the query. This issue is addressed in
Geiger et al (1990), Lauritzen et al (1990), and Baker
and Boult (1990). The materials in this section are
extracted from those papers.

To remove a node v from a Bayesian network N =
(V, A, P) is to: (1) remove v from V, (2) remove from
A all the arcs that contain v, (3) remove from P all the
items that involve v, and (4) set the prior probabilities

for all the nodes, if any, that become roots? because
of the removal to be the uniform distribution.

A node in a Bayesian network A is leaf if it has no
children. A node is barren w.r.t a query Py (X|Y =
Yy), if it is a leaf and it is not in X UY. In net1, ¢ is
barren w.r.t Pnet1(elb = by).

Theorem 1 Suppose N is a Bayesian network, and
v 15 a leaf node. Let N' be the Bayesian network ob-
tained from N by removing v. If v is barren w.r.t to
the query Par(X|Y =Y0), then

Py(X[Y = Y5) = Py (XY = Vo). (3)

Consider computing Pp.s1(e|lb = bg). The node g is
barren w.r.t the query and hence irrelevant. According
to Theorem 1, g can be harmlessly removed. This cre-
ates a new barren node f. After the removal of ¢ and
f, net1 becomes net2. Thus the query P,.:1(elb = bg)
is reduced to the query Ppei2(elb = by).

Let An(X UY) be the ancestral set of X UY, i.e the
set of nodes in X UY and of the ancestors of those
nodes. By repeatedly applying Theorem 1, one can
easily show that

Corollary 1 All the nodes outside An(X UY') are ir-
relevant to the query P(X|Y = Yy).

The moral graph m(G) (Lauritzen and Spiegehalter
1988) of the an directed graph G = (V, 4) is the undi-
rected graph obtained from G be marrying the parents
of each node (i.e adding an edge between each pair
of parents), and then dropping all directions. If two
nodes z and y are separated by a set B in m(G), we
say that and y are m-separated by B in G. The term
m-separation is new, but the concept itself was used
Lauritzen et al (1990).

Theorem 2 Suppose N = (V,A,P) is a Bayesian
network. Given a query Py (X|Y = Yp), let NV be
the Bayesian network obtained from N by removing
all the nodes that are m-separated from X by Y. Then

Py(X[Y = Y5) = Py (XY = Vo). (4)

In our example, since a is m-separated from e by b in
net2, the query can be further reduced to P,.3(elb =
by) Note that a is not m-separated from e by b in net1.

It can be proved (Lauritzen et al 1990 and Geiger et
al 1990) that, given a query, all the irrelevant nodes
that are graphically recognizable can be recognized by
applying those two theorems.

From equation (2), we see that Py(X|Y = Yp) can
be obtained from Py (X,Y = Y5) by multiplying a

®Nodes that do not have parents.

renormalization constant. However, the two queries
are different in terms of irrelevant variables. For ex-
ample, a is irrelevant to the query Ppes2(elb = bg), but
relevant to the query Ppeia(e, b = bg).

From now on, we will assume that all the irrelevant
variables have been removed unless otherwise indi-
cated. Under this assumption, we can replace the
query Py (X|Y = Yy) with the query Par(X,Y = Y0).
We call the latter a standard query. The rest of the
paper will only be dealing with standard queries.

4 Potentials

A potential i1s a non-negative function which takes a
positive value at at least one point. Here are some ex-
ample potentials. The probability P(X) is a potential
of X, the conditional probability P(X|Y) is a poten-
tial of X and V', and P(X,Y = Y}) is a potential of
X.

Let S be a set of potentials over a set of variables V.
The marginal potential Ps(X) is defined as follows:
Multiply all the potentials in S together to get the joint
potential Pg(V'), and Ps(X) is obtained from Pg(V') by
summing out all the variables outside X. It is obvious
that marginal probability is a special case of marginal
potentials. For technical convenience, we shall be talk-
ing about marginal potential Ps(X,Y = V) instead
of marginal probability Py (X,Y = Yg) from now on.

5 The key technique

Let S be a set of potentials over the set V' of variables.
A naive way to compute Ps(X,Y = Yp) is first to
explicitly compute and store the joint potential Pg(V),
and then compute Pg(X,Y = Yy) from Pg(V). This
method is not efficient.

Even though the general problem of computing poste-
rior probabilities in Bayesian networks is NP-hard, effi-
cient algorithms often exist for particular applications
due to the underlying structures. The purpose of this
section 1s to describe a key technique that allows us
to make use one aspect of problem structure, namely
conditional independencies. The technique is to work
with factorizations of joint potentials (probabilities)
rather than joint potentials (probabilities) themselves.

