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Abstract

The independent choice logic (ICL) is part of a project to combine logic
and decision/game theory into a coherent framework. The ICL has a sim-
ple possible-worlds semantics characterised by independent choices and an
acyclic logic program that specifies the consequences of these choices. This
paper gives an abductive characterization of the ICL. The ICL is defined
model-theoretically, but we show that it is naturally abductive: the set of ex-
planations of a proposition g is a concise description of the worlds in which
g is true. We give an algorithm for computing explanations and show it is
sound and complete with respect to the possible-worlds semantics. What is
unique about this approach is that the explanations of the negation of g can be
derived from the explanations of g. The use of probabilities over choices in
this framework and going beyond acyclic logic programs are also discussed.

1 Introduction

This paper is part of a project aimed at combining logic and decision or game
theory into a coherent framework [23]. This project follows from the work on
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probabilistic Horn abduction [19], which showed how a combination of inde-
pendent probabilistic hypotheses and a restricted acyclic logic program (without
negation as failure) that gives the consequences of the choices, can represent any
probability distribution in much the same way as do Bayesian networks [17].

The independent choice logic (ICL) [23] builds on probabilistic Horn abduc-
tion to extend the logic to include arbitrary acyclic logic programs (that can include
negation as failure) and allow different agents to make choices. The general idea
is to have a structured hypothesis space, and an acyclic logic program to give
the consequences of hypotheses. The hypotheses are partitioned into alternatives.
The set of all alternatives is a choice space. There is a possible world for each
selection of one element from each alternative; the logic program specifies what
is true in that world. The semantics of negation as failure is given in terms of
stable models. This framework is defined model-theoretically but, as we show in
this paper, it is naturally abductive: the set of explanations of a proposition g is
a concise description of the worlds in which g is true. We give an algorithm for
computing explanations and show it is sound and complete. What is unique about
this approach is that the explanations of the negation of g can be derived from the
explanations of g; the algorithm is based on Reiter’s [27] hitting set algorithm.

In other work [23], we consider how this framework can be used for modelling
multiple agents under uncertainty in a way that extends decision and game theory.
By allowing different agents tomake independent choices, the semantic framework
extends the notion of the strategic or normal form of a game [29]by allowing for a
logic program to model the dynamics of the world and the capabilities of agents.
One of the agents can be nature; in this case we have probability distributions over
alternatives, with the alternatives corresponding to independent random variables
[19].

The goal of abduction [25, 12] is to explain why some observed proposition
is true; we want a description of what the (real) world may be like to account for
the observation. The input is a set of assumables (possible hypotheses), a logical
theory that axiomatises what follows from the assumables, and an observation to be
explained. Given an observationwewant the explanations to be descriptions of how
the world could be to produce the observation: formally we want a consistent set
of assumables that logically implies the observations. Thus abduction is inherently
about partial information; before we make an observation we don’t know which
assumptions we will make.

In contrast, negation as failure [5] is about complete knowledge. If some atom
cannot be proved, its negation is inferred. In combining negation as failure with
abduction, we have complete knowledge about some predicates even though we
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may only have partial knowledge about others [6, 20, 9]. There are many areas
where we want negation as failure to mean that all of the cases for a predicate have
been covered even though we may not have complete knowledge about all of the
atoms that make up the definition. For example, there is a neat solution to the
frame problem using logic programming and negation as failure [14, 1, 28], which
can still be used even if we don’t have complete knowledge about all of the atoms
in the bodies. Consider the following example:

Example 1.1 Consider a simple domain where there is a robot and a key, and the
robot can pick up or put down the key, and move to different locations. We can
write rules such as, the robot is carrying the key after it has (successfully) picked
it up1:

carrying(key, s(T)) ←
do(pickup(key), T) ∧
at(robot,Pos, T) ∧
at(key,Pos, T) ∧
pickup_succeeds(T).

