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Abstract. When using Bayesian networks, practitioners often expressconstraints
among variables by conditioning a common child node to induce the desired dis-
tribution. For example, an ‘or’ constraint can be easily expressed by a node mod-
elling a logical ‘or’ of its parents’ values being conditioned to true. This has the
desired effect that at least one parent must be true. However, conditioning also
alters the distributions of further ancestors in the network. In this paper we argue
that theseside effectsare undesirable when constraints are added during model
design. We describe a method calledshieldingto remove these side effects while
remaining within the directed language of Bayesian networks. This method is
then compared to chain graphs which allow undirected and directed edges and
which model equivalent distributions. Thus, in addition tosolving this common
modelling problem, shielded Bayesian networks provide a novel method for im-
plementing chain graphs with existing Bayesian network tools.
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1 INTRODUCTION

When using Bayesian networks it is often convenient to use conditioned nodes to en-
force constraints across the network. Consider the following example:

Example 1.There are three professors,Alice,Bob andCindy, at a university that needs
at least one instructor for its AI course. For Alice we define four variables:IA, mod-
elling our belief that she is interested in AI; this influences WA, our belief they she
wants to teach the course; which influencesTA, our belief that she will actually end up
teaching the course; which influencesRA, our belief that she completes her current re-
search project on time. Variables are defined analogously for Bob and Cindy. The joint
distribution of the variablesTA, TB, TC is consistent with the constraint that at least
one professor must teach the course.

A natural way to represent this distribution is to add a node,C, to the network that
models an ‘or’ of its parents and is conditioned to true. Figure 1 shows the Bayesian
network that results. This enforces4 the desired constraint onto the variablesTA, TB, TC

4 There are other ways to achieve this type of distribution without conditioning but it requires
many new variables to be added and is difficult to maintain, see [1] for more details.
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Fig. 1. Topic interests and teaching desires of three professors.C is an ‘or’ node stating that
someone must teach the course.

which we call theaffected nodes. This is similar to what [2] calls adding constraints us-
ing an auxiliary network. That paper models constraints by merging constraint network
formalisms into Bayesian networks.

The desired distribution is one where the CPDs of all nodes express the probabilities
giventhe presence of the constraint on the affected nodes. Thus, if p(IA = true) = .7
then we wantp(IA = true|C) = .7. But in a standard BN this will not be the case.
IA will be influenced byC, we call this influence aside effectof C. The reason we
don’t want side effects is that they arise from treatingC as evidence andp(TA|WA)
as a simple conditional distribution. In fact, for this model, neither of these is the case.
C is merely a convenient way to express a constraint, it does not constitute evidence,
and thus its value should not be used freely for inference amongst its ancestors. But the
constraint must be satisfied amongst its parents and the distribution onTA is defined
given the constraint.p(TA|WA) actually defines the probability distribution ofTA given
that someone else has already been assigned to teach the course.

Thus, the constraint should have no influence noIA. Our beliefs about Alice’s in-
terest in AI are tied to the likely teaching assignments but are decoupled from the con-
straints on those teaching assignments. Altering or observing Cindy’s interest in AI
should have no impact on Alice’s interest. On the other hand,RA, is influenced by the
constraint. Research productivity is directly influenced by teaching assignments and so
anything that impacts this must be taken into account when determining the likelihood
of RA.

Here we present a method to eliminate these side effects while maintaining a fully
directed model and using existing Bayesian network tools. We will compare this method
to chain graphs [3] which represent the same set of distributions by defining away the
possibility of side effects. This paper has the dual goal of explaining how to solve a
practical modelling problem with existing tools, as well asgiving a new interpretation
of chain graphs in terms of fully directed models.



2 BAYESIAN NETWORKS

A Bayesian network (BN) [4] is a directed acyclic graph that represents the interdepen-
dence amongst a set of random variables. Suppose the variables areV1, . . . , Vn. The
Bayesian network represents the following the factorization for the joint probability of
a set of nodes in a Bayesian network:

p(V1, . . . , Vn) =
n∏

i=1

p(Vi|pa(Vi)) (1)

wherepa(Vi) are the parent nodes on whichVi is dependant, if any.

