Context-specific approximation in probabilistic inference
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Abstract

There is evidence that the numbers in probabilis-
tic inference don’t really matter. This paper con-
siders the idea that we can make a probabilis-
tic model simpler by making fewer distinctions.
Unfortunately, the level of a Bayesian network
seems too coarse; it is unlikely that a parent will
make little difference for all values of the other
parents. In this paper we consider an approxima-
tion scheme where distinctions can be ignored in
some contexts, but not in other contexts. We elab-
orate on a notion of a parent context that allows
a structured context-specific decomposition of a
probability distribution and the associated proba-
bilistic inference scheme called probabilistic par-
tial evaluation (Poole 1997). This paper shows a
way to simplify a probabilistic model by ignor-
ing distinctions which have similar probabilities,
a method to exploit the simpler model, a bound
on the resulting errors, and some preliminary em-
pirical results on simple networks.

Introduction

on probabilities. These have included stochastic simula-
tion methods that give estimates of probabilities by gener-
ating samples of instantiations of the network (Dagum &
Luby 1997), search-based approximation techniques that
search through a space of possible values to estimate prob-
abilities (Henrion 1991, D’Ambrosio 1992, Poole 1996),
and methods that exploit special features of the conditional
probabilities (Jordan, Ghahramani, Jaakkola & Saul 1997).
Another class of methods have been suggested to approxi-
mate by simplifying a network, including to remove parents
of anode (remove arcs) (Sarkar 1993), to remove nodes that
are distant from the node of interest (Draper & Hanks 1994),
or to ignore dependencies when the resultant factor will ex-
ceed some width bound (Dechter 1997). None of these
methods take contextual structure into account.

This paper is based on simplifying the network based on
making fewer distinctions. The network is simplified a pri-
ori as well as during inference, and posterior bounds on the
resulting probability are obtained. This is done by remov-
ing distinctions in the probabilities. Unlike the search based
methods that bound the probabilities by ignoring extreme
probabilities (close to 0 or 1), it is the intermediate prob-
abilities that we want to collapse, rather than the extreme
probabilities. As pointed out by Pradhan et al. (1996), al-
though probabilities such as 0.6 and 0.7 may be similar
enough to be treated as the same, 0.0001 and 0, although

Bayesian networks (Pearl 1988) are a representation of irclose as numbers, are qualitatively different probabilities.

dependence amongst random variables. They are of interegt ¢y nately the Bayesian network doesn’t seem to be the

because the independence is useful in many domains, they, s aonropriate level to facilitate such simplifications. We
allows for compact representations of problems of proba:

bilistic inf dth laorith loit th wouldn't expect that the conditional probability of the child
listic inference, and there are algorithms to exploit the,, ;14 not be affected very much fail values of its other
compact representations.

parents. It seems more plausible that in some contexts the
Recently there has some evidence (Pradhan, Henrioyalue of the parent doesn’t make much difference.
Provan, Del Favero & Huang 1996) that small distinctions

in probability don’t matter very much to the final probabil- distinctions that don’t make much difference in the con-

ity. Experts can't tell whether some value should be, for oo probability, but what may be ignored may change

example, 0.6 or 0.7, but it doesn’t seem to matter anywayg,m context to context. This builds on a method to exploit
This would seem to indicate that, if we don’t make such

LD e .~ 'the contextual structure during inference (Poole 1997). In
dIStI.nC'[I(.)nS between c!qse_: probabilities, it may be possiblgy,;s paper we show how to simplify the network and how
to simplify the probabilistic model, thus leading to faster to give a bound on the error. Note that we are only able
inference. to give a posterior error at this stage; once we have make
Approximation techniques have been used that give boundée simplifications to the network, we can derive bounds

The general idea is to simplify the network, by ignoring



on the probability of the original network; it is still an open dent of its non-descendants given its parents.
problem to predict the errors when simplifying the network.