We say that a set S7 of potentials is a factorization
of the joint potential Ps(V) if Ps(V) is the result of
multiplying the potentials in S;. The set S itself is
certainly a factorization of Ps(V'), and it is the most
straightforward one because it is what one has to begin
with. We call S the primary factorization of Pg(V).

We will see later that clique tree propagation does not
directly adopts the primary factorization. Rather it
first performs some pre-organizations and precompu-
tations on S and then proceeds with the resulting more
organized factorization.

Exponential explosion can be in terms of both storage
space and time. It is quite easy to see why factor-
ization is able to help us to save space. For the sake
of illustration, consider the Bayesian network netl in
Figure 1. If all the variables are binary, to store the
set of potentials of net1, i.e the prior and conditional
probabilities, one needs to store 2 +4*x 4+ 2% 8 = 34
numbers. On the other hand, to explicitly store the
joint potential (probability) Phes1(a,b,c,d e, f,g) it-
self, one needs to store 27 = 128 numbers.

To see how factorizations of joint potentials enable
us to save time, we assume that the summing-out-
variables-one-by-one strategy is adopted for comput-
ing marginal potentials.> We also assume that an or-
dering has been given for this purpose. This ordering
will be referred as the elimination ordering.

Since we choose to work with the a factorization, which
is a set of potentials, we need to define how to sum out
one variable from a set of potentials. To sum out a
variable v from a set of potentials S is to: (1) remove
from S all the potentials that contain v, (2) multiply
all those potentials together, (3) sum out v from the
product, and (4) add the resulting potential to S.

For example, to sum a out of netl, we first remove
P(a), P(bla) and P(f|a) from net1, then compute

Va(b, f) =Y P(a)P(fla)P(Bla), ()

and finally add 4(b, f) to neti. After all these
operations, netl becomes {P(c|b), P(d[b), P(e|e,d),
P(glf.e), ¥a(d,)}

Usually, it takes much less arithmetic calculations to
sum out one variable from a factorization of a joint
potential than from the joint potential itself. For ex-
ample, equation (5) denote all the arithmetic calcula-
tions needed to sum out a from neti. It involves only
three variables: a, b, and f. On the other hand, to
sum out a explicitly from Ppei(a,b,e,d, e, f,g) itself,
one needs to perform the following calculations,

anetl(aa b, c, da €, fag)a

which involves all the seven variables in the network.
This is the exactly why working the factorizations of
joint potentials enables us to reduce time complexity.

6 Three components

In implementing Bayesian networks, if one adopts the
key technique outlined in the previous section, then the
resulting system can be divided into three components.

It must be noted that they are exact approaches that
do not adopt this strategy. See Poole and Neufeld (1991)
and Poole (1992) for examples.

The first component finds an elimination ordering.
We call it the ordering determination component.
Roughly speaking, an elimination ordering is good if
the arithmetic calculations needed to sum out each
variable, from the primary factorization, involve only
a small number of other variables. Even with a clear
and crisp definition, the ordering determination prob-
lem proves to be a difficult one. See Kjeerulff (1990)
and Klein et al (1990) for research progresses on the
problem. In this paper, we shall not discuss it any
further.

The third component is the arithmetic calculation
component. It takes a bunch of potentials, multiply
them together, sum out a certain variable from the
product, and return the result. A major goal in design-
ing Bayesian network inference algorithms is to mini-
mize the total number of arithmetic calculations.

In between the first and the third components lies the
data management component. It determines, from the
elimination ordering produced by the first component,
what arithmetic calculations the third component is
going to perform, and in which order. The compo-
nent also hides the design decisions as to how to store
the potentials, how to retrieve a potential when it 1s
needed, and how to update the set of potentials after
a variable has been summed out. We call a design of
the data management component a data management
scheme.

Among the existing exact approaches to Bayesian net-
work computations, clique tree propagation (Jensen
et al 1990), the arc reversal node reduction approach
(Shachter 1988), and symbolic probabilistic inference
(Shachter et al 1990) are data management schemes;
while recursive decomposition (Cooper 1990) and com-
ponent tree propagation (Zhang and Poole 1992) are
mixtured of data management schemes and ordering
determination methods.

In the remainder of the paper, we shall first propose a
very simple data management scheme (section 7), and
we shall compare this scheme with clique tree propaga-
tion and the arc reversal and node reduction approach
(sections 8 and 9).

7 A simple data management scheme

The following algorithms describes our design of the
data management component. It takes, as input, a
set of potential S, a standard query (X, ¥V = Y})
and an elimination ordering Ordering. The output
is Ps(X,Y =Yp).