2.1 TYPES OF CONDITIONING

Conditioningrefers to the general technique of setting a variable to a particular value
within a BN. There are, at least, three types of conditioning. The most common type
is simply recording an observation about the state of a variable orobservation condi-
tioning. The value here represents new information that rules out possible worlds that
are incompatible with the observation. The remaining worlds are then renormalized to
sum to 1. An observation can influence all of its ancestors andtheir descendants.. If
a variable is set by the user arbitrarily we call thisintervention conditioning[5]. In
this case the variable is set to some value by a mechanism outside of the model and
so is not indicative of the variable’s distribution. Thus the intervention cannot be used
for inference about influences on the variables Decision variables are of this type. An
intervention should be cut off from influencing its ancestors but still influences its de-
scendants.

A third type of conditioning,constraint conditioning, is the type being addressed in
this paper. A node’s value is set as part of the model definition in order to induce a par-
ticular distribution amongst its parent nodes. Other ancestors should not be affected just
as they are not affected by the initial distributions of any other descendants. Influence
on ancestors is cut off, just as in intervention, but in this case one level of nodes are
allowed to be influenced. All of the descendants of these parents will then be influenced
in the usual way. In this paper the constraint conditioned nodes such asC will be called
c-nodes. The nodes in the constraint will (the parents) are the affected nodes ore-nodes.
Nodes that are parents of affected nodes but are not themselves affected are known as
shielded nodesor s-nodes

We believe this is an important modelling problem for BNs. Bayesian networks are
used widely every day for a broad range of purposes. We know from discussions with
practitioners and experience that constraint conditioning is often used in practice. This
is done as a natural extension of BN modelling and the full ramifications of side effects
on the model may not always be realized. It is important for this issue to be widely
discussed and possible solutions or alternative modellingtechniques provided.

3 REMOVING SIDE EFFECTS

Our goal now is to construct a BN in such a way that after inference is carried out the
constraint conditioned nodes will have the desired influence and no more. We call this



methodshielding. The chief insight is that we can add more conditioned nodes to cancel
out the side effects. So, after adding a nodeĈ, which we will define momentarily, we
want the following to be true:

p(WA|IA, c, ĉ) = p(WA|IA) p(WB |IB , c, ĉ) = p(WB |IB)

p(WC |IC , c, ĉ) = p(WC |IC) p(WA,WB,WC |c, ĉ) = p(WA,WB,WC) (2)

wherec indicates thatC = c.

3.1 ANTIFACTORS

To defineĈ we need to think about how inference is carried out. Afactor is the result
of summing out some variables in a network during inference using a technique such
as variable elimination [6][7]. In our example, if the affected nodes are summed out a
factor is obtained,fTABC

(WA,WB ,WC), representing the combined effect of the con-
straint on theWA,WB andWC nodes. To cancel this we create anantifactornode,Ĉ,
with these nodes as parents, see Figure 2. The distribution of Ĉ is defined by inverting
the factor for the affected nodes as follows:

p(ĉ|WA,WB,WC) =
1

Z

1

fTABC
(WA,WB,WC)

(3)

wherefTABC
(WA,WB,WC) =

∑

T

p(c|TA, TB, TC)p(TA|WA)p(TB|WB)p(TC |WC)

The constant,Z, ensures that all values are in the range [0,1]. During inference this will
cause the distributions of̂C and the nodesC, TA, TB andTC to exactly cancel each
other making the distribution consistent with (2).
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Fig. 2.An antifactorĈ shields the influence of thec-nodeC.



3.2 GENERAL ANTIFACTORS

We now define the problem more generally.

Definition 1. A shielded Bayesian network (SBN)as satisfying the following require-
ment:

p(SC|c, ĉ) = p(SC) (4)

WhereC is ac-nodeandĈ is a conditioned node added to the network with a distribu-
tion constructed to satisfy(4). The setEC = pa(EC) contains theaffected nodesand
SC = pa(pa(C)) − EC contains theshielded nodes. We assume there is no node in
that is both an ancestor and a descendant of nodes inEC.