To enable us to get computational leverage from the sim2.2 Contextual Independence

plified network, we need an inference method that can ex- ) ] )

ploit the structure. We build on a notion of parent con- Definition 2.1 Given a set of variableS, acontextonC is
texts (Poole 1997) where what acts as the parents of a varin assignment of one value to each variabl€irUsually
able may depend on the values. This is similar to the rule€ iS left implicit, and we simply talk about a context. Two
based representations (Poole 1993) and related to the treg@ntexts arencompatible if there exists a variable that is
based representations (Boutilier, Friedman, Goldszmidt &ssigned different values in the contexts; otherwise they are
Koller 1996) of conditional probability tables, but differs compatible. A complete contextis a context on all of the
from the tree-based structure in a number of respects. Firsyariables in a domain.

the simplifications of collapsing distinctions preserves theBoutiIier et al. (1996) present a notion of contextually in-
rule-structure, but not the tree structure. Second, by trea

ing rules as separately manipulable items, we can give morg, oo sentation that looks like a Bayesian networks, but with
compact intermediate representations in the inference algq'fner-grain independence that can be exploited

rithms than similar algorithms that use trees (Poole 1997).
Definition 2.2 (Boutilier et al. 1996) Suppos¥, Y and

In the next section we introduce Bayesian networks, a NOE Are disioint Sets of variables. we sav thaandY are
tion of contextual parent that reflects structure in probabilityContextu ;” independent iven,contexi/c c val(C) if
tables, an algorithm for Bayesian networks that exploits theF> XY= é_ p_ P(X 3_ C—o) for all

network structure. and show how the algorithm can be ex-( [Y=y1, C=€) = P(X|Y=Yyz, C=c) for all y1,y> €

tended to exploit the “rule-based” representation. Finally’@(Y) Such thaP(ys. ¢) > 0 andP(yz. ¢) > 0.

we show how to simplify the representation by ignoring we use the notion of contextual independence to build a fac-
distinctions between close probabilities, and give a boundorisation of a joint probability that is related to the factori-
on the resultant probabilities. Empirical results on networkssation of a Bayesian network. We start with a total ordering

that were not designed with context-specific independencghe variables, as in the definition of a Bayesian network.
in mind are presented. —
Definition 2.3 (Poole 1997) Suppose we have a total order-

ing of variables. Given variabbg, we say that € val(C)
2 Background whereC C {x_1,...,X1}) is aparent contextfor x; if
is contextually independent ¢%;_1, ..., X1} — C givenc.

2.1 Bayesian Networks . " .
y In a Bayesian network, each row of a conditional probability

A Bayesian network (Pearl 1988) is an acyclic directedtable for a variable forms a parent context for the variable.
graph (DAG), with nodes labelled by random variables. WeHowever, there are often not the smallest such set; there is
use the terms node and random variable interchangeabl9ften a much smaller set of parent contexts.mhimal
Associated with a random variabtds its domainyal(x), ~ Parent contextfor variablex; is a parent context such that
which is the set of values the variable can take on. Similarly10 subset is also a parent context.

for sets of variables. For each variablex, and for each assignment

A Bayesian network specifies a way to decompose a jointi-1=Vi—1. ..., X1=Vv1 of values to its preceding vari-
probability distribution. First, we totally order the variables ables, there is a compatible m|r_1|ri‘1aparent context
of interestxy, . .., X,. Thenwe can factorise the joint prob- 7x -~ The probability of an assignment of a value to
ability: each variable is then given by:
n P(X1=V1, ..., Xn=Vn) 1)
PO, ... = []P&ilx-1...x) n
i=1 = H PX=VnlXi—1=Vi—1, ..., X1=V1)

i=1

n
= []P®ilmx) n |
i1 [[Pos=vilmx " @
The first equality is the chain rule for conjunctions, and the i=1
second usesy;, the parents of x;, which are a minimal This looks like the definition of Bayesian network, but
set of those predecessorsxpfuch that the other predeces- which variables act as the parents depends on the values.
sors ofx; are independent of givenmy,. Associated with  The numbers required are the probability of each variable
the Bayesian network is a set of probabilities of the formfor each of its minimal parent contexts. There can be many
P(x|mx), the conditional probability of each variable given fewer minimal parent contexts that the number of assign-
its parents (this includes the prior probabilities of thosevari-__
ables with no parents). A Bayesian network represents a lifthere is more than one, one is selected arbitrarily. This could
particular independence assumption: each node is indepehappen, if for example?(alb) = P(alc) # P(alb, T).



ments to parents in a Bayesian network. in the contextb; A ... A bk. This often, but not always

For this paper, we assume that the parent contexts for eacrﬁpresents the conditional probability assertion

variable are disjoint. That is, they each assign a different Pl A...AglbiA...AbY =p.
value to some variable. Any set of parent contexts can be

ponverted into this form. This fqrm is also the form that. 24 Probabilistic inference

is the result of converting a tree into parent contexts. This

assumption can be relaxed, but it makes the description ofhe aim of probabilistic inference is to determine the poste-
the algorithm more complicated. rior probability of variables given some observations. In

