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Abstract

There is evidence that the numbers in probabilis-
tic inference don’t really matter. This paper con-
siders the idea that we can make a probabilis-
tic model simpler by making fewer distinctions.
Unfortunately, the level of a Bayesian network
seems too coarse; it is unlikely that a parent will
make little difference for all values of the other
parents. In this paper we consider an approxima-
tion scheme where distinctions can be ignored in
some contexts, but not in other contexts. We elab-
orate on a notion of a parent context that allows
a structured context-specific decomposition of a
probability distribution and the associated proba-
bilistic inference scheme called probabilistic par-
tial evaluation (Poole 1997). This paper shows a
way to simplify a probabilistic model by ignor-
ing distinctions which have similar probabilities,
a method to exploit the simpler model, a bound
on the resulting errors, and some preliminary em-
pirical results on simple networks.

1 Introduction

Bayesian networks (Pearl 1988) are a representation of in-
dependence amongst random variables. They are of interest
because the independence is useful in many domains, they
allows for compact representations of problems of proba-
bilistic inference, and there are algorithms to exploit the
compact representations.

Recently there has some evidence (Pradhan, Henrion,
Provan, Del Favero & Huang 1996) that small distinctions
in probability don’t matter very much to the final probabil-
ity. Experts can’t tell whether some value should be, for
example, 0.6 or 0.7, but it doesn’t seem to matter anyway.
This would seem to indicate that, if we don’t make such
distinctions between close probabilities, it may be possible
to simplify the probabilistic model, thus leading to faster
inference.

Approximation techniques have been used that give bounds

on probabilities. These have included stochastic simula-
tion methods that give estimates of probabilities by gener-
ating samples of instantiations of the network (Dagum &
Luby 1997), search-based approximation techniques that
search through a space of possible values to estimate prob-
abilities (Henrion 1991, D’Ambrosio 1992, Poole 1996),
and methods that exploit special features of the conditional
probabilities (Jordan, Ghahramani, Jaakkola & Saul 1997).
Another class of methods have been suggested to approxi-
mate by simplifying a network, including to remove parents
of a node (remove arcs) (Sarkar 1993), to remove nodes that
are distant from the node of interest (Draper & Hanks 1994),
or to ignore dependencies when the resultant factor will ex-
ceed some width bound (Dechter 1997). None of these
methods take contextual structure into account.

This paper is based on simplifying the network based on
making fewer distinctions. The network is simplified a pri-
ori as well as during inference, and posterior bounds on the
resulting probability are obtained. This is done by remov-
ing distinctions in the probabilities. Unlike the search based
methods that bound the probabilities by ignoring extreme
probabilities (close to 0 or 1), it is the intermediate prob-
abilities that we want to collapse, rather than the extreme
probabilities. As pointed out by Pradhan et al. (1996), al-
though probabilities such as 0.6 and 0.7 may be similar
enough to be treated as the same, 0.0001 and 0, although
close as numbers, are qualitatively different probabilities.

Unfortunately the Bayesian network doesn’t seem to be the
most appropriate level to facilitate such simplifications. We
wouldn’t expect that the conditional probability of the child
would not be affected very much forall values of its other
parents. It seems more plausible that in some contexts the
value of the parent doesn’t make much difference.

The general idea is to simplify the network, by ignoring
distinctions that don’t make much difference in the con-
ditional probability, but what may be ignored may change
from context to context. This builds on a method to exploit
the contextual structure during inference (Poole 1997). In
this paper we show how to simplify the network and how
to give a bound on the error. Note that we are only able
to give a posterior error at this stage; once we have make
the simplifications to the network, we can derive bounds



on the probability of the original network; it is still an open
problem to predict the errors when simplifying the network.

To enable us to get computational leverage from the sim-
plified network, we need an inference method that can ex-
ploit the structure. We build on a notion of parent con-
texts (Poole 1997) where what acts as the parents of a vari-
able may depend on the values. This is similar to the rule-
based representations (Poole 1993) and related to the tree-
based representations (Boutilier, Friedman, Goldszmidt &
Koller 1996) of conditional probability tables, but differs
from the tree-based structure in a number of respects. First,
the simplifications of collapsing distinctions preserves the
rule-structure, but not the tree structure. Second, by treat-
ing rules as separately manipulable items, we can give more
compact intermediate representations in the inference algo-
rithms than similar algorithms that use trees (Poole 1997).

