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Abstract

The general problem of computing poste�
rior probabilities in Bayesian networks is
NP�hard �Cooper ����	� However e
cient
algorithms are often possible for particular
applications by exploiting problem struc�
tures� It is well understood that the key
to the materialization of such a possibil�
ity is to make use of conditional indepen�
dence and work with factorizations of joint
probabilities rather than joint probabilities
themselves� Di�erent exact approaches can
be characterized in terms of their choices of
factorizations� We propose a new approach
which adopts a straightforward way for fac�
torizing joint probabilities� In comparison
with the clique tree propagation approach�
our approach is very simple� It allows the
pruning of irrelevant variables� it accommo�
dates changes to the knowledge base more
easily� it is easier to implement� More
importantly� it can be adapted to utilize
both intercausal independence and condi�
tional independence in one uniform frame�
work� On the other hand� clique tree prop�
agation is better in terms of facilitating pre�
computations�

Keywords� reasoning under uncertainty� Bayesian
networks� algorithm

� Introduction

Several exact approaches to the computing of pos�
terior probabilities in Bayesian networks have been
proposed� studied� and some of them implemented�
The one that is most well known is clique tree propa�
gation� which has been developed over the past few
years by Pearl �����	� Lauritzen and Spiegehalter
�����	� Shafer and Shenoy �����	� and Jensen et al
�����	� Other approaches include Shachter
s arc rever�
sal node reduction approach �Shachter ����	� symbolic
probabilistic inference �rst proposed by D
Ambrosio
�Shachter et al ����	� recursive decomposition by
Cooper �����	� and component tree propagation by
Zhang and Poole �����	�

This paper grew out of an attempt to understand those
approaches and the relationships among them� We
asked ourselves� are there any common principles that
underlie all those approaches� If yes� what are the
choices that render them di�erent from one another�
What are the advantages and disadvantages of these
choices� Are there any better choices and�or any bet�
ter combinations of choices�

Shachter et al �����	 has demonstrated the similarities
among the various approaches� In this paper� we are
more interested in the di�erences among them�

Cooper �����	 has proved that the general problem
of computing posterior probabilities in Bayesian net�
works is NP�hard� In particular applications� however�
it is often possible to compute them e
ciently by ex�
ploiting the problem structures� The key technique
that enables the materialization of such a possibility�
as pointed out by Shafer and Shenoy �����	� is to work
with factorizations of joint probabilities rather than
the joint probabilities themselves� What all the ex�
act approaches have in common is that they all adopt
this technique� while they di�er in their own choices
of factorizations�

These understandings lead to a new approach that
chooses a straightforward factorization for joint prob�
abilities� Though very simple� the new approach
has several advantages over clique tree propagation



in terms of pruning irrelevant variables� accommodat�
ing changes to the knowledge base and easiness of im�
plementation� It also leads to a uniform framework
for utilizing both conditional and intercausal indepen�
dence� The only disadvantage we can think of is that
it does not facilitate precomputation�

The organization of the paper is as follows� Prelimi�
nary de�nitions are given in section �� Section � re�
views results concerning the irrelevance of variables
to a query� After the removal of irrelevant variables�
queries about posterior probabilities can be trans�
formed into a standard form� i�e queries about mar�
ginal probabilities� For technical convenience� further
exposition will be carried out in terms of potentials
rather the probabilities �section �	� In section �� we il�
lustrate the technique of working with factorizations of
joint potentials� The subproblem of data management
is identi�ed in section �� Clique tree propagation is
one solution to this subproblem� A new and very sim�
ple solution is proposed in section �� which is based on
a simple way for factorizing joint potentials� In section
�� we compare the solution to clique tree propagation�
Some conclusions are provided in section ��

� Preliminaries

We begin by giving a de�nition of Bayesian networks�

A Bayesian network N is a triplet �V�A�P	� where

�� V is a set of variables�

�� A is a set of arcs� which together with V consti�
tutes a directed acyclic graph G � �V�A	�

�� P � fP �vj�v	 � v � V g� where �v stands for
the set of parents of v� In words� P is the set
the conditional probabilities of the all variables
given their respective parents ��

Figure � show a simple Bayesian network net� with
seven variables a� b� c� d� e� f � and g� The network
contains the following prior and conditional probabil�
ities� P �a	� P �f ja	� P �bja	� P �cjb	� P �djb	� P �ejc� d	�
and P �gjf� e	�

Note that variables in a Bayesian network will be re�
ferred as nodes when they are viewed as members of
the underlying graph� Also note that the graphical
structure of a Bayesian network can be read from the
set of the prior and conditional probabilities� So� we
can use the symbol N to refer to the set of prior and
conditional probabilities P without causing any con�
fusion�

The prior joint probability PN of a Bayesian network
N is de�ned by

�Note that when v is a root� �v is empty� In such a
case� the expression P �vj�v� simply stands for the prior
probability of v�
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Figure �� Bayesian network and irrelevant variables�

PN �V 	 �
Y

v�V

P �vj�v	� ��	

For example� the prior joint probability Pnet� of net�
is given by

Pnet��a� b� c� d� e� f� g	 �

P �a	P �f ja	P �bja	P �cjb	P �djb	P �ejc� d	P �gjf� e	�

For any subset X of V � themarginal probability PN �X	
is de�ned by

PN �X	 �
X

V�X

PN �V 	�

Some variables may be observed to have speci�c val�
ues� For example� the variable b in net� may be ob�
served to be a speci�c value b�� Let Y � V be the
set of variables observed and Y� be the corresponding
set of values� Let X � V be the set of variables of
interest� The posterior probability PN �XjY � Y�	 of
X is de�ned by

PN �XjY � Y�	 �
PN �X�Y � Y�	

PN �Y � Y�	
� ��	

The problem of concern to this paper is how to com�
pute PN �XjY � Y�	�

� Irrelevant variables and standard
queries

Given a query to a Bayesian network N � it is often
possible to graphically identify certain variables be�
ing irrelevant to the query� This issue is addressed in
Geiger et al �����	� Lauritzen et al �����	� and Baker
and Boult �����	� The materials in this section are
extracted from those papers�

To remove a node v from a Bayesian network N �
�V�A�P	 is to� ��	 remove v from V � ��	 remove from
A all the arcs that contain v� ��	 remove from P all the
items that involve v� and ��	 set the prior probabilities



for all the nodes� if any� that become roots� because
of the removal to be the uniform distribution�

A node in a Bayesian network N is leaf if it has no
children� A node is barren w�r�t a query PN �XjY �
Y�	� if it is a leaf and it is not in X � Y � In net�� g is
barren w�r�t Pnet��ejb � b�	�

Theorem � Suppose N is a Bayesian network� and
v is a leaf node� Let N � be the Bayesian network ob�
tained from N by removing v� If v is barren w�r�t to
the query PN �XjY � Y�	� then

PN �XjY � Y�	 � PN � �XjY � Y�	� ��	

Consider computing Pnet��ejb � b�	� The node g is
barren w�r�t the query and hence irrelevant� According
to Theorem �� g can be harmlessly removed� This cre�
ates a new barren node f � After the removal of g and
f � net� becomes net�� Thus the query Pnet��ejb � b�	
is reduced to the query Pnet��ejb � b�	�

Let An�X � Y 	 be the ancestral set of X � Y � i�e the
set of nodes in X � Y and of the ancestors of those
nodes� By repeatedly applying Theorem �� one can
easily show that

Corollary � All the nodes outside An�X �Y 	 are ir�
relevant to the query P �XjY � Y�	�

The moral graph m�G	 �Lauritzen and Spiegehalter
����	 of the an directed graph G � �V�A	 is the undi�
rected graph obtained fromG be marrying the parents
of each node �i�e adding an edge between each pair
of parents	� and then dropping all directions� If two
nodes x and y are separated by a set B in m�G	� we
say that x and y are m�separated by B in G� The term
m�separation is new� but the concept itself was used
Lauritzen et al �����	�

Theorem � Suppose N � �V�A�P	 is a Bayesian
network� Given a query PN �XjY � Y�	� let N � be
the Bayesian network obtained from N by removing
all the nodes that are m�separated from X by Y � Then