The idea of the inference is instead of manipulating conthis section we outline a simple algorithm for Bayesian
ditional probability distributions, we maintain lower-level net inference called variable elimination, VE, (Zhang &

conditional probability assertions that we write as rules. Poole 1996) or bucket elimination for belief assessment,
BEBA, (Dechter 1996), and is closely related to SPI

(Shachter, D’Ambrosio & Del Favero 1990). Thisisaquery
oriented algorithm that exploits network structure for effi-

2.3 Rule-based representations cient inference.

We write the probabilities in contexts as rules, the generall© determine the probability of variabegiven evidence,
form of which is: the conjunction of assignments to some variables. . , &,

namelye;=01 A ... A €5=0s, We USe:

Y1=V1 A /\yJ=VJ <
. . P(hle1=01 A ... A €5=05)
Vi+1=Vj+1 A -  AYk=Vk : P P(h A €1=01 A ... A €s=00)
where eacly; is a different variable, ang e val(y;). Often ~ T P(e1=01 A ... Ae=09)

we treat the left and right hand sides as sets of assignments . .
of values to variables. HereP(e1=01 A ... A &=0g) is a normalising factor. The

problem of probabilistic inference is thus reduced to the
To represent a Bayesian network with context-specific indeproblem of computing a marginal probability (the proba-
pendencej, = 1 (i.e., there is only one variable in the head pijlity of a conjunction). Let{ys, ..., Yk} = {X1, ..., Xn} —
of the rule),zz=vi1 A --- A Z=W is a parent contextand  (h} — {ey, ..., es}, and suppose that thg's are ordered
according to some elimination ordering. To compute the
marginal distribution, we sum out thgs in order. Thus:

p=Py1=Wi|z1=V1 A - -+ A Z=Wk)

Definition 2.4 Supposeris a rule P(hA€1=01 A ... AE&=0s)
y]_:Vl AN yJ=VJ <~ = Z M Z P(Xl, ceey Xn){el=01A...Aes=05}
yj+l=Vj+l/\ e AYK=V P Yk y1
n
and z is a context onZ such that{ys,...,¥} € Z C _ ,
{X1, ..., X}. We say thaR is applicable in contextz if - Z o Zl—[ P(Xi |7 ) er=01... Aes=0s)

Yk y1 i=1

where the subscripted probabilities mean that the associ-
Definition 2.5 A rule baseis a set of rules such that exactly

one rule is applicable for each variable in each complete 2jnsome cases, intermediate to the algorithm of Section 2.5, the
context. value of somdo; may also depend on sorag This doesn’t cause
the invariant to be violated or any problems with the algorithm, but

Lemma 2.6 Given a rule base, the probability of any con- does affectthe interpretation of the intermediate rules as statements
: ’ P f conditional probability. In terms of the VE or BEBA algorithm

text on{xa, . .., X} is the product of the probabilities of the %! pre y ; 9

rules tkia% are a)énglicablepon that Conte)?t (Section 2.4), this can be seen in the network:

@
For eachx;, there is exactly one rule witk in the head that
is applicable on the context. The lemma now follows from
equation (2).
@—0O~—

Definition 2.7 Two rules arecompatible if there exists a
context on which they are both applicable. Equivalently,which can be represented as the factors:

they are compatible if they assign the same value to each  P(@beP(b|c)P(cie)P(eld)P(d)
variable they have in common. when e is eliminated, we construct the factbfacbd and the

distribution is represented as

z assignsy toy; for eachi such that O< i < k.

Intuitively, the rule P(blc)P(d)f (acbd)
Y In some sensk(acbd) can be considered as the contributiormof
QA A <—biAL ADCp in the context obd, but doesot represent the conditional proba-

o N bility P(ac|bd). However, this factor would represdpntac|bd) if
represents the contribution of the propositiaas. ... A g bwas a parent od rather than ot.



ated variables are assigned the corresponding values in tfiFocedureompute belief .
function. Input: rules, observations, query variable,