In the next section we introduce Bayesian networks, a no-
tion of contextual parent that reflects structure in probability
tables, an algorithm for Bayesian networks that exploits the
network structure. and show how the algorithm can be ex-
tended to exploit the “rule-based” representation. Finally
we show how to simplify the representation by ignoring
distinctions between close probabilities, and give a bound
on the resultant probabilities. Empirical results on networks
that were not designed with context-specific independence
in mind are presented.

2 Background

2.1 Bayesian Networks

A Bayesian network (Pearl 1988) is an acyclic directed
graph (DAG), with nodes labelled by random variables. We
use the terms node and random variable interchangeably.
Associated with a random variablex is its domain,val(x),
which is the set of values the variable can take on. Similarly
for sets of variables.

A Bayesian network specifies a way to decompose a joint
probability distribution. First, we totally order the variables
of interest,x1, . . . , xn. Then we can factorise the joint prob-
ability:

P(x1, . . . , xn) =

n∏

i=1

P(xi |xi−1 . . . x1)

=

n∏

i=1

P(xi |πxi )

The first equality is the chain rule for conjunctions, and the
second usesπxi , the parents of xi , which are a minimal
set of those predecessors ofxi such that the other predeces-
sors ofxi are independent ofxi givenπxi . Associated with
the Bayesian network is a set of probabilities of the form
P(x|πx), the conditional probability of each variable given
its parents (this includes the prior probabilities of those vari-
ables with no parents). A Bayesian network represents a
particular independence assumption: each node is indepen-

dent of its non-descendants given its parents.

2.2 Contextual Independence

Definition 2.1 Given a set of variablesC, acontextonC is
an assignment of one value to each variable inC. Usually
C is left implicit, and we simply talk about a context. Two
contexts areincompatible if there exists a variable that is
assigned different values in the contexts; otherwise they are
compatible. A complete contextis a context on all of the
variables in a domain.

Boutilier et al. (1996) present a notion of contextually in-
dependent that we simplify. We use this definition for a
representation that looks like a Bayesian networks, but with
finer-grain independence that can be exploited.

Definition 2.2 (Boutilier et al. 1996) SupposeX, Y and
C are disjoint sets of variables, we say thatX andY are
contextually independent given contextc ∈ val(C) if
P(X|Y=y1, C=c) = P(X|Y=y2, C=c) for all y1, y2 ∈

val(Y) such thatP(y1, c) > 0 andP(y2, c) > 0.

We use the notion of contextual independence to build a fac-
torisation of a joint probability that is related to the factori-
sation of a Bayesian network. We start with a total ordering
the variables, as in the definition of a Bayesian network.

Definition 2.3 (Poole 1997) Suppose we have a total order-
ing of variables. Given variablexi , we say thatc ∈ val(C)

whereC ⊆ {xi−1, . . . , x1}) is aparent context for xi if xi
is contextually independent of{xi−1, . . . , x1} − C givenc.

In a Bayesian network, each row of a conditional probability
table for a variable forms a parent context for the variable.
However, there are often not the smallest such set; there is
often a much smaller set of parent contexts. Aminimal
parent context for variablexi is a parent context such that
no subset is also a parent context.

For each variable xi and for each assignment
xi−1=vi−1, . . . , x1=v1 of values to its preceding vari-
ables, there is a compatible minimal1 parent context
π

vi−1...v1
xi . The probability of an assignment of a value to

each variable is then given by:

P(x1=v1, . . . , xn=vn) (1)

=

n∏

i=1

P(xi=vn|xi−1=vi−1, . . . , x1=v1)

=

n∏

i=1

P(xi=vi |π
vi−1...v1
xi ) (2)

This looks like the definition of Bayesian network, but
which variables act as the parents depends on the values.
The numbers required are the probability of each variable
for each of its minimal parent contexts. There can be many
fewer minimal parent contexts that the number of assign-

1If there is more than one, one is selected arbitrarily. This could
happen, if for example,P(a|b) = P(a|c) 6= P(a|b, c).



ments to parents in a Bayesian network.

For this paper, we assume that the parent contexts for each
variable are disjoint. That is, they each assign a different
value to some variable. Any set of parent contexts can be
converted into this form. This form is also the form that
is the result of converting a tree into parent contexts. This
assumption can be relaxed, but it makes the description of
the algorithm more complicated.