PN �XjY � Y�	 � PN � �XjY � Y�	� ��	

In our example� since a is m�separated from e by b in
net�� the query can be further reduced to Pnet��ejb �
b�	 Note that a is not m�separated from e by b in net��

It can be proved �Lauritzen et al ���� and Geiger et
al ����	 that� given a query� all the irrelevant nodes
that are graphically recognizable can be recognized by
applying those two theorems�

From equation ��	� we see that PN �XjY � Y�	 can
be obtained from PN �X�Y � Y�	 by multiplying a

�Nodes that do not have parents�

renormalization constant� However� the two queries
are di�erent in terms of irrelevant variables� For ex�
ample� a is irrelevant to the query Pnet��ejb � b�	� but
relevant to the query Pnet��e� b � b�	�

From now on� we will assume that all the irrelevant
variables have been removed unless otherwise indi�
cated� Under this assumption� we can replace the
query PN �XjY � Y�	 with the query PN �X�Y � Y�	�
We call the latter a standard query� The rest of the
paper will only be dealing with standard queries�

� Potentials

A potential is a non�negative function which takes a
positive value at at least one point� Here are some ex�
ample potentials� The probability P �X	 is a potential
of X� the conditional probability P �XjY 	 is a poten�
tial of X and Y � and P �X�Y � Y�	 is a potential of
X�

Let S be a set of potentials over a set of variables V �
The marginal potential PS�X	 is de�ned as follows�
Multiply all the potentials in S together to get the joint
potential PS�V 	� and PS�X	 is obtained fromPS�V 	 by
summing out all the variables outside X� It is obvious
that marginal probability is a special case of marginal
potentials� For technical convenience� we shall be talk�
ing about marginal potential PS�X�Y � Y�	 instead
of marginal probability PN �X�Y � Y�	 from now on�

� The key technique

Let S be a set of potentials over the set V of variables�
A naive way to compute PS�X�Y � Y�	 is �rst to
explicitly compute and store the joint potential PS�V 	�
and then compute PS�X�Y � Y�	 from PS�V 	� This
method is not e
cient�

Even though the general problem of computing poste�
rior probabilities in Bayesian networks is NP�hard� e
�
cient algorithms often exist for particular applications
due to the underlying structures� The purpose of this
section is to describe a key technique that allows us
to make use one aspect of problem structure� namely
conditional independencies� The technique is to work
with factorizations of joint potentials �probabilities	
rather than joint potentials �probabilities	 themselves�

We say that a set S� of potentials is a factorization
of the joint potential PS�V 	 if PS�V 	 is the result of
multiplying the potentials in S�� The set S itself is
certainly a factorization of PS�V 	� and it is the most
straightforward one because it is what one has to begin
with� We call S the primary factorization of PS�V 	�

We will see later that clique tree propagation does not
directly adopts the primary factorization� Rather it
�rst performs some pre�organizations and precompu�
tations on S and then proceeds with the resulting more
organized factorization�



Exponential explosion can be in terms of both storage
space and time� It is quite easy to see why factor�
ization is able to help us to save space� For the sake
of illustration� consider the Bayesian network net� in
Figure �� If all the variables are binary� to store the
set of potentials of net�� i�e the prior and conditional
probabilities� one needs to store � � � � � � � � � � ��
numbers� On the other hand� to explicitly store the
joint potential �probability	 Pnet��a� b� c� d� e� f� g	 it�
self� one needs to store �� � ��� numbers�

To see how factorizations of joint potentials enable
us to save time� we assume that the summing�out�
variables�one�by�one strategy is adopted for comput�
ing marginal potentials�� We also assume that an or�
dering has been given for this purpose� This ordering
will be referred as the elimination ordering�

Since we choose to work with the a factorization� which
is a set of potentials� we need to de�ne how to sum out
one variable from a set of potentials� To sum out a
variable v from a set of potentials S is to� ��	 remove
from S all the potentials that contain v� ��	 multiply
all those potentials together� ��	 sum out v from the
product� and ��	 add the resulting potential to S�

For example� to sum a out of net�� we �rst remove
P �a	� P �bja	 and P �f ja	 from net�� then compute