. . elimination ordering
Thus the problem reduces to that of summing out varlable@utput: posterior distribution on query variable

from a product of functions. To sum out a varialgldrom 1. Set the observed variables (Section 2.5.1).
a product, we first distribute the factors that don’t involve 2. For each variablein the elimination ordering:
yi out of the sum. Supposdg, . .., fx are some functions of 2a. Combine compatible rules containieg
the variables that are multiplied together (initially these are (Section 2.5.2)
the conditional probabilities), then 2b. Variable partial evaluation to eliminage
Section 2.5.3)
fofo=fofm Y fmga . f _(Section. .
%: o le= 1 Im ; mHl- -k 3. Multiply probability of the applicable rules for

every value of the query variable and normalise
wheref; . ..y, are those functions that don'’t involve vari- (Section 2.5.4)
abley;, andfy.1...fx are those that do involvg. We
explicitly construct a representation for the new function Figure 1: Pseudo-code for rule-based variable elimination
Zy‘l fre1 . .. fk, @and continue summing out the remaining
variables. After all thg;’s have been summed out, the re-
sult is a function orh that is proportional td's posterior 2.5.1 Evidence

distribution. ) )
We can set the values of all evidence variables before sum-

Unfortunately space precludes a more detailed descriptionying out the remaining non-query variables (as in VE). Sup-
see Zhang & Poole (1996) and Dechter (1996) for morgyosee; =0, A ... A e5=0s is observed.

details.

. ) . + Remove any rule that contaigs=0{, whereg; # ¢ in
2.5 Probabilistic Partial Evaluation the head or the body.

In this section we show how the rule structure can be ex-
ploited in evaluation. This is essentially the same as Poole
(1997) but one bug has been fixed and it is described at a . Replace ang =o; in the head of a rule birue.
different level of detail. The general idea is based on VE

or BEBA, but we operate at the finer-grained level of rules,_l_h f_ | he f hat th ;
not on the level of factors or buckets. What is analogous to' '€ first two rules preserve the feature that the contexts o

a factor or a bucket consists of sets of rules. In particulartN€ rules are exclusive and covering. These rules also set

given a variable to eliminate, we distribute outrallesthat up the Iopp inve_lriant (as only the rules compatible with the
don't involve this variable. We create a new rule set thatoPservations will be chosen).

is the result of summing out the variable; we only need toThe rules withtruein the head are treated as any other rules,
consider those rules that involve the variable. but we never eliminatérue. When constructing rules with

Given a set of rules representing a probability distribution,,true'n the head, we use the equivalenteena = a. true

a query variable, a set of observations, and an eliminatiof® ComMpatible with every context.

ordering on the remaining variables, we set the observef{ote that incorporating observations always simplifies the
variables to their observed values, eliminate the remainryle-base. This is why we advocate doing it first.

ing variables in order, and normalise (see Figure 1). We

maintain a set of rules with the followinigvariant when
eliminating the variables:

* Remove any term=0; in the body of a rule.

2.5.2 Combining compatible rules

The first step when eliminatingis to combine the rules for
The probability of a context on the non-eliminated the variables that become dependent on eliminaging
non-observed variables conjoined with the obser-
vations can be obtained by multiplying the prob-
abilities associated with rules that are applicable
on that context. Moreover, for each context on ap<—bire=vi:p
the non-eliminated non-observed variables, and
for each such variable, there is exactly one appli- :
cable rule with that variable in the head. a < bk Ae=v:p

For each value; e val(e), and for each maximal set of
consistent rules that contaén= v; in the body,

whereg; andb; are sets of assignments of values to variables,
we construct the intermediate rule with head;, and body
(Uibi) — (Uia) and with probability[]; pi. Note that the
Note that when we are eliminatirgy we just look at the rules constructed are all incompatible and cover all of the
rules that contaiw. All other rules are preserved. cases the original rules covered.

The following section describe the details of the algorithm.
See Poole (1997) for detailed examples.



We can then remove all of the original rules wihn the  they have restrictions such as

body.
'y. S ve Y P(xx=v|o) =1
Intuitively, the program invariant is maintained because, for veval(x)
every complete context, the new rule is used instead of the .
k original rules. (The complete proof relies on showing thatConsider what happens when we increase any of the param-

every complete context has the same probability). eters (and thus violate the restrictions):
Lemma 3.1 The “probability” of a conjunction is mono-
2.5.3 Variable partial evaluation tonic in the parameters.

When we increase the parameters, the “probabilities” of
conjuncts increases. The term “probability” is in scare
guotes, as when the parameters are increased, the number
can't be interpreted as probabilities, as they no longer sum
ap < bire=viipp to one. This lemma can be easily proved as the probabil-
ity of a conjunction is the sum of products of non-negative
numbers.