The idea of the inference is instead of manipulating con-
ditional probability distributions, we maintain lower-level
conditional probability assertions that we write as rules.

2.3 Rule-based representations

We write the probabilities in contexts as rules, the general
form of which is:

y1=v1 ∧ · · · ∧ yj=vj ←

yj+1=vj+1 ∧ · · · ∧ yk=vk : p

where eachyi is a different variable, andvi ∈ val(yi). Often
we treat the left and right hand sides as sets of assignments
of values to variables.

To represent a Bayesian network with context-specific inde-
pendence,j = 1 (i.e., there is only one variable in the head
of the rule),z1=v1 ∧ · · · ∧ zk=wk is a parent context and

p = P(y1=w1|z1=v1 ∧ · · · ∧ zk=wk)

Definition 2.4 SupposeR is a rule

y1=v1 ∧ · · · ∧ yj=vj ←

yj+1=vj+1 ∧ · · · ∧ yk=vk : p

and z is a context onZ such that{y1, . . . , yk} ⊆ Z ⊆

{x1, . . . , xn}. We say thatR is applicable in contextz if
z assignsvi to yi for eachi such that 0< i ≤ k.

Definition 2.5 A rule baseis a set of rules such that exactly
one rule is applicable for each variable in each complete
context.

Lemma 2.6 Given a rule base, the probability of any con-
text on{x1, . . . , xn} is the product of the probabilities of the
rules that are applicable on that context.

For eachxi , there is exactly one rule withxi in the head that
is applicable on the context. The lemma now follows from
equation (2).

Definition 2.7 Two rules arecompatible if there exists a
context on which they are both applicable. Equivalently,
they are compatible if they assign the same value to each
variable they have in common.

Intuitively, the rule

a1 ∧ . . . ∧ aj ← b1 ∧ . . . ∧ bk : p

represents the contribution of the propositionsa1 ∧ . . . ∧ aj

in the contextb1 ∧ . . . ∧ bk. This often, but not always2,
represents the conditional probability assertion

P(a1 ∧ . . . ∧ aj |b1 ∧ . . . ∧ bk) = p.

2.4 Probabilistic inference

The aim of probabilistic inference is to determine the poste-
rior probability of variables given some observations. In
this section we outline a simple algorithm for Bayesian
net inference called variable elimination, VE, (Zhang &
Poole 1996) or bucket elimination for belief assessment,
BEBA, (Dechter 1996), and is closely related to SPI
(Shachter, D’Ambrosio & Del Favero 1990). This is a query
oriented algorithm that exploits network structure for effi-
cient inference.

To determine the probability of variableh given evidencee,
the conjunction of assignments to some variablese1, . . . , es,
namelye1=o1 ∧ . . . ∧ es=os, we use:

P(h|e1=o1 ∧ . . . ∧ es=os)

=
P(h ∧ e1=o1 ∧ . . . ∧ es=os)

P(e1=o1 ∧ . . . ∧ es=os)

HereP(e1=o1 ∧ . . . ∧ es=os) is a normalising factor. The
problem of probabilistic inference is thus reduced to the
problem of computing a marginal probability (the proba-
bility of a conjunction). Let{y1, . . . , yk} = {x1, . . . , xn} −

{h} − {e1, . . . , es}, and suppose that theyi ’s are ordered
according to some elimination ordering. To compute the
marginal distribution, we sum out theyi ’s in order. Thus:

P(h ∧ e1=o1 ∧ . . . ∧ es=os)

=
∑

yk

· · ·
∑

y1

P(x1, . . . , xn){e1=o1∧...∧es=os}

=
∑

yk

· · ·
∑

y1

n∏

i=1

P(xi |πxi ){e1=o1∧...∧es=os}

where the subscripted probabilities mean that the associ-

2In some cases, intermediate to the algorithm of Section 2.5, the
value of somebi may also depend on someai . This doesn’t cause
the invariant to be violated or any problems with the algorithm, but
does affect the interpretation of the intermediate rules as statements
of conditional probability. In terms of the VE or BEBA algorithm
(Section 2.4), this can be seen in the network:

a b c

e d

which can be represented as the factors:
P(a|be)P(b|c)P(c|e)P(e|d)P(d)

when e is eliminated, we construct the factorf (acbd) and the
distribution is represented as

P(b|c)P(d)f (acbd)
In some sensef (acbd) can be considered as the contribution ofac
in the context ofbd, but doesnot represent the conditional proba-
bility P(ac|bd). However, this factor would representP(ac|bd) if
b was a parent ofd rather than ofc.



ated variables are assigned the corresponding values in the
function.

