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Abstract

This paper provides a search�based algorithm for com�
puting prior and posterior probabilities in discrete
Bayesian Networks� This is an �anytime� algorithm�
that at any stage can estimate the probabilities and give
an error bound� Whereas the most popular Bayesian net
algorithms exploit the structure of the network for e��
ciency� we exploit probability distributions for e�ciency�
The algorithm is most suited to the case where we have
extreme �close to zero or one� probabilities� as is the case
in many diagnostic situations where we are diagnosing
systems that work most of the time� and for common�
sense reasoning tasks where normality assumptions �al�
legedly� dominate� We give a characterisation of those
cases where it works well� and discuss how well it can be
expected to work on average�

� Introduction

This paper provides a general purpose search�based tech�
nique for computing posterior probabilities in arbitrarily
structured discrete� Bayesian networks�

Implementations of Bayesian networks have been
placed into three classes �Pearl� 	
��� Henrion� 	

��

	� Exact methods that exploit the structure of the
network to allow e�cient propagation of evidence
�Pearl� 	
��� Lauritzen and Spiegelhalter� 	
���
Jensen et al�� 	

��

�� Stochastic simulation methods that give estimates
of probabilities by generating samples of instantia�
tions of the network� using for example Monte Carlo
techniques �see �Henrion� 	

���

�� Search�based approximation techniques that search
through a space of possible values to estimate prob�
abilities�

At one level� the method in this paper falls into the ex�
act class� if it is allowed to run to completion� it will have
computed the exact conditional probability in a Bayesian
network� It� however has the extra feature that it can
be stopped before completion to give an answer� with
a known error� Under certain distribution assumptions

�Scholar� Canadian Institute for Advanced Research�
�All of the variables have a discrete� and here even �nite�

set of possible values�

�Section �� it is shown that convergence to a small error
is quick�

While the e�cient exact methods exploit aspects of
the network structure� we instead exploit extreme prob�
abilities to gain e�ciency� The exact methods work well
for sparse networks �e�g�� are linear for singly�connected
networks �Pearl� 	
����� but become ine�cient when the
networks become less sparse� They do not take the
distributions into account� The method in the paper
uses no information on the structure of the network� but
rather has a niche for classes of problems where there
are �normality� conditions that dominate the probabil�
ity tables �see Section ��� The algorithm is e�cient for
these classes of problems� but becomes very ine�cient as
the distributions become less extreme� This algorithm
should thus be seen as having an orthogonal niche to the
algorithms that exploit structure for e�ciency�

� Background

��� Probability

In this section we give a semantic view of probability
theory� and describe the general idea behind the search
method� In some sense the idea of this method has noth�
ing to do with Bayesian networks � we just have to
commit to some independence assumptions to make the
algorithm more concrete�

We assume we have a set of random variables �writ�
ten in upper case�� Each random variable has an associ�
ated set of values� vals�X� is the set of possible values
of variable X� Values are written in lower case� An
atomic proposition is an assignment of a value to a
random variable� variable X having value c is written as
X � c� Each assignment of one value to each random
variable is associated with a possible world� Let � be
the set of all possible worlds� Associated with a possi�
ble world � is a measure ����� with the constraint that
���  � ���� � 	 and

	 �
X
���

�����

�This could have also been presented as joint distribu�
tions� with probabilistic assignments to the possible worlds
corresponding to joint distributions� If that view suits you�
then please read �possible worlds� as �elementary events in
a joint distribution� �Pearl� ��		� p� 

��



We write � j� X � c �read �X has value c in world ��� if
variable X is assigned value c in world �� Each variable
has exactly one value in a possible world� thus we can
see a random variable as a set of mutually exclusive and
covering propositions �i�e�� the propositions of the form
X � v for each v � vals�X��� A proposition is a logical
formula made up of atomic propositions and the usual
logical connectives� We de�ne the truth of propositions
in a world using the normal truth tables �e�g�� � j� ���
if � j� � and � j� ���

Probability is a function from propositions to �� 	��
de�ned by

P ��� �
X

�����j��

�����

Conditional probability is de�ned by�

P ��j�� �
P ��� ��

P ���

If � is a conjunction of observations� then P ��j�� is the
posterior probability of �� P ��� is the prior prob�
ability of formula ��

��� Searching possible worlds

For a �nite number of variables with a �nite number
of values� we can compute the probabilities directly� by
enumerating the possible worlds� This is� however� com�
putationally expensive as there are exponentially many
of these �the product of the sizes of the domains of the
variables��

The idea behind the search method presented in this
paper is motivated by considering the questions�

� Can we estimate the probabilities by only enumer�
ating a few of the possible worlds�

� How can we enumerate just a few of the most prob�
able possible worlds�

� Can we estimate the error in our probabilities�

� For what cases does the error get small quickly�

� How fast does it converge to a small error�

This paper sets out to answer these questions� for the
case where the distribution is given in terms of Bayesian
networks�

��� Bayesian Networks

A Bayesian network �Pearl� 	
��� is a graphical repre�
sentation of �in�dependence amongst random variables�
A Bayesian network is a directed acyclic graph where
the nodes represent random variables� If there is an arc
from variable B to variable A� B is said to be a par�
ent of A� The independence assumption of a Bayesian
network says that each variable is independent of its non�
descendents given its parents�

Suppose we have a Bayesian network with random
variables X�� ���� Xn� The parents of Xi are written as

�Xi
�
D
Xi� � � � � � Xiki

E
�

Associated with the Bayesian network are conditional
probability tables which gives the marginal probabilities
of the values of Xi depending on the values of its parents

�Xi
� This consists of� for each vj � vals�Xj �� probabili�

ties of the form

P �Xi � vijXi� � vi� � � � � �Xiki
� viki ��

For any probability distribution� we can compute a
joint distribution by

P �X�� � � � � Xn� �
nY
i��

P �Xij�Xi
��

This is often given as the formal de�nition of a Bayesian
network and is shorthand for the propositions that the
variables have particular values� That is

P �X� � v� � � � � �Xn � vn�

�
nY
i��

P �Xi � vijXi� � vi� � � � � �Xiki
� viki �

An assignment of values to all the variables corre�
sponds to a possible world� For the rest of this paper we
will equate a possible world with an assignment of values
to all of the variables� and use the two interchangeably
�e�g�� in using the complete description on the left hand
side of the �j����

� Enumerating possible worlds in order

��� Ordering the variables

The �rst thing we do is to impose a total ordering
on the variables that is consistent with the ordering of
the Bayesian network� We index the random variables
X�� ���� Xn such that the parents of a node have a lower
index than the node� This can always be done as the
nodes in a Bayesian network form a partial ordering� If

the parents of Xi are �Xi
�
D
Xi� � � � � � Xiki

E
� the total

ordering preserves ij � i�

��� Search Tree

We are now in a position to determine a search tree for
Bayesian networks��

De�nition ��� A partial description is a tuples of
values hv�� � � � � vji where vi is an element of the domain
of variable Xi�

The search tree has nodes labelled with partial de�
scriptions� and is de�ned as follows�

� The root is labelled with the empty tuple hi�

� The children of node labelled with hv�� � � � � vji are
the nodes labelled with hv�� � � � � vj� vi for each v �
vals�Xj���� In other words� the children of a node
correspond to the possible values of the next vari�
able in the total ordering�

� The leaves of the tree are tuples of the form
hv�� � � � � vni�

�This search tree is the same as the probability tree of
�Howard and Matheson� ��	�� and corresponds to the se�
mantic trees used in theorem proving �Chang and Lee� ���
�
Section ��� but with random variables instead of comple�
mentary literals�



Q �� fhig�
W �� fg�
While Q �� fg do

choose and remove hv�� � � � � vji from Q�
if j � n

then W �� W � fhv�� � � � � vjig
else Q �� Q � fhv�� � � � � vj� vi � v � vals�Xj���g

Figure 	� Basic search algorithm

Partial description hv�� � � � � vji corresponding to the
variable assignment

X� � v� � � � � �Xj � vj �

There is a one to one correspondence between leaves
of the tree and possible worlds �or complete assignments
to the variables��

We associate a probability with each node in the tree�
The probability of the partial description hv�� � � � � vji is
the probability of the corresponding proposition�

P �X� � v� � � � � �Xj � vj�

This is well de�ned as� due to our variable ordering� all
of the parents of each variable Xi�  � i � j has a value
in the partial description�

The following lemma can be trivially proved� and is
the basis for the search algorithm�

Lemma ��� The probability of a node is equal to the
sum of the probabilities of the leaves that are descendents
of the node�

This lemma lets us bound the probabilities of possible
worlds by only generating a few of the possible worlds
and placing bounds on the sizes of the possible worlds
we have not generated�

��� Searching the Search Tree

To implement the computation of probabilities� we carry
out a search on the search tree� and generate some of the
most likely possible worlds� There are many di�erent
search methods that can be used �Pearl� 	
����

Figure 	 gives a generic search algorithm that can be
varied by changing which element is chosen from the
queue� There is a priority queue Q of nodes� and a set
W of generated worlds� We remove a node �e�g�� the
most likely�� either it is a leaf �if j � n� in which case it
is added to W � or else its children are added to Q�

Note that each partial description can only be gener�
ated once� There is no need to check for multiple paths
or loops in the search� This simpli�es the search� in that
we do not need to keep track of a CLOSED list or check
whether nodes are already on the OPEN list �Q in Figure
	� �Pearl� 	
����

No matter which element is chosen from the queue at
each time� this algorithm halts and when it halts W is
the set of all tuples corresponding to possible worlds�

� Estimating the Probabilities

If we let the above algorithm run to completion we have
an exponential algorithm for enumerating the possible

worlds that can be used for computing the prior proba�
bility of any proposition or conjunction of propositions�
This is not� however� the point of this algorithm� The
idea is that we want to stop the algorithm part way
through� and determine any probability we want to com�
pute�

We use W � at the start of an iteration of the while loop�
as an approximation to the set of all possible worlds�
This can be done irrespective of the search strategy used�

��� Prior Probabilities

Suppose we want to compute P �g�� At any stage �at
the start of the while loop�� the possible worlds can be
divided into those that are in W and those that will be
generated from Q�

P �g� �
X

w���wj�g

P �w�

�

�
� X
w�W�wj�g

P �w�

�
A�

�
� X
w���W�wj�g

P �w�

�
A

We can easily compute the �rst of these sums� and can
bound the second� The second sum is greater than zero
and is less than the sum of the probabilities of the par�
tial descriptions on the queue �using Lemma ����� This
means that we can bound the probabilities of a propo�
sition based on enumerating just some of the possible
worlds� Let

P g
W �

X
w�W�wj�g

P �w�

PQ �
X
t�Q

P �t��

Lemma ��� P
g
W � P �g� � P

g
W � PQ�

As the computation progresses� the probability mass
in the queue PQ approaches zero and we get a better
re�nements on the value of P �g�� Note that PQ is mono�
tonically non�increasing through the loop �i�e PQ stays
the same or gets smaller through the loop�� This thus
forms the basis of an �anytime� algorithm for Bayesian
networks�

��� Posterior Probabilities

The above analysis was for �nding the prior probability
of any proposition� If we want to compute the posterior
probability of some g given some observations obs� we
can use the de�nition of conditional probability� and use

P �gjobs� �
P �g � obs�

P �obs�

We can estimate the conditional probability from our
our estimates of P �g � obs� and P �obs�� �namely P

g�obs
W

and P obs
W � by noticing that each element of the queue

can go towards implying obs � �g� obs � g or �obs� We
can easily prove the inequality�

Lemma ���

P
g�obs
W

P obs
W � PQ

�
P
g�obs
W

P obs
W

�
P
g�obs
W � PQ

P obs
W � PQ



It can be proved that P �gjobs� has the following
bound�
Theorem ���

P
g�obs
W

P obs
W � PQ

� P �gjobs� �
P
g�obs
W � PQ

P obs
W � PQ

For a proof see Appendix A�
If we choose the midpoint as an estimate� the maxi�

mum error is

	

�

�
P
g�obs
W � PQ

P obs
W � PQ

	
P
g�obs
W

P obs
W � PQ

�
�

PQ

��P obs
W � PQ�

What is interesting about this is that the error is in�
dependent of g� Thus when we are generating possible
worlds for some observation� and want to have poste�
rior estimates within some error� we can generate the
required possible worlds independently of the proposi�
tion that we want to compute the probability of�

� Search Strategies

The above analysis was independent of the search strat�
egy �i�e�� independent of which element we remove from
the queue��

We can carry out various search strategies� to enu�
merate the most likely possible worlds� For example�
�Poole� 	

�� discusses a multiplicative version of A�

�Pearl� 	
���� with con�icts used to re�ne a heuristic
function�

In this paper the search strategy we use is where the
element of the queue with highest prior probability is
chosen at each stage� This paper does not study various
search strategies� but analyses one� I make no claim that
this is the best search strategy �see Section ��� but it
forms a base case with which to compare other strategies�

� Complexity

The problem of �nding the posterior probability of a
proposition in a Bayesian network is NP hard �Cooper�
	

�� Thus we should not expect that our algorithms
will be good in the worst case� Our algorithm� when
run to completion� is exponential in computing the exact
prior and posterior probability of a hypothesis�

Because of the the �anytime� nature of our algorithm�
which trades search time for accuracy� we should not
consider run time independently of error� It is interesting
to estimate how long it takes on average to get within
some error� or how accurate we can expect �or guarantee
as as asymptotic behaviour� to be within a certain run
time�

As we have probabilities it is possible to carry out an
average case complexity analysis of our algorithm�

If we make no assumptions about the probability dis�
tributions� the average case of �nding the most likely
explanation or prior probability within error � � 	 is ex�
ponential in the size n of the Bayesian network �Provan�
	
���� This can be seen by noticing that the size of com�
plete descriptions are linear in n and so the probability
of explanations is exponentially small in n� This means

that we need to consider exponentially many explana�
tions to cover any �xed proportion of the probability
mass�

This is not always a reasonable distribution assump�
tion� for example� when using this for diagnosis of a sys�
tem that basically works we would like to assume that
the underlying distribution is such that there is one as�
signment of values �the �normal values�� that dominates
the probability mass� This also may be appropriate for
commonsense reasoning tasks where normality assump�
tions �allegedly� dominate �i�e�� we assume that abnor�
mality is rare �McCarthy� 	
�����

For our analysis we assume that we have extreme prob�
abilities for each conditional probability given� For each
value of the parents of variable Xi� we assume that one
of the values for Xi is close to one� and the other values
are thus close to zero� Those that are close to one we
call normality values� those that are close to zero we call
faults�

De�nition ��� If we have extreme probabilities �i�e��
all of the conditional probabilities are close to one or
zero�� then the faults of partial description hv�� � � � � vki
are those vi such that P �Xi � vijXi� � vi� �� � ��Xiki

�

viki � is close to zero�

Which values are faults is thus context dependent and
depends on the values of the predecessor variables� The
term �fault� is derived from its use in diagnosis� where
deviation from normality is a fault� The non�monotonic
reasoning community has called such things abnormali�
ties �McCarthy� 	
����

Each element of the queue consists of a set of normality
conditions and a set of faults� For each set of faults there
can be at most one element of Q or W whose faults are
exactly that set� A k�fault partial description is one with
exactly k faults�

For our complexity analysis� let p �p 
 	� be the prob�
ability of the least likely normality condition� We can
interpret our analysis as being for the case where all of
the normality conditions have value p or as a bound for
the cases where all normality conditions are greater than
p� Let f � 		 p� f is a bound on the probability of the
faults�

Let b � 	 be a bound on the number of values of a
variable� Thus b is the maximum number of fault values
of any variable given its predecessors� We assume that b
is �xed �it is not a function of the number of variables��

��� Error convergence

Suppose we have n variables in our Bayesian network�
Consider the case where we are about to choose the �rst
k�fault partial description from the queue� We assume
for this analysis that k� n�

At this time there can be no �k � 	��fault node on
the queue �as we can only generate �k � 	��fault nodes
from k�fault nodes and we have not yet expanded out

�rst k�fault node�� so there are at most

�
bn
k

�
possible

combinations of faults on the priority queue �choosing k
faults from the set of bn fault assumptions�� Each partial
description on the queue has a probability less than fk



�not because they all have k faults� but because some�
thing with probability less than fk has been chosen from
the priority queue and it was the element with highest
probability�� Thus the probability mass in the queue can

be bounded by

�
bn
k

�
fk� So

PQ �

�
bn
k

�
fk

�
�bn�k

k 
fk

�
bk�nf�k

k 
�

Thus� we have convergence �as the computation pro�
ceeds and k increases� when bnf � 	�

In order to interpret the value of nf � we use the fol�
lowing lemma�

Lemma ��� If nf is small then nf 
 		 pn�

pn is the probability that there are no faults� Thus
		pn is the prior probability of some fault in the system�
This is low when we are diagnosing a system which works
most of the time� and has rare errors� We will carry out
our analysis for the class of systems where the error rate
of the total system is low� That is where � � nf is low
�at least less than �

b
�� The analysis is parametrized by

�� This becomes the class of Bayesian networks that we
analyse� N�B�� with � �xed� f �  as n��

��� How fast is convergence�

The time to compute the posterior probability of any
formula �of bounded size� given some observations using
this search algorithm is dominated by the search� This is
because the search already includes checking every gen�
erated possible world� Thus we just consider generating
the possible worlds�

To see how fast we reach convergence� consider how
long it takes to reach the stage where we are about to
choose the �rst k�fault hypothesis from the queue� We
assume for this analysis that k� n�

There are at most �bn�	�k ways to generate k or fewer
faults� For each of these combinations of faults� we go
through the while�loop of Figure 	� at most n times �for
the other normality assumptions�� The only thing in the
while loop that depends on the size of n� is adding and
removing elements from the priority queue� which can
be done in log jQj time�

log jQj � log

�
�bn�k

k 

�
� k�logn�log b�	logk � O�logn�

�for �xed b and k�� Thus we can reach the stage where
we are taking the �rst k�fault hypothesis o� the queue
in O�nk�� logn� time�

We can combine the above results on the queue size
and time to reach the stage where where we are taking
the �rst k�fault hypothesis o� the queue to give us�

Lemma ��� For �xed b and k� if � � �
b

we can attain

an accuracy of �b��k

k	 in the estimate of prior probabilities

in O�nk�� logn� time�

For example� if b � 	 �there is only one fault mode�
we can attain an accuracy of � in O�n� logn� time� We

can attain an accuracy of ��

� in O�n� logn� time� We can

attain an accuracy of ��


 in O�n� logn� time�

Theorem ��� We can obtain an accuracy of � in time

O
�
n��

log �

log b� logn
�
�

See Appendix A for a proof of this theorem�

��� Posterior Probabilities

As discussed in Section ���� at any stage through the
loop in the algorithm of Figure 	� we can estimate the
posterior probability of g given obs with an error that is
independent of g�

To make the posterior error less than �� we require

PQ

��P obs
W � PQ�

� �

this occurs when

PQ �
��P obs

W

		 ��

which can be ensured if we make sure that

PQ � ��P obs
W

We can use the analysis for the prior probability� but
multiplying the error bound by a factor that is an esti�
mate of P �obs�� As it is unlikely that the observations
have a low probability� it is unlikely to have a situation
where the error term required is dominated by the prob�
ability of the observation� This observation is re�ected
in Theorem ��! below�

The following theorem gives a PAC �probably approx�
imately correct� characterization of the complexity��

Theorem ��	 In the space of all systems� to compute
the posterior probability of any proposition �of bounded
size� given observation obs� we can guarantee an error of
less than � �� � �

� �� for at least 			 of the cases in time

O
�
n��

log ��

log b� logn
�

See Appendix A for a proof of this theorem�
Note that in this theorem we are considering �the

space of all systems�� For diagnosis� this means that
we consider a random artifact� Most of these have no
faults� and presumably would not be the subject of di�
agnosis� Thus the space of all systems is probably not
the space of all systems that we are likely to encounter
is a diagnostic situation� A more realistic space of sys�
tems by which to judge our average�time behaviour is
the space of all broken systems� that is those that have
at least one fault�� We are thus excluding all but � of

�This has the extra property that we know when we are
in a case for which we cannot guarantee the error� when we
have run our algorithm we know our error�

�It could also be argued that this is also inappropriate� we
would rather consider the space of systems that exhibit faulty
behaviour� This would be much harder to analyse here� as we
have no notion of the observable variables developed in this
paper� The space of broken devices seems like a reasonable
approximation�



the systems� To exclude all but 	 of the broken systems
we have to exclude all but �	 of the total number of
systems� We thus have the following corollary�

Corollary ��� In the space of all broken systems �with
at least one fault�� to compute the posterior probability
of any proposition �of bounded size� given observation
obs� we can guarantee an error of less than � �� � �

��� for
at least 		 	 of the cases in time

O
�
n��

log ���

log b� logn
�

� Re�nements

There are a number of re�nements that can be carried
out to the algorithm of Figure 	� Some of these are
straightforward� and work well� The most straightfor�
ward re�nements are�

If we are trying to determine the value of P ���� we can
stop enumerating the partial descriptions once it can be
determined whether � is true in that partial description�
When conditioning on an observation we can prune any
partial description that is inconsistent with the observa�
tion�

We do not really require that we �nd the most likely
possible worlds in order� as we are just summing over
them anyway� One way to improve the algorithm is to
carry out a depth��rst depth�bounded search� We can
guess the probability of the least likely possible world we
will need to generate� use this as a threshold and carry
out a depth��rst search pruning any partial description
with probability less that this threshold� If the answer
is not accurate enough� we decrease the threshold and
try again� This is reminiscent of iterative deepening A�

�Korf� 	
�!�� but we can decrease the bound in larger
ratios as we do not have to �nd the most likely possible
world�

We can use con�icts �de Kleer� 	

	� to form a heuris�
tic function for a multiplicative version of A� �Poole�
	

���

See �Poole� 	

�� for a Prolog implementation that
incorporates these re�nements�

� Comparison with other systems

The branch and bound search is very similar to the
candidate enumeration of de Kleer�s focusing mecha�
nism �de Kleer� 	

	�� This similarity to a single step
in de Kleer�s e�cient method indicates the potential of
the search method� He has also been considering cir�
cuits with thousands of components� which correspond
to Bayesian networks with thousands of nodes� It seems
to be very promising to combine the pragmatic e�ciency
issues confronted by de Kleer� with the Bayesian network
representation� and the error bounds obtained used in
this paper�

Poole �	

�a� has proposed a Prolog�like search ap�
proach that can be seen as a top�down variant of the
bottom�up algorithm presented here� It is not as e�cient
as the one here� Even if we consider �nding the single
most normal world� the algorithm here corresponds to
forward chaining on de�nite clauses �see �Poole� 	

�b���

which can be done in linear time� but backward chain�
ing has to search and takes potentially exponential time�
The backward chaining approach seems more suitable
however when we have a richer language �Poole� 	

�b��

D�Ambrosio �	

�� has a backward chaining search al�
gorithm for �incremental term computation�� where he
has concentrated on saving and not recomputing shared
structure in the search� This seems to be a very promis�
ing approach for when we do not have as extreme prob�
abilities as we have assumed in this paper�

Shimony and Charniak �	

� have an algorithm that
is a backward chaining approach to �nding the most
likely possible world� The algorithm is not as simple
as the one presented here� and has worse asymptotic be�
haviour �as it is a top�down approach � see above�� It
has not been used to �nd prior or posterior probabilities�
nor has the average�case complexity been investigated�

This paper should be seen as a dual to the TOP�N
algorithm of Henrion �	

	�� We have a di�erent niche�
We take no account of the noisy�OR distribution that
Henrion concentrates on�

	 Conclusion

This paper has considered a simple search strategy for
computing prior and posterior probabilities in Bayesian
networks� It is a general purpose algorithm� that is al�
ways correct� and has a niche where it works very well�
We have characterised this niche� and have given bounds
on how badly it can be expected to perform on average�
How common this niche is� is� of course� an open ques�
tion� but the work in diagnosis and nonmonotonic rea�
soning would suggest that reasoning about normality is
a common task�

A Proofs

Theorem ���

P
g�obs
W

P obs
W � PQ

� P �gjobs� �
P
g�obs
W � PQ

P obs
W � PQ

Proof
 Consider what happens to the elements of the
queue� Let � be the proportion of the possible worlds
that are descendents of elements of the priority queue
in which obs � �g is true� Let � be the proportion in
which obs � g is true� Then � � � is the proportion in
which obs is true�
As all of the possible worlds are either in W or are
descendents of elements of the priority queue� we have

P �gjobs� �
P
g�obs
W � �PQ

P obs
W � �� � ��PQ

We want to maximise this formula under the
constraints that  � � � 	�  � � � 	 and
 � � � � � 	� There are no internal extrema in this
formula� and so the maxima occur at the extremes�
There are � � � � � � � 	 � � �  and � � 	 � � � �
These correspond to the three values in Lemma ����
and the theorem follows directly from Lemma ���� �

Theorem ��� We can obtain an accuracy of � in time

O
�
n��

log �

log b� logn
�



Proof
 If we require an accuracy of �� we ensure
�b��k

k	
� �� This can be obtained if we ensure �b��k � ��

Solving for k� we get

k log b� � log �

k �
log �

log b�

This requires O�nk�� logn� time� Substituting the
value for k� the theorem follows� �

Theorem ��	 In the space of all systems� to compute
the posterior probability of any proposition �of bounded
size� given observation obs� we can guarantee an error
of less than � �� � �

� �� at least 		 	 of the cases in time

O
�
n��

log ��

log b� logn
�

Proof
 We can assume that the P �obs� � 	� This will
be wrong less than 	 of the cases �by de�nition�� If we

make sure that PQ � �

� � then

	

�
� P �obs�	 PQ � P obs

W

To achieve error �� we make sure PQ � �	� Then� as
�	 � ��P obs

W � we will have PQ � ��P obs
W � which� as

described above implies that the error will be less than
�� Thus we have to ensure that PQ � min��� � �	� � �	�
By Theorem ���� this can be done in time

O
�
n��

log ��

log b� logn
�

�
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