To eliminatee, we must sum over all of the values ef
Suppose the domain efsval(e) = {va, ..., Vn}. Foreach
set of rules resulting from combining compatible rules:

8m < bm A €= Vin : P We can boundP(c) for any conjunctiore of values to vari-

CiAe=Vy < dy:0gs ables byP~(c) andP™ (c), such that
P™(c) < P(c) < P*(c)
Cm A €= Vm < 0m: Qgm P~ can be constructed by decreasing the parameter®and

such that(Ujaj) U (Uibi) U (Uic) U (Ujdi) is compatible, ~ €a@n be constructed by increasing the parameters.

we construct the rule with hea@ia;) U (Uic) and with  Given such functions, we can bound the posterior probabil-
body (Uibi) U (Uidi) — (Uia) U (Uici), and with probability ity of h given evidence using

2.i Pidi- PhAae

i ‘e alimi P(hle) = —
We remove all of the rules containiegandeis eliminated. (hie) PhAe +PMhAe

Intuitively, the program invariant is _”?a'“ta'”.ed becausewhereP(ﬁ A €) is the sum of the probabilities for the other
each complete context on the remaining variables (not

includinge) has probability™, ¢ A e=v. values forh conjoined with the observatiorms
We can use the bounds &to give us:

2.5.4 Determining the posterior probability P-(hAe

Once the evidence has been incorporated into the rule-base, P=(hAe) +Pthnre

the program invariant implies that tipesterior probability <P(hle) < Pt(hne

of any context of the non-eliminated, non-observed vari- - T Ptthae) +P-(hre
ables is proportional to the product of the probabilities of
the rules that are applicable on the context.

The general idea is to simplify the rules by dropping condi-
_ . _ tions. Thatis, we make fewer distinctions in the conditional
Once all non-query, non-evidence variables have been elinprobabilities. Each rule now has two associated values, the

inated, we end up with rules of the form parameter foP~ and the parameter fé&+.
true< h=v:p Definition 3.2 An approximating rule is of the form:
h=vi<« :p

Yi=VI A - AYj=V) <
We can determine the probability bf = v; A e, wheree Yi+1=Vi+1 A - A Yk=Vk : Pl Pu
is the evidence, by multiplying the rules containing=

) : o : here all of they; are distinct variables, each € val(y;),

together. Th t babilit be obt db ' !

\cglivicc)j?r?g EJZ' P(ihpgsvjeio;)pro abiiity can be obtaine ))gnd 0< p < pu- The definitions of applicable and com-
i = .

patible are the same as for the standard rule bases.

3 Approximation Definition 3.3 An approximating rule baseis a set of ap-
proximating rules such that exactly one rule is applicable

The approximation method relies on the algorithm for ex-for each variable in each complete context.

ploiting the structure. Intuitively we make the rule-base

simpler by ignoring distinctions in close probabilities. Definition 3.4 An approximating rule-bas&RBapproxi-

Let’s call the given conditional probabilities of the variables matesrule-baserBif for every rule

theparametersof the network. In a probability distribution h«<b:p



in RB, where theg; and theg; are assignments of values to moveb from rule (3), we get the rule
variables, there are rules a < c:0.06, 096 (10)

Rule (7) can be deleted, and we need to add the condition
T to rule (6). This shows that removing conditions can be

quite subtle and not all cases of removing conditions lead
to something useful.

hl <—b1:|1, up

hm (—bm:lm, Um

Such thah = Ujh;, and for alli, bj is compatible witthU b,
and[[; i <p < TT; u.

The idea of this definition is that thra rules in the approx-
imating will be used instead of the rules in the exact rulez 1 2 Resolving Rules
base.

The reason that we allow multiple rules to approximate a S .

single rule is that it is often useful to approximate, say,A second. method of simplifying the rule base Is as a form
aAb <« ¢, wherea andb are dependent with the two rules ©f resolution. From rules of the form:

a < candb <« c. This is the basis of the mini-bucket ag<bire=vi:l,ug

approximation scheme of Dechter (1997).