Thus the problem reduces to that of summing out variables
from a product of functions. To sum out a variableyi from
a product, we first distribute the factors that don’t involve
yi out of the sum. Supposef1, . . . , fk are some functions of
the variables that are multiplied together (initially these are
the conditional probabilities), then

∑

yi

f1 . . . fk = f1 . . . fm
∑

yi

fm+1 . . . fk

wheref1 . . . fm are those functions that don’t involve vari-
able yi , and fm+1 . . . fk are those that do involveyi . We
explicitly construct a representation for the new function∑

yi
fm+1 . . . fk, and continue summing out the remaining

variables. After all theyi ’s have been summed out, the re-
sult is a function onh that is proportional toh’s posterior
distribution.

Unfortunately space precludes a more detailed description;
see Zhang & Poole (1996) and Dechter (1996) for more
details.

2.5 Probabilistic Partial Evaluation

In this section we show how the rule structure can be ex-
ploited in evaluation. This is essentially the same as Poole
(1997) but one bug has been fixed and it is described at a
different level of detail. The general idea is based on VE
or BEBA, but we operate at the finer-grained level of rules,
not on the level of factors or buckets. What is analogous to
a factor or a bucket consists of sets of rules. In particular,
given a variable to eliminate, we distribute out allrulesthat
don’t involve this variable. We create a new rule set that
is the result of summing out the variable; we only need to
consider those rules that involve the variable.

Given a set of rules representing a probability distribution,
a query variable, a set of observations, and an elimination
ordering on the remaining variables, we set the observed
variables to their observed values, eliminate the remain-
ing variables in order, and normalise (see Figure 1). We
maintain a set of rules with the followinginvariant when
eliminating the variables:

The probability of a context on the non-eliminated
non-observed variables conjoined with the obser-
vations can be obtained by multiplying the prob-
abilities associated with rules that are applicable
on that context. Moreover, for each context on
the non-eliminated non-observed variables, and
for each such variable, there is exactly one appli-
cable rule with that variable in the head.

The following section describe the details of the algorithm.
See Poole (1997) for detailed examples.

Note that when we are eliminatinge, we just look at the
rules that containe. All other rules are preserved.

Procedurecompute belief
Input: rules, observations, query variable,

elimination ordering
Output: posterior distribution on query variable

1. Set the observed variables (Section 2.5.1).
2. For each variablee in the elimination ordering:

2a. Combine compatible rules containinge
(Section 2.5.2)

2b. Variable partial evaluation to eliminatee
(Section 2.5.3)

3. Multiply probability of the applicable rules for
every value of the query variable and normalise

(Section 2.5.4)

Figure 1: Pseudo-code for rule-based variable elimination

2.5.1 Evidence

We can set the values of all evidence variables before sum-
ming out the remaining non-query variables (as in VE). Sup-
posee1=o1 ∧ . . . ∧ es=os is observed.

• Remove any rule that containsei=o′
i , whereoi 6= o′

i in
the head or the body.

• Remove any termei=oi in the body of a rule.

• Replace anyei=oi in the head of a rule bytrue.

The first two rules preserve the feature that the contexts of
the rules are exclusive and covering. These rules also set
up the loop invariant (as only the rules compatible with the
observations will be chosen).

The rules withtrue in the head are treated as any other rules,
but we never eliminatetrue. When constructing rules with
true in the head, we use the equivalence:true∧a ≡ a. true
is compatible with every context.

Note that incorporating observations always simplifies the
rule-base. This is why we advocate doing it first.

2.5.2 Combining compatible rules

The first step when eliminatinge is to combine the rules for
the variables that become dependent on eliminatinge.

For each valuevj ∈ val(e), and for each maximal set of
consistent rules that containe = vj in the body,

a1 ← b1 ∧ e = vj : p1

...

ak ← bk ∧ e = vj : pk

whereai andbi are sets of assignments of values to variables,
we construct the intermediate rule with head∪iai and body
(∪ibi) − (∪iai) and with probability

∏
i pi . Note that the

rules constructed are all incompatible and cover all of the
cases the original rules covered.



We can then remove all of the original rules withe in the
body.