This can be satisfied by creating an antifactor node,Ĉ, with parentsSC such that

p(ĉ|SC) =
1

Z

1

fEC
(SC)

A more general case is shown in Figure 3. HereC1 andC2 are connected in a
component because they share parents. Letκ be the minimum set of pairwise, disjoint
components. The setSκ then denotes all the nodes to be shielded from everyc-nodein
κ. An antifactor,Ĉ, is defined with parentsSκ. Its distribution is computed by summing
out all nodes inEκ = EC1

∪ EC2
.
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Fig. 3. The nodesL, M, N are constrained by twoc-nodeswith κ = {C1, C2}.The antifactor,
Ĉ, cancels out the effect on theSκ nodes.

Definition 2. With κ as a, possibly singleton, set of connectedc-nodesand Ĉ as its
corresponding antifactor node, the following is the general definition of shielding:

p(Sκ|κ, ĉ) = p(Sκ) (5)



Note that the antifactoralways existsexcept in the case where the factorfEκ
(Sκ)

contains a zero term. This occurs when the distribution of the affected network assigns
a probability of zero to some instance ofSκ after all the affected nodes have been
summed out.

4 ANTINETWORKS

The major drawback of using antifactors is complexity.Ĉ connects all of the nodes in
Sκ creating a large new clique in the network. We could improve complexity by creating
a conditional structure to reduce the number of parents of the antifactor.

An antinetworkis a set of nodes that mimic the structure of the originalc-node
and its parents. The distributions of the copiedĈ andEκ̂ nodes are computed so that
summing outEκ̂ will yield 1

fEκ
(Sκ) . Figure 4 shows the antinetwork for our example.
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Fig. 4. An antinetwork shields the influence ofc-nodeC.

4.1 EXISTENCE OF A SOLUTION

Unlike the antifactor solution it is not certain that a proper set of parameters for the
antinetwork always exists although we have found them in many cases. Here we discuss
some general properties of solutions.

The parameters to be solved for the antinetwork conform to the following system of
equations. For simplicity, the case with binary nodes is shown here.

Letπ = fEκ̂
(Sκ) =

1

fEκ
(Sκ)

π =
∑

x∈Eκ̂

∏

ĉ∈κ̂

p(ĉ|Eĉ)
∏

ê∈x

p(ê|Sĉ)

0 =
∑

x∈Eκ̂

∏

ĉ∈κ̂

γĉ

∏

ê∈x

(ψê)
(ê=t)(1 − ψê)

(ê=f) − π = gs(X) (6)



Wherex captures one assignment to all the nodes inEκ̂ and the indicator exponent
(ê = t) is simply 1 or 0. Note that this represents one equation for each instance
s ∈ Sκ. We will refer to this system asgs(X) for X = {γĉ, ψê} for all ĉ ∈ κ and
ê ∈ Eĉ. WhenX is found such thatgs(X) = 0 then the antinetwork satisfies the
shielding requirement.

Solution Bounds When all the parameters are set to zero, denotedX0, and one,X1,
the system yields:

gs(X0) = −π gs(X1) = 1 − π

Sinceπ is normalized to be a probability we have

gs(X0) ≤ 0 ≤ gs(X1) for all s ∈ Sκ

Sincegs(X) is a continuous function for eachs ∈ Sκ we know there is a solutionXs

such thatgs(Xs) = 0. Unfortunately, we have not yet been able to show that there is
always a simultaneous solution,X∗, to these equations such thatgs(X∗) = 0 for all
s ∈ Sκ. The solutionX∗ is easy to identify when found as all the functions will be
zero. WhenX 6= X∗, the solution can be used as an approximation to the correctly
shielded distribution.

4.2 FINDING A SOLUTION

The antinetwork parameters can be solved by framing them as aconstrained optimiza-
tion problem. The objective function is a linear combination of thegs(X) functions.
The same functions are also used to define nonlinear, inequality constraints of the form
gs(X) ≥ 0. Optimization is then begun at some known positive point, such asX1 and
minimized until allgs(X) = 0. See [1] for more details.