PROCEDURE P(S, (X,
Ordering)

1. Set Y to Yy in the potentials in S, re-
sulting in S7.

2. Associate each potential ¢ of S; with
the variable that appears earliest in

Y = YO)a

Ordering among all the variables of

v,
3. Repeat till Ordering becomes
empty,
e Remove the first
variable on Ordering. Denote

this variable by v. Call subrou-
tine Arithemetic-Calculation
to multiply all the potentials asso-
ciated v together and to sum out v
from the product, resulting in),
e Associate 1, with the variable

that appear earliest in Ordering
among all the variables of ¢,, and

4. Return the potential produced from
the removal of the last variable in
Ordering, which is Ps(X,Y = Yp).

As an example, let us consider computing Ppet1(g,a =
ap). Suppose the elimination ordering is (b, ¢, d, e, f).
Then, the initial variable-potential association scheme
1s as follows:

: c: d: e: f:
P(blag) P(ele,d) P(gle,) P(flao)
P(c|b

(d[b)

Let py(c,d) = Y, P(blao)P(c|b)P(d|b). Then after the

removal of b, the association scheme becomes:

c: d: e: I
P(ele,d) P(gle, f) P(flao)
1/)b(c, d)

Let ¢.(d,e) = 3. P(ele, d)ys(c, d). After the removal

of ¢, we get

: e: f:

d
ve(de) Plgle, f) P(flao)

Let a(e) = >, ¢.(d, e). After the removal of d, we
get

e: f:
P(gle, f) P(flao)
bale)

After the removal

Let ¢e(f,9) = 22, Plgle, fldale).
of d, we get

f:
P(f|ao)
ve(f, 9)

Finally, let ¥;(g) = >_ P(gle, f)¥(f,g). The poten-
tial ¥¢(g) is Pret1(g, a = ao).

P(a) , P(bla)
P(fla)

Piclb), P(lb)

vy
131 P(e|c, d)

T A]

""" @ wyee: £ o
(1) (2)
(W3'tb, £, e} ‘“(efg)
|
D Vate, £ 9.

(3)

Figure 2: Clique tree propagation.

8 Comparing with clique tree
propagation

We begin this section with a brief review of clique tree
propagation. For this paper, a cligue can be simply
understood as a subset of variables. A clique tree 1s
a tree whose nodes are cliques such that if a variable
appear on two different nodes, then it also appears in
all the nodes in the path between the two nodes. A
cliqgue tree for a set of potentials 1s a clique tree such
that for each potential in the set, there is at least one
clique in the tree that contains all its variables.

Like our approach, clique tree propagation reduces
time and space complexities by working with factoriza-
tions of joint potentials. Unlike in our approach, which
begins with the primary factorization, clique tree prop-
agation associates the potentials in the primary factor-
ization with the cliques in a clique tree, such that each
potential is associated with one and only one clique
that contains all 1ts variables. All the potentials as-
sociated with one clique are multiplied together, re-
sulting one single potential. If there is no potential
associlated with a clique, the constant potential 1 is
stuck in. Thus the initial factorization for clique tree
propagation consists of one and only one potential for
each clique.

Figure 2 (1) shows a clique tree for the Bayesian
network neti in Figure 1, together with a grouping
of its prior and conditional probabilities (potentials).
The initial factorization is {¢1(a,b, f), ¢¥2(b,c,d,e),
1/)3(bafa 6), 1/)4(6afag)}a where
1/)1(aabaf) =def P(a)P(b|a)P(f|a), 1/)2(19’6’ da 6) =def
P(c|b)P(d|b)P(ele,d), s(b, fie) =4y 1, and
’l/)d(@, fa g) =def P(g|fa 6)'

Clique tree propagation computes a marginal potential
by message passing in the clique tree. To pass a mes-
sage from one node C (a clique) to one of its neighbors
D, one sums out, from the potential associated with C',
the variables in C' — D, send the resulting potential to

D, and update the potential currently associated with
D by multiplying it with the potential from C'. Fig-
ure 2 show the message passing process for computing
Pnetl(ga a = Clo).

In Jensen et al (1990), the prior marginal probability
of each clique (node) in the clique tree is precomputed
and stored at the node. To compute P,et1(gla = ag)
in this scheme, one only needs to pass proper messages
from node (abf) to (bfe), and then to (efg). No mes-
sage from node bede to node (bfe) is necessary. See
the cited paper for details.