Intuitively, the program invariant is maintained because, for
every complete context, the new rule is used instead of the
k original rules. (The complete proof relies on showing that
every complete context has the same probability).

2.5.3 Variable partial evaluation

To eliminatee, we must sum over all of the values ofe.
Suppose the domain ofe is val(e) = {v1, . . . , vm}. For each
set of rules resulting from combining compatible rules:

a1 ← b1 ∧ e = v1 : p1

...

am ← bm ∧ e = vm : pm

c1 ∧ e = v1 ← d1 : q1

...

cm ∧ e = vm ← dm : qm

such that(∪iai) ∪ (∪ibi) ∪ (∪ici) ∪ (∪idi) is compatible,
we construct the rule with head(∪iai) ∪ (∪ici) and with
body(∪ibi)∪ (∪idi)− (∪iai)∪ (∪ici), and with probability∑

i piqi .

We remove all of the rules containinge, ande is eliminated.

Intuitively, the program invariant is maintained because
each complete contextc on the remaining variables (not
includinge) has probability

∑
i c ∧ e=vi .

2.5.4 Determining the posterior probability

Once the evidence has been incorporated into the rule-base,
the program invariant implies that theposteriorprobability
of any context of the non-eliminated, non-observed vari-
ables is proportional to the product of the probabilities of
the rules that are applicable on the context.

Once all non-query, non-evidence variables have been elim-
inated, we end up with rules of the form

true ← h = vi : p

h = vi ← : p

We can determine the probability ofh = vi ∧ e, wheree
is the evidence, by multiplying the rules containingh =

vi together. The posterior probability can be obtained by
dividing by

∑
i P(h = vi ∧ e).

3 Approximation

The approximation method relies on the algorithm for ex-
ploiting the structure. Intuitively we make the rule-base
simpler by ignoring distinctions in close probabilities.

Let’s call the given conditional probabilities of the variables
theparametersof the network. In a probability distribution

they have restrictions such as

∀c
∑

v∈val(x)

P(x=v|c) = 1.

Consider what happens when we increase any of the param-
eters (and thus violate the restrictions):

Lemma 3.1 The “probability” of a conjunction is mono-
tonic in the parameters.

When we increase the parameters, the “probabilities” of
conjuncts increases. The term “probability” is in scare
quotes, as when the parameters are increased, the number
can’t be interpreted as probabilities, as they no longer sum
to one. This lemma can be easily proved as the probabil-
ity of a conjunction is the sum of products of non-negative
numbers.

We can boundP(c) for any conjunctionc of values to vari-
ables byP−(c) andP+(c), such that

P−(c) ≤ P(c) ≤ P+(c)

P− can be constructed by decreasing the parameters andP+

can be constructed by increasing the parameters.

Given such functions, we can bound the posterior probabil-
ity of h given evidenceeusing

P(h|e) =
P(h ∧ e)

P(h ∧ e) + P(h ∧ e)

whereP(h ∧ e) is the sum of the probabilities for the other
values forh conjoined with the observationse.

We can use the bounds onP to give us:

P−(h ∧ e)

P−(h ∧ e) + P+(h ∧ e)

≤ P(h|e) ≤
P+(h ∧ e)

P+(h ∧ e) + P−(h ∧ e)

The general idea is to simplify the rules by dropping condi-
tions. That is, we make fewer distinctions in the conditional
probabilities. Each rule now has two associated values, the
parameter forP− and the parameter forP+.

Definition 3.2 An approximating rule is of the form:

y1=v1 ∧ · · · ∧ yj=vj ←

yj+1=vj+1 ∧ · · · ∧ yk=vk : pl , pu

where all of theyi are distinct variables, eachvi ∈ val(yi),
and 0≤ pl ≤ pu. The definitions of applicable and com-
patible are the same as for the standard rule bases.

Definition 3.3 An approximating rule baseis a set of ap-
proximating rules such that exactly one rule is applicable
for each variable in each complete context.

Definition 3.4 An approximating rule-baseARBapproxi-
matesrule-baseRB if for every rule

h ← b : p



in RB, where theai and thecj are assignments of values to
variables, there are rules

h1 ← b1 : l1, u1

...

hm ← bm : lm, um

Such thath = ∪ihi , and for alli, bi is compatible withh∪b,
and

∏
i l i ≤ p ≤

∏
i ui .

The idea of this definition is that them rules in the approx-
imating will be used instead of the rules in the exact rule
base.