4.3 SOLUTION EXAMPLE

The solved CPDs for the antinetwork nodes, for Example 1, areshown in figure 5. The
posteriors of the shielded nodes,WA, and their ancestors,IA, are correctly uninflu-
enced by the existence of the constraint. In particular, theancestors maintain their prior
distributions:

p(IA = t|c, ĉ) = .3 p(IB = t|c, ĉ) = .7 p(IC = t|c, ĉ) = .6

For networks where the affected sets overlap this method does not always find an exact
solution. Our results approach the correct distribution but do not find an exact match.
This indicates a solution may exist and that improved searchtechniques could yield a
better approximation or an exact solution. When an exact solution is required an antifac-
tor can always be used to shield the givenc-nodesinstead. Furthermore, antinetworks
and antifactors can be used in the same network.
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Fig. 5.Computed CPDs for antinetwork found using nonlinear constrained optimization.

5 UNDIRECTED MODELS AND CHAIN GRAPHS

Another way to think about constraint conditioning is through undirected models. A
Markov Random Field (MRF) [4] can easily be expressed as a BN by replacing all
cliques potentials,φ, with conditioned nodes. A simple construction makes this clear,
see Figure 6:

– For each cliqueCi in the MRF, remove all links between nodes and replace with a
directed link from each node inCi to a new binary nodeCi.

– Assign the CPD ofCi such thatp(Ci = true|Ci) = φi(Ci)
– Condition all of these addedCi nodes to be true.

These two representations model equivalent distributions. Note that under this construc-
tion the conditioned nodes will never have grandparents so shielding will not be needed.
To model the full range of distributions we are interested inwe need a combination of
directed and undirected relationships.

5.1 CHAIN GRAPHS

A chain graph(CG) [3] is a graphical model that can have directed or undirected edges
between its nodes. Achain component, τ ∈ T , is any set of nodes forming a connected
component using undirected edges. Nodes in the directed portions of the network form
their own chain components of size one. A CG can be seen as a directed, acyclic graph
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Fig. 6. MRF to BN construction: a) A Markov Random Field. b) This MRF as a Bayes net with
conditioned nodes replacing clique potentials.

of chain components. The graph is acyclic in that there are nopartially directed cycles.
This is a cycle containing some directed edges, all pointingin the same direction around
the cycle. Our example can be represented as a CG with the affected nodes represented
as in figure 6(a) and other nodes connected as within the original BN.

The joint density of a CG is given by the following factorization [8] where the
values of a set of variablesV is given byxV . HereA(τ) are all the fully connected sets
of nodes from withinτ ∪ pa(τ). Each of these has a clique potentialφA(xA) across the
nodes in the fully connected set. TheZ term normalizes the density by summing across
the values of all the nodes within the current chain component:

p(xV ) =
∏

τ∈T

p(xτ |xpa(τ)) (7a)

p(xτ |xpa(τ)) =
1

Z(xτ )

∏

A∈A(τ)

φA(xA) (7b)

Z(xτ ) =
∑

xτ

∏

A∈A(τ)

φA(xA) (7c)

Consider computingp(WA). It is clear that the distribution of theTA, TB, TC chain
component will play no part. This is because the nodes in the chain will be summed out
in equation (7b) which will lead theφ andZ terms to cancel exactly. In fact, lacking
any observations, the variablesWA,WB,WC are independent of each other. CGs thus
already express the kind of distribution we are concerned with where a joint constraint
can exist amongst a set of variables without their ancestorsbeing affected by the exis-
tence of that constraint. Note that in the presence of observations of a node inTA, TB or
TC this independence would no longer hold as this is new information that is relevant
to all nodes.

5.2 EQUIVALENCE OF SBNs AND CGs

We will show the equivalence of shielded Bayesian networks with chain graphs by
mapping each portion of SBNs to the factorization of CGs fromequation (7).



1. The assumption in definition 1 is equivalent to the restriction against partially di-
rected cycles in CGs.

2. Each chain component,τ , in a CG has a corresponding setκ of c-nodesin an SBN.
3. Each potential function in the CG corresponds to the distribution of ac-nodeand

the set of its affected nodes in the SBN

φA(xA) ∝ p(c|EC)p(EC|SC).

4. TheZ term is equivalent to marginalizing out the affected nodes.So for antifactors:

1

Z(xτ )
∝ p(ĉ|Sκ) =

1

fEκ
(Sκ)

. (8)

And similarly for antinetworks:

1

Z(xτ )
∝ p(ĉ|Eκ)

∏

Eκ

p(Eκ|Sκ) =
1

fEκ
(Sκ)

(9)

Note that ifκ contains more than onec-nodethen they must be dealt with simulta-
neously.