8.1 Comparisons

Before commencing the comparisons, let us point out
the both our approach and clique tree propagation
have the same starting point. Our approach begin
with an elimination ordering, and clique tree propa-
gation begins with a clique tree. The availability of a
clique tree is equivalent to the availability of an elimi-
nation ordering for the empty query Ps(#). There are
linear time algorithms to obtain an elimination order-
ing from a clique tree and to get back the clique tree
from the ordering (see, for example, Zhang 1991).

To compare our data management scheme with clique
tree propagation, we notice that our approach handles
changes to the knowledge base more easily. Clique
tree is a secondary structure. Any topology changes
to the original network, like adding or deleting vari-
able, or adding or deleting an arc, require recomputing
the clique tree and the potential associated with each
clique. In the Jensen et al (1990) scheme, one has to
recompute the marginal probabilities for all the cliques
even when there are only numerical adjustments to the
conditional probabilities.

Secondly, if in a query Py (X|Y = Yp), X is not con-
tained in any clique of the clique tree, then the sec-
ondary structure has to be modified, at least temporar-
ily. This is even more cumbersome in the Jensen et al

(1990) Scheme.

Two major issues in comparing our approach with
clique tree propagation are pruning and precomput-
ing, to which we devote the next subsection.

8.2 Pruning vs. precomputing

Pruning irrelevant variables and precomputing the
prior probabilities of some variables are two techniques
to cut down computations. In this section, we shall il-
lustrate those two techniques through an example and
discuss some related issues.

Consider the query about posterior probability
Ppeta(e|lh = hg), where net4 is given in Figure 3. One
can first prune f because i1t 1s barren. Thereafter, ¢
and r can also be pruned because g becomes barren af-
ter the removal of f and r becomes m-separated from e
by h. Thus, pruning enables one to transform the orig-

Q @5 @{

& & &

netd netS net6

—®

Figure 3: Pruning vs. precomputing.

inal query into P,.t5(e|lh = hg), a query to a Bayesian
network with three variables less.

One the other hand, it is easy to see that summing
out variables a, b, and ¢ in net4 results in net6, where
P(d) = Za,b,c P(a)P(bla)P(c|a)P(d|b,c). So, if P(d)
is precomputed, the query Pphea(e|h = hy) can be im-
mediately transformed into P,.is(e|lh = hy), a query
to a Bayesian network with three variables less.

So, both pruning and precomputing enable us to cut
down computations. However, they both have prices
to pay as well.

Pruning irrelevant variables implies that we will be
working with a potentially different sub-network for
each query. This usually means that an elimination
ordering is to be found for each particular query from
scratch, instead of deriving it from an ordering for the
empty query.

We argue that this is not a serious drawback for two
reasons. First, if a query only involve a few variables,
pruning may give us a sub-network which is only a
small portion of the original network. After all, only
those variables who are ancestors of variables in the
query could be relevant to the query. Thus pruning
makes finding a good elimination ordering much easier.
Second, some existing hueristics for finding elimina-
tion, like maximal cardinality search and lexicographic
search (Rose 1970, Kjeeruff 1990), are quite simple. Tt
does not take much more time to find an ordering from
scratch.

As far as precomputing is concerned, it is difficult to
decide what to precompute. For example, precompute
P(g) is not very helpful in the previous example. One
solution is to compute the prior probabilities for all
the combinations of variables. But this implies an ex-
ponential number of precomputations.

Clique tree propagation works on the secondary struc-
ture of clique tree, which is kept static. This makes
precomputing possible (Jensen at al 1990). As we
pointed out early, however, there is a price to pay. The
approach does not prune irrelevant variables, and 1t is
hard for it to accommodate changes to the knowledge
base.

8.3 Intercausal independence

A major reason for us to come up with a new data
management scheme is that it leads to a uniform
framework for utilizing conditional independence as
well as intercausal independence.

In Zhang and Poole (1994), we give a constructive de-
finition of intercausal independence. Noisy OR-gates
and noisy adders satisfy our definition. A nice prop-
erty of our definition is that it relates intercausal in-
dependence with factorization of conditional probabil-
ities, in a way very similar to that conditional inde-
pendence is related factorization of joint probabilities.
The only difference lies in the way the factors are com-
bined. While conditional independence implies that
a joint can be factorized as a maultiplication of sev-
eral factors, intercausal independence implies that a
conditional probability can be factorized as a certain
combination of several factors, where combination is
usually not multiplication.

The concept of heterogeneous factrization is proposed.
A heterogeneous factorization is one where different
factors can be combined in different ways. We have
adapted the data management scheme proposed in this
paper to handle heterogeneous factorizations.