The reason that we allow multiple rules to approximate a
single rule is that it is often useful to approximate, say,
a∧ b ← c, wherea andb are dependent with the two rules
a ← c andb ← c. This is the basis of the mini-bucket
approximation scheme of Dechter (1997).

A single rule in theARBtypically approximates many rules
in theRB.

3.1 Approximating a rule base

This paper considers two ways to simplify the rule base.

3.1.1 Dropping conditions

The first is to just drop conditions from rules (as in Quinlan
(1993)). The lower bound of the resulting rule is the mini-
mum of the rules with the same head and with bodies that
are compatible with the newly created rule. Similarly the
upper bound is the maximum of the upper bounds on the
consistent rules with the same head. Rules with the same
head and with bodies that are supersets can be removed.
Compatible rules may need to be made disjoint.

Example 3.5 Consider the rules3 for a:

a ← b ∧ c : 0.6, 0.6 (3)

a ← b ∧ c ∧ d : 0.8, 0.8 (4)

a ← b ∧ c ∧ d : 0.4, 0.4 (5)

a ← b ∧ e : 0.06, 0.06 (6)

a ← b ∧ e∧ c : 0.96, 0.96 (7)

a ← b ∧ e∧ c : 0.16, 0.16 (8)

We can remove thec condition from rule (3) resulting in the
rule:

a ← b : 0.4, 0.8 (9)

In this case rules (4) and (5) can be removed as they are
covered by rule (9). Note that this has simplified the rule
case considerably, but not reduced the number of parents of
a. c is still relevant, but only in the context ofb ∧ e.

Example 3.6 Not all simplifications are useful. If we re-

3Here we assume the variables are Boolean, and writex = true
asx andx = falseasx.

moveb from rule (3), we get the rule

a ← c : 0.06, 0.96 (10)

Rule (7) can be deleted, and we need to add the condition
c to rule (6). This shows that removing conditions can be
quite subtle and not all cases of removing conditions lead
to something useful.

3.1.2 Resolving Rules

A second method of simplifying the rule base is as a form
of resolution. From rules of the form:

a1 ← b1 ∧ e = v1 : l1, u1

...

am ← bm ∧ e = vm : lm, um

we can “resolve” one, and derive:

∪iai ← ∪i bi : min(l1, . . . , lm), max(u1, . . . , um)

The intuition is that for any context for which the resulting
rule is applicable, one of the former rules must be applicable.
We must be careful to carry out enough resolutions and
remove enough rules so that for each variable in each context
a single rule is applicable.

In our implementation and in the experiments reported in
Section 4 we restrict the resolution to the case where the
ai are all identical and thebi are all identical. In this case,
when two rules are resolved they can be removed.

Example 3.7 Given the rules for Example 3.5, we can re-
solve rules (3) and (4), and resolve rules (3) and (5) resulting
in:

a ← b ∧ d : 0.6, 0.8 (11)

a ← b ∧ d : 0.4, 0.6 (12)

These two rules can replace rules (3), (4), and (5). Notice
how this results in a different knowledge base than that ob-
tained by removing conditions. These two rules could be
combined again to produce rule (9).

The second method of resolving complementary literals in
the bodies is more subtle than removing conditions. If the
rules cover the cases, and are exclusive then repeated reso-
lution results in the same rule as obtained by removing the
conditions. However, as Example 3.7 shows, there are some
approximations that can be obtained via resolution that are
not just removing literals.

Finally note that these simplification operations preserve
the rule structure of a conditional probability table, but do
not necessarily preserve tree structure (as in Boutilier et al.
(1996)). The reduced rule base need not be equivalent to a
simpler decision tree than the original.



Figure 2: Car Diagnosis Network (courtesy of Norsys Soft-
ware Corporation)

Variable (Abbrev) Table Size R(0) R(0.1)
Charging System (cs) 4 4 4
Battery Voltage (bv) 18 18 13
Headlights (hl) 9 7 6
Starter System (ss) 24 14 10
Voltage at Plug (pv) 36 15 12
Car Cranks (cc) 4 4 4
Car Starts (st) 144 58 20
Spark Quality (sq) 27 11 11
Air System (as) 4 4 4
Spark Timing (tm) 6 6 6

R(th) is the number of rules resulting from carrying out the
resolution step constrained so that the resulting bounds are
less than or equal toth. In particular, the third column given
an exact representation of the conditional probability table.