With these mappings in place, the joint distributions in either model comes from a
calculation that is equivalent up to a constant factor. Thisequivalence shows us that
both models can be used to represent the same distribution.

The complexity of inference in graphical models is exponential in the size of the
largest cliques in the network. We use clique in the same sense as in Junction trees [9],
which are often used to perform inference in graphical models. Using either SBNs with
antifactors or CGs this will be dominated by the size of the set Sκ. This is because an
antifactor has all of the nodes inSκ as its parents and so creates a clique of that size.
Likewise, the potential function of a CG,φA(xA), is defined over amoralized graph
[10] where all the parents of nodes in a chain component are connected together. As
we will show in the next section, antinetwork can avoid this blowup at least for some
classes of networks.

6 COMPLEXITY COMPARISON

Consider the case where eache-nodehasm parents, none of which are shared with
othere-nodesand all nodes have a domain of sizeD. This is the type of distribution
described in Example 1. In all networks of this type tried an antinetwork solution has
always been found.

The complexity for CGs is then exponential in the size of the cliqueA which is :

CG = D|EC |+|SC |

= D|EC |+m|EC| since|SC | = m× |EC |

= D|EC |(m+1) (10)



For SBNs with antifactors, all of thes-nodesare combined into one clique. To maintain
the triangulation property for junction trees eache-nodeis joined to alls-nodes. This
leads to a slightly higher complexity than for CGs although the dominant term is the
same as the CG complexity.

SBNantifactor = D|EC |+|SC| +D|SC| +D|EC | (11)

An example of the junction tree for the third model, using antinetworks, is shown in
figure 7. Conditional independence in the antinetwork reduces the complexity to:

S1S2S3E1Ê1 S4S5S6E2Ê2

E1Ê1E2Ê2

Ê1Ê2Ĉ E1E2C

Fig. 7.Junction tree for antinetwork model with|EC| = 2 andm = 3.

SBNantinetwork = D2|EC | + |EC |D
2+m + 2D|EC | (12)

Thus, for this set of models we find that

SBNantinetwork < CG when both|EC | ≥ 2 andm ≥ 2.

So in general, as the number of parents of eache-nodegoes up, SBNs increase in
complexity more slowly than CGs if the connectivity betweenancestors of eache-node
is low. When this is not the case, the antifactor method stillprovides a solution that has
the same dominant term as the CG although it will have additional, smaller cliques as
well.

7 CONCLUSION

In this paper we have formalized a common informal techniquefor adding constraints
to BNs and pointed out serious side effects that may not be desired. The modeler faced
with these unwanted side effects has several choices. They could re-evaluate their mod-
elling assumptions, attempt to represent the constraint inother ways or use chain graphs
instead. Modelers now have another option which is to use oneof the shielding meth-
ods proposed here. The first method, antifactors, is universal and simple to apply but
may be costly during inference. The second method, antinetworks, is more efficient for
inference and while the empirical existence of solutions ispromising there are no guar-
antees as of yet. The distributions modelled by these networks are equivalent to those of



chain graphs. We have shown that at least for some classes of distribution, antinetworks
are a more efficient representation than chain graphs. Further questions remain such
as: Are there antinetwork solutions for wider classes of BNs? Are there any distribu-
tions that have compact antifactor solutions that would combine the advantage of both
shielding methods? Can antifactors or antinetworks take advantage of context specific
independence to reduce complexity?

There are strong similarities between our methods and complementary priors in
[11] which offer intriguing lines of further research into learning. That work computes
complimentary priors quickly and efficiently to cancel out interdependence between
network layers, it would be interesting to see if this can be applied to our modelling
task. We believe the modeller’s toolkit should include a variety of methods that al-
low flexibility to model any distribution needed. The techniques described here can be
a very useful part of that toolbox when directed models and constraints are needed.
Chain graphs are also available for these tasks but SBNs would be very natural to many
modellers familiar with BNs. They require no extra tools beyond standard BN software
to be used and it would be straightforward to implement precompilers to automatically
add antifactors or antinetworks to BNs. This solution contributes to Bayesian network
modelling as well as adding insight into the relationships between all of these common
modelling languages.
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