�a�b� f	 �
X

a

P �a	P �f ja	P �bja	� ��	

and �nally add �a�b� f	 to net�� After all these
operations� net� becomes fP �cjb	� P �djb	� P �ejc� d	�
P �gjf� e	� �a�b� f	g�

Usually� it takes much less arithmetic calculations to
sum out one variable from a factorization of a joint
potential than from the joint potential itself� For ex�
ample� equation ��	 denote all the arithmetic calcula�
tions needed to sum out a from net�� It involves only
three variables� a� b� and f � On the other hand� to
sum out a explicitly from Pnet��a� b� c� d� e� f� g	 itself�
one needs to perform the following calculations�

X

a

Pnet��a� b� c� d� e� f� g	�

which involves all the seven variables in the network�
This is the exactly why working the factorizations of
joint potentials enables us to reduce time complexity�

� Three components

In implementing Bayesian networks� if one adopts the
key technique outlined in the previous section� then the
resulting system can be divided into three components�

�It must be noted that they are exact approaches that
do not adopt this strategy� See Poole and Neufeld ������
and Poole ������ for examples�

The �rst component �nds an elimination ordering�
We call it the ordering determination component�
Roughly speaking� an elimination ordering is good if
the arithmetic calculations needed to sum out each
variable� from the primary factorization� involve only
a small number of other variables� Even with a clear
and crisp de�nition� the ordering determination prob�
lem proves to be a di
cult one� See Kj�rul� �����	
and Klein et al �����	 for research progresses on the
problem� In this paper� we shall not discuss it any
further�

The third component is the arithmetic calculation
component� It takes a bunch of potentials� multiply
them together� sum out a certain variable from the
product� and return the result� A major goal in design�
ing Bayesian network inference algorithms is to mini�
mize the total number of arithmetic calculations�

In between the �rst and the third components lies the
data management component� It determines� from the
elimination ordering produced by the �rst component�
what arithmetic calculations the third component is
going to perform� and in which order� The compo�
nent also hides the design decisions as to how to store
the potentials� how to retrieve a potential when it is
needed� and how to update the set of potentials after
a variable has been summed out� We call a design of
the data management component a data management
scheme�

Among the existing exact approaches to Bayesian net�
work computations� clique tree propagation �Jensen
et al ����	� the arc reversal node reduction approach
�Shachter ����	� and symbolic probabilistic inference
�Shachter et al ����	 are data management schemes�
while recursive decomposition �Cooper ����	 and com�
ponent tree propagation �Zhang and Poole ����	 are
mixtured of data management schemes and ordering
determination methods�

In the remainder of the paper� we shall �rst propose a
very simple data management scheme �section �	� and
we shall compare this scheme with clique tree propaga�
tion and the arc reversal and node reduction approach
�sections � and �	�

� A simple data management scheme

The following algorithms describes our design of the
data management component� It takes� as input� a
set of potential S� a standard query �X� Y � Y�	
and an elimination ordering Ordering� The output
is PS�X�Y � Y�	�

PROCEDURE P�S� �X� Y � Y�	�
Ordering	

�� Set Y to Y� in the potentials in S� re�
sulting in S��

�� Associate each potential � of S� with
the variable that appears earliest in



Ordering among all the variables of
��

�� Repeat till Ordering becomes
empty�

� Remove the �rst
variable on Ordering� Denote
this variable by v� Call subrou�
tine Arithemetic�Calculation
to multiply all the potentials asso�
ciated v together and to sum out v
from the product� resulting in �v�

� Associate �v with the variable
that appear earliest in Ordering
among all the variables of �v� and

�� Return the potential produced from
the removal of the last variable in
Ordering� which is PS�X�Y � Y�	�

As an example� let us consider computing Pnet��g� a �
a�	� Suppose the elimination ordering is �b� c� d� e� f	�
Then� the initial variable�potential association scheme
is as follows�

b � c � d � e � f �
P �bja�	 P �ejc� d	 P �gje� f	 P �f ja�	
P �cjb	
P �djb	

Let �b�c� d	 �
P

bP �bja�	P �cjb	P �djb	� Then after the
removal of b� the association scheme becomes�

c � d � e � f �
P �ejc� d	 P �gje� f	 P �f ja�	
�b�c� d	

Let �c�d� e	 �
P

c P �ejc� d	�b�c� d	� After the removal
of c� we get

d � e � f �
�c�d� e	 P �gje� f	 P �f ja�	

Let �d�e	 �
P

d �c�d� e	� After the removal of d� we
get

e � f �
P �gje� f	 P �f ja�	
�d�e	

Let �e�f� g	 �
P

e P �gje� f	�d�e	� After the removal
of d� we get

f �
P �f ja�	
�e�f� g	

Finally� let �f �g	 �
P

f P �gje� f	�e�f� g	� The poten�

tial �f �g	 is Pnet��g� a � a�	�
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Figure �� Clique tree propagation�

� Comparing with clique tree
propagation

We begin this section with a brief review of clique tree
propagation� For this paper� a clique can be simply
understood as a subset of variables� A clique tree is
a tree whose nodes are cliques such that if a variable
appear on two di�erent nodes� then it also appears in
all the nodes in the path between the two nodes� A
clique tree for a set of potentials is a clique tree such
that for each potential in the set� there is at least one
clique in the tree that contains all its variables�

Like our approach� clique tree propagation reduces
time and space complexities by working with factoriza�
tions of joint potentials� Unlike in our approach� which
begins with the primary factorization� clique tree prop�
agation associates the potentials in the primary factor�
ization with the cliques in a clique tree� such that each
potential is associated with one and only one clique
that contains all its variables� All the potentials as�
sociated with one clique are multiplied together� re�
sulting one single potential� If there is no potential
associated with a clique� the constant potential � is
stuck in� Thus the initial factorization for clique tree
propagation consists of one and only one potential for
each clique�

Figure � ��	 shows a clique tree for the Bayesian
network net� in Figure �� together with a grouping
of its prior and conditional probabilities �potentials	�
The initial factorization is f���a� b� f	� ���b� c� d� e	�
���b� f� e	� ���e� f� g	g� where
���a� b� f	 �def P �a	P �bja	P �f ja	� ���b� c� d� e	 �def

P �cjb	P �djb	P �ejc� d	� ���b� f� e	 �def �� and
�d�e� f� g	 �def P �gjf� e	�

Clique tree propagation computes a marginal potential
by message passing in the clique tree� To pass a mes�
sage from one node C �a clique	 to one of its neighbors
D� one sums out� from the potential associated with C�
the variables in C �D� send the resulting potential to



D� and update the potential currently associated with
D by multiplying it with the potential from C� Fig�
ure � show the message passing process for computing
Pnet��g� a � a�	�

In Jensen et al �����	� the prior marginal probability
of each clique �node	 in the clique tree is precomputed
and stored at the node� To compute Pnet��gja � a�	
in this scheme� one only needs to pass proper messages
from node �abf	 to �bfe	� and then to �efg	� No mes�
sage from node bcde to node �bfe	 is necessary� See
the cited paper for details�

��� Comparisons

Before commencing the comparisons� let us point out
the both our approach and clique tree propagation
have the same starting point� Our approach begin
with an elimination ordering� and clique tree propa�
gation begins with a clique tree� The availability of a
clique tree is equivalent to the availability of an elimi�
nation ordering for the empty query PS��	� There are
linear time algorithms to obtain an elimination order�
ing from a clique tree and to get back the clique tree
from the ordering �see� for example� Zhang ����	�

To compare our data management scheme with clique
tree propagation� we notice that our approach handles
changes to the knowledge base more easily� Clique
tree is a secondary structure� Any topology changes
to the original network� like adding or deleting vari�
able� or adding or deleting an arc� require recomputing
the clique tree and the potential associated with each
clique� In the Jensen et al �����	 scheme� one has to
recompute the marginal probabilities for all the cliques
even when there are only numerical adjustments to the
conditional probabilities�

Secondly� if in a query PN �XjY � Y�	� X is not con�
tained in any clique of the clique tree� then the sec�
ondary structure has to be modi�ed� at least temporar�
ily� This is even more cumbersome in the Jensen et al
�����	 Scheme�

Two major issues in comparing our approach with
clique tree propagation are pruning and precomput�
ing� to which we devote the next subsection�

��� Pruning vs� precomputing

Pruning irrelevant variables and precomputing the
prior probabilities of some variables are two techniques
to cut down computations� In this section� we shall il�
lustrate those two techniques through an example and
discuss some related issues�

Consider the query about posterior probability
Pnet��ejh � h�	� where net� is given in Figure �� One
can �rst prune f because it is barren� Thereafter� g
and r can also be pruned because g becomes barren af�
ter the removal of f and r becomes m�separated from e
by h� Thus� pruning enables one to transform the orig�
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Figure �� Pruning vs� precomputing�

inal query into Pnet��ejh � h�	� a query to a Bayesian
network with three variables less�

One the other hand� it is easy to see that summing
out variables a� b� and c in net� results in net�� where
P �d	 �

P
a�b�cP �a	P �bja	P �cja	P �djb� c	� So� if P �d	

is precomputed� the query Pnet��ejh � h�	 can be im�
mediately transformed into Pnet��ejh � h�	� a query
to a Bayesian network with three variables less�

So� both pruning and precomputing enable us to cut
down computations� However� they both have prices
to pay as well�

Pruning irrelevant variables implies that we will be
working with a potentially di�erent sub�network for
each query� This usually means that an elimination
ordering is to be found for each particular query from
scratch� instead of deriving it from an ordering for the
empty query�

We argue that this is not a serious drawback for two
reasons� First� if a query only involve a few variables�
pruning may give us a sub�network which is only a
small portion of the original network� After all� only
those variables who are ancestors of variables in the
query could be relevant to the query� Thus pruning
makes �nding a good eliminationordering much easier�
Second� some existing hueristics for �nding elimina�
tion� like maximal cardinality search and lexicographic
search �Rose ����� Kj�ru� ����	� are quite simple� It
does not take much more time to �nd an ordering from
scratch�

As far as precomputing is concerned� it is di
cult to
decide what to precompute� For example� precompute
P �g	 is not very helpful in the previous example� One
solution is to compute the prior probabilities for all
the combinations of variables� But this implies an ex�
ponential number of precomputations�

Clique tree propagation works on the secondary struc�
ture of clique tree� which is kept static� This makes
precomputing possible �Jensen at al ����	� As we
pointed out early� however� there is a price to pay� The
approach does not prune irrelevant variables� and it is
hard for it to accommodate changes to the knowledge
base�



��� Intercausal independence

A major reason for us to come up with a new data
management scheme is that it leads to a uniform
framework for utilizing conditional independence as
well as intercausal independence�

In Zhang and Poole �����	� we give a constructive de�
�nition of intercausal independence� Noisy OR�gates
and noisy adders satisfy our de�nition� A nice prop�
erty of our de�nition is that it relates intercausal in�
dependence with factorization of conditional probabil�
ities� in a way very similar to that conditional inde�
pendence is related factorization of joint probabilities�
The only di�erence lies in the way the factors are com�
bined� While conditional independence implies that
a joint can be factorized as a multiplication of sev�
eral factors� intercausal independence implies that a
conditional probability can be factorized as a certain
combination of several factors� where combination is
usually not multiplication�

The concept of heterogeneous factrization is proposed�
A heterogeneous factorization is one where di�erent
factors can be combined in di�erent ways� We have
adapted the data management scheme proposed in this
paper to handle heterogeneous factorizations�

� Conclusions

A key technique to reduce time and space complexities
in Bayesian networks is to work factorizations of joint
potentials rather than joint potentials themselves� Dif�
ferent exact approaches can be characterized by their
choices of factorizations� We have proposed a new ap�
proach which begins with the primary factorization�
Our approach is simpler than clique tree propagation�
Yet it is advantageous in terms of pruning irrelevant
variables and accommodating changes to the knowl�
edge base� More importantly� our approach leads to a
uniform framework for dealing with both conditional
and intercausal independence� However� our approach
does not support precomputation as clique tree prop�
agation does�
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