Figure 3: Effect on rule size of structure and approximation

3.2 Inference and Approximation

The simplifications can be carried out prior to inference as
well as during inference. When doing inference for the
approximate rule base, we just maintain two numbers for
each rule. This is equivalent to running the algorithm once
on the upper bounds and once on the lower bounds.

4 Experimental Results

We have make preliminary tests of the algorithm on an 18-
node car diagnosis Bayesian network shown in Figure 2.
The network was not designed for structured tables or ap-
proximation.

The reduction of the initial representation is shown in Fig-
ure 3. This shows just the variables with more than one
parent. The second column shows the size of the table in
the traditional Bayesian network. The third column shows
how the use of resolution can extract rules without any ap-
proximation. To obtain these numbers, we carried out the
resolving rule (section 3.1.2) approximation, only resolv-

ing rules when the heads and bodies (other than the value
being removed) are identical. These numbers show the in-
herent structure in the conditional probability distributions.
We carried out a myopic choice of which rules to resolve.
This could have resulted in not as much structure as possible
being found, but we couldn’t find any cases where another
choice would have created fewer choices.

The fourth column shows the number of rules when we carry
out the same resolving rule approximation, but allowed any
resolution (in a myopic manner) that resulted in a rule where
the range of probabilities was less than or equal to 0.1. The
0.1 was an arbitrarily chosen threshold, but the results are
not very sensitive to the exact number chosen. Note that
we did not distinguish close extreme probabilities (e.g., 0
and 0.09) and close non-extreme probabilities (e.g., 0.6 and
0.69), even though this could have made a difference.

First consider determiningP(st). Suppose we eliminate the
variables in order:af , as, fs, hl, al, cs, ba, sp, sm, tm, sq,
pv, ds, cc, ss, bv, mf. The largest factor created using VE
or BEBA (corresponding to the width (Dechter 1996)) is is
72 when summing outfs. This is also the number of rules
created when using the rules without any contextual sim-
plification. The maximum number of rules created for the
simplified rule base (where structure is exploited, but no ap-
proximation) is 32 when summing outpv. For the approxi-
mate rule base, the maximum number of rules created at any
stage is 14, when summingfs. The probability computed in
the exact case is 0.280. Collapsing rules whose probability
differs by at most 0.1 gives the range 0.210 : 0.327.

In computingP(pv|st = false), (pv is “voltage at plug”)
with elimination orderingaf , as, fs, hl, al, cs, ba, sp, sm,
tm, sq, ds, cc, ss, bv, mf. For the exact case, the maximum
number of rules created was 22 when summing outds. For
the approximate case, the maximum number of rules created
was 18 also when summing outds. VE has a table size of 36
at the same stage. The posterior probability ofpv = strong
is 0.192. The error range given the collapsed rule set is
0.148 : 0.268. Conditioning on the fact that the car starts
givesP(pv|st = true) = 0.802. The error bounds with the
collapsed rule set is 0.750 : 0.846.

Similar results arise from the Alarm network (Beinlich,
Suermondt, Chavez & Cooper 1989)4. The variable re-
quiring the largest table,catechol, has a table size of 108.
There are 34 rules when converted to rules with no thresh-
old. There are 16 rules when the rule base is simplified so
that rules whose probabilities differ by 0.1 are collapsed.

These results are still preliminary. We need more experience
with how much structure we gain by approximation, how
much we lose structure during inference and how large the
posterior errors are.

4This is based on the version available from the Norsys web
site. This network is simpler than the car diagnosis network.



5 Conclusion

This paper has presented a method for approximating poste-
rior probabilities in Bayesian networks with structured prob-
ability tables given as rules. This algorithm lets us maintain
the contextual structure, avoiding the necessity to do a case
analysis on the parents of a node at the most detailed level.

It does the approximation by maintaining upper and lower
bounds. Note that these are very different to the upper
and lower bounds of say Dempster-Shafer belief functions
(Provan 1990). Here the bounds represent approximations
rather than ignorance. We are doing Bayesian inference,
but approximately.

The method in this paper of collapsing rules is related to the
method of Dearden & Boutilier (1997) to prune decision
trees in structured MDPs, but is more general in applying
to arbitrary Bayesian networks.

The main open problem is in finding good heuristics for
elimination ordering, and knowing when it is good to ap-
proximate.
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