A single rule in theARBtypically approximates many rules
in the RB. am < bm A e=Vm: Im, Um

3.1 Approximating a rule base we can “resolve” ore, and derive:

This paper considers two ways to simplify the rule base. Uiai <= Ui b :mindy, ..., Im), max(uy, ..., Um)

The intuition is that for any context for which the resulting
3.1.1 Dropping conditions ruleis applicable, one ofthe former rules must be applicable.

We must be careful to carry out enough resolutions and
The first is to just drop conditions from rules (as in Quinlan remove enough rules so that for each variable in each context
(1993)). The lower bound of the resulting rule is the mini- a single rule is applicable.
mum of the rules with the same head and with bodies that . . . . .
are compatible with the newly created rule. Similarly the n our |mpIementa§|on and in thg experiments reported in
upper bound is the maximum of the upper bounds on the>ection 4 we restrict the resolutpn to _the case _where the
consistent rules with the same head. Rules with the sam@ 2'€ all identical and the; are all identical. In this case,
head and with bodies that are supersets can be remove\ef.hen two rules are resolved they can be removed.

Compatible rules may need to be made disjoint. Example 3.7 Given the rules for Example 3.5, we can re-
Example 3.5 Consider the rulésfor a: ;sno.lve rules (3) and (4), and resolve rules (3) and (5) resulting
ol Ei;of’g'g 08 (i) a<bnd:0608 (11)

T hAEATETS “) a<bad:04,06 (12)
a<bAaCAd:04,04 (5)

T . These two rules can replace rules (3), (4), and (5). Notice
a< 9 a f +0.06,0.08 ©) how this results in a different knowledge base than that ob-
a<brenC:0.96096 () tained by removing conditions. These two rules could be
a< bABAT:0.160.16 (8)  combined again to produce rule (9).

We can remove thecondition from rule (3) resulting inthe The second method of resolving complementary literals in
rule: the bodies is more subtle than removing conditions. If the
a< b:04 08 ©) rules cover the cases, and are exclusive then repeated reso-

lution results in the same rule as obtained by removing the
In this case rules (4) and (5) can be removed as they areonditions. However, as Example 3.7 shows, there are some
covered by rule (9). Note that this has simplified the ruleapproximations that can be obtained via resolution that are
case considerably, but not reduced the number of parents obt just removing literals.

a. cis still relevant, but only in the context bfA &. . T .
y Finally note that these simplification operations preserve

Example 3.6 Not all simplifications are useful. If we re- the rule structure of a conditional probability table, but do
not necessarily preserve tree structure (as in Boutilier et al.
3Here we assume the variables are Boolean, and weitarue ~ (1996)). The reduced rule base need not be equivalent to a
asx andx = falseasx. simpler decision tree than the original.



| [ osteryes | [ e | ing rules when the heads and bodies (other than the value
I o S o being removed) are identical. These numbers show the in-
herent structure in the conditional probability distributions.
We carried out a myopic choice of which rules to resolve.
This could have resulted in not as much structure as possible
being found, but we couldn’t find any cases where another
choice would have created fewer choices.

)

old d
very old 2

The fourth column shows the number of rules when we carry

out the same resolving rule approximation, but allowed any

resolution (in a myopic manner) that resulted in a rule where

the range of probabilities was less than or equal to 0.1. The
0.1 was an arbitrarily chosen threshold, but the results are
not very sensitive to the exact number chosen. Note that
we did not distinguish close extreme probabilities (e.g., 0

Figure 2: Car Diagnosis Network (courtesy of Norsys Soft-and 0.09) and close non-extreme probabilities (e.g., 0.6 and
ware Corporation) 0.69), even though this could have made a difference.

First consider determining(st). Suppose we eliminate the

Variable (Abbrev) Table Size  R(0) R(0.1) ; .
Charging System (cs) i a n variables in orderaf, as, fs, hl, al, cs ba, sp sm tm,' sq,
Battery Voltage (bv) 18 18 13 pv, ds cc, ss bv, mf. The largest factor created using VE
Headliy hts (h% 9 7 6 or BEBA (corresponding to the width (Dechter 1996)) is is
StartergS stem (ss) o 14 10 72 when summing ous. This is also the number of rules
Voltage a>t/ Plug (pv) 36 15 1 created when using the rules without any contextual sim-
Car C?ranks (c?:) b 4 4 41 plification. The maximum number of rules created for the
Car Starts (st) 144 58 20 simplified rule base (where structure is exploited, but no ap-
Spark Quality (sq) 57 11 11 proximation) is 32 when summing opt. For the approxi-
Aipr Svstem (;s) q 4 2 4 mate rule base, the maximum number of rules created at any
S arz Timing (tm) 6 6 6 stage is 14, when summitig The probability computed in