9 Conclusions

A key technique to reduce time and space complexities
in Bayesian networks is to work factorizations of joint
potentials rather than joint potentials themselves. Dif-
ferent exact approaches can be characterized by their
choices of factorizations. We have proposed a new ap-
proach which begins with the primary factorization.
Our approach is simpler than clique tree propagation.
Yet it is advantageous in terms of pruning irrelevant
variables and accommodating changes to the knowl-
edge base. More importantly, our approach leads to a
uniform framework for dealing with both conditional
and intercausal independence. However, our approach
does not support precomputation as clique tree prop-
agation does.

Acknowledegment:

We wish to thank Mike Horsch for his valuable com-
ments on a draft of this paper and Runping Qi for
useful discussions. Research is supported by NSERC
Grant OGPOO44121 and travel grants from Hong
Kong University of Science and Technology.

References:

M. Baker and T. E. Boult (1990), Pruning Bayesian
networks for efficient computation, in Proceedings of
the Swxth Conference on Uncertainty in Artificial In-

telligence, July, Cambridge, Mass. | pp. 257 - 264.

G. F. Cooper (1990) The computational complexity of
probabilistic inference using Bayesian belief networks,
Artificial Intelligence, 42, pp. 393-405.

G. F. Cooper (1990), Bayesian belief-network infer-
ence using recursive decomposition, Report No. KSL
90-05, Knowledge Systems Laboratory, Medical Com-
puter Science, Standford University.

D. Geiger, T. Verma, and J. Pear| (1990), d-separation:
From theorems to algorithms, in Uncertainty in Arti-
ficial Intelligence 5, pp. 139-148.

F. V. Jensen, K. G. Olesen, and K. Anderson (1990),
An algebra of Bayesian belief universes for knowledge-
based systems, Networks, 20, pp. 637 - 659.

U. Kjeerulff (1990), Triangulation of Graphs - Algo-
rithms giving small total state space, R 90-09, Insti-
tute for Electronic Systems, Department of Mathemat-
ics and Computer Science, Strandvejen, DK 9000 Aal-
borg, Denmark.

P. Klein, A. Agrawal, A. Ravi, and S. Rao (1990),
Approximation through multicommodity flow, in Pro-
ceedings of 31st Symposium on Foundations of Com-
puter Science, pp. 726-737.

S. L. Lauritzen and D. J. Spiegehalter (1988), Local
computations with probabilities on graphical struc-
tures and their applications to expert systems, Journal
of Royal Statistical Society B, 50: 2, pp. 157 - 224.

S. L. Lauritzen, A. P. Dawid, B. N. Larsen, and H. G.
Leimer (1990), Independence Properties of Directed
Markov Fields, Networks, 20, pp. 491-506.

J. Pearl (1988), Probabilistic Reasoning in Intelligence
Systems: Networks of Plausible Inference, Morgan
Kaufmann Publishers, Los Altos, CA.

D. Poole and E. Neufeld (1991), Sound probabilis-
tic inference in Prolog: An executable specification
of Bayesian networks, Department of Computer Sci-
ence, University of British Columbia, Vancouver, B.

C., V6T 172, Canada.

D. Poole (1992), Search for Computing posterior prob-
abilities in Bayesian networks, Technical Report 92-
24, Department of Computer Science, University of
British Columbia, Vancouver, Canada.

D. J. Rose (1970), Triangulated graphs and the elimi-
nation process, Journal of Mathematical Analysis and
Applications, 32, pp 5b97-609.

R. Shachter (1986), Evaluating Influence Diagrams,
Operations Research, 34, pp. 871-882.

R. Shachter (1988), Probabilistic Inference and Influ-
ence Diagrams, Operations Research, 36, pp. 5b89-605.

R. D Shachter, S. K. Andersen, and P. Szolovits
(1992), The equivalence of exact methods for prob-
abilistic inference in belief networks, Department of

Engineering-Economic Systems, Stanford University.

R. D. Shachter, B. D’Ambrosio, and B. A. Del Favero
(1990), Symbolic Probabilistic Inference in Belief Net-
works, in AAAI-90, pp. 126-131.

G. Shafer and P. Shenoy (1988), Local computation in
hypertrees, Working Paper No. 201, Business School,
University of Kansas.

L. Zhang (1991), Studies on hypergraphs (I): Hyper-
forests, accepted for publication on Discrete Applied
Mathematics.

L. Zhang and D. Poole (1992) Sidestepping the tri-
angulation problem in Bayesian net computations, in
Proc. of 8th Conference on Uncertainty in Artifi-
ctal Intelligence, July 17-19, Standford University, pp.
360-367.

L. Zhang and D. Poole (1994) Intercausal indepen-
dence and heterogeneous factorizations, submitted to
The Tenth Conference on Uncertainty in Artificial In-
telligence