P 9 the exact case isP80. Collapsing rules whose probability

R(th) is the number of rules resulting from carrying out the differs by at most 0.1 gives the rang@00: 0.327
resolution step constrained so that the resulting bounds are ' T

less than or equal ti. In particular, the third column given In computingP(pv|st = false), (pv is “voltage at plug”)
an exact representation of the conditional probability tablewith elimination orderingaf, as fs, hl, al, cs ba, sp, sm

tm, sq, ds, cc, ss by, mf. For the exact case, the maximum
Figure 3: Effect on rule size of structure and approximationnumber of rules created was 22 when summingdsufor

the approximate case, the maximum number of rules created

was 18 also when summing cilg VE has atable size of 36
3.2 Inference and Approximation at the same stage. The posterior probabilitpw strong

is 0.192. The error range given the collapsed rule set is
The simplifications can be carried out prior to inference a9,148: 0.268. Conditioning on the fact that the car starts
well as during inference. When doing inference for thegivesp(pv|st = true) = 0.802. The error bounds with the
approximate rule base, we just maintain two numbers fogollapsed rule set is.050: 0.846.

each rule. This is equivalent to running the algorithm once_ . ) o
on the upper bounds and once on the lower bounds. Similar results arise from the Alarm network (Beinlich,
Suermondt, Chavez & Cooper 1989) The variable re-

quiring the largest tablesatecho] has a table size of 108.
4 Experimental Results There are 34 rules when converted to rules with no thresh-
old. There are 16 rules when the rule base is simplified so
We have make preliminary tests of the algorithm on an 18that rules whose probabilities differ by 0.1 are collapsed.
node car diagnosis Bayesian network shown in Figure 27
The network was not designed for structured tables or a
proximation.

hese results are still preliminary. We need more experience

Rith how much structure we gain by approximation, how
much we lose structure during inference and how large the

The reduction of the initial representation is shown in Fig-posterior errors are.

ure 3. This shows just the variables with more than one

parent. The second column shows the size of the table in

the traditional Bayesian network. The third column shows

how the use of resolution can extract rules without any ap-

proximation. To obtain these numbers, we carried out the 4This is based on the version available from the Norsys web
resolving rule (section 3.1.2) approximation, only resolv-site. This network is simpler than the car diagnosis network.



5 Conclusion Draper, D. & Hanks, S. (1994). Localized partial evaluation
of belief networksjn R. L. de Mantaras & D. Poole

This paper has presented a method for approximating poste- ~ (€ds),Proc. Tenth Conf. on Uncertainty in Artificial
rior probabilities in Bayesian networks with structured prob- Intelligence (UAI-94)Morgan Kaufmann Publishers,
ability tables given as rules. This algorithm lets us maintain ~ Seattle, WA, pp. 170-177.

the contextual structure, avoiding the necessity to do a casg

analysis on the parents of a node at the most detailed level €Mon. M. (1991). Search-based methods to bound diag-

nostic probabilities in very large belief networlkspc.

It does the approximation by maintaining upper and lower Seventh Conf. on Uncertainty in Artificial Intelligence
bounds. Note that these are very different to the upper  (UAI-91), Los Angeles, CA, pp. 142-150.

and lower bounds of say Dempster-Shafer belief functions _

(Provan 1990). Here the bounds represent approximationirdan, M. I., Ghahramani, Z., Jaakkola, T. S. & Saul, L. K.

rather than ignorance. We are doing Bayesian inference, ~ (1997). An introduction to variational methods for
but approximately. graphical modelsTechnical report MIT Computa-

tional Cognitive Science.
The method in this paper of collapsing rules is related to the URL: http://www.ai.mit.edu/projects/jordan.html
method of Dearden & Boutilier (1997) to prune decision
trees in structured MDPs, but is more general in applyingPearl, J. (1988)Probabilistic Reasoning in Intelligent Sys-
to arbitrary Bayesian networks. tems: Networks of Plausible Inferend#organ Kauf-

mann, San Mateo, CA.
The main open problem is in finding good heuristics for

elimination ordering, and knowing when it is good to ap- Poole, D. (1993). Probabilistic Horn abduction and

proximate. Bayesian networkdArtificial Intelligence64(1): 81—
129.
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