Together with this rule that specifies when carrying commences, we need a frame
rule to specify when carrying persists. The general form of a frame axiom specifies
that a fluent is true after a situation if it were true before, and the action were not
one that undid the fluent, and there was no other mechanism that undid the fluent.
For example, an agent is carrying the key as long as the action was not to put down
the key or pick up the key, and the agent did not accidentally drop the key while
carrying out another action:2

carrying(key, s(T)) ←
carrying(key, T) ∧
∼do(putdown(key), T) ∧
∼do(pickup(key), T) ∧
∼drops(key, T).

1We are using Prolog’s convention with variables in upper case, but with negation written as
“∼”, and conjunction as “∧”. This axiomatisation is similar to a situation calculus definition,
but what whether action is attempted at any time is a proposition. This is closer to the event
calculus[15], where we are explicitly interested in narratives [28].

2Note that ∼do(pickup(key), T) is an element of the body of this rule because we don’t want
both rules to be applicable when the agent is carrying the key and tries to pick it up. In that case,
for the sake of making a choice, we assume the action is like the case when it just picks up the key.
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These two rules cover all of the cases when the robot is carrying the key. By
these rules, we really mean the completion: the robot is carrying the key if and
only if one of these two cases occurs. However, we don’t want to globally assume
complete knowledge. For example, we may not know whether pickup succeeds
or whether the robot drops the key (the ICL [23] allows uncertainty expressed as
probabilities for these atoms; see Section 5).

Suppose we have some explanations for why the robot may drop the key3.
Each such explanation will serve to describe conditions in which the agent drops
the key. In all other situations, the agent won’t drop the key, and so, assuming the
agent is carrying the key and doesn’t put down or pickup the key, should serve for
explanations for the agent carrying the key in the next state. What distinguished this
work is the interaction of abduction and negation as failure. A set of explanations
for drops(key, T)will induce another set of explanations for∼drops(key, T), which
then can be used to find explanations for carrying(key, s(T)). These, in turn, could
be used to derive explanations for∼carrying(key, s(T)). In the independent choice
logic, this abductive characterization is a consequence of an independently defined
model-theoretic semantics for the logic.

We first overview the ICL and give a model theoretic semantics [23]. The main
contribution of this paper is to provide an abductive characterisation of the logic
in terms of operations on sets of assumptions (in terms of composite choices) and
how the assumptions interact with the logic programs. We show how the abductive
machinery can be used for probabilistic reasoning and forBayesian decision theory,
and finally discuss going beyond acyclic logic programs.

2 Background: Acyclic Logic Programs

We use the Prolog conventions with variables starting an upper case letter and
constants, function symbols, and predicate symbols starting with lower case
letters. A term is either a variable, a constant, of is of the form f (t1, . . . , tm)where
f is a function symbol and t1, . . . , tm are terms. An atomic formula (atom) is
either a predicate symbol or is of the form p(t1, . . . , tm) where p is a predicate
symbol and t1, . . . , tm are terms. A formula is either an atom or is of the form∼f ,

3To contrast this with other work on abductive logic programming [12, 11], consider the case
where drop(key, T) isn’t a logical consequence of the clauses and no explanations for drop(key, T)

involve proofs that use negation as failure. In standard abductive logic programming, no hypotheses
need to be added to explain ∼drops(key, T). Any explanations for drop(key, T) serve only to
disallow other combinations of assumptions.
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f ∧ g or f ∨ g where f and g are formulae. A clause is either an atom or is a rule
of the form a ← f where a is an atom and f is a formula (the body of the clause).
A logic program is a set of clauses.

A ground term is a term that does not contain any variables. A ground instance
of a term/atom/clause c is a term/atom/clause obtained by uniformly replacing
ground terms for the variables in c. The Herbrand base is the set of ground
instances of the atoms in the language (inventing a new constant if the language
does not contain any constants). A Herbrand interpretation is an assignment of
true or false to each element of the Herbrand base. If P is a program, let gr(P) be
the set of ground instances of elements of P.

Definition 2.1 ([10]) Interpretation M is a stable model4 of logic program F if
for every ground atom h, h is true inM if and only if either h ∈ gr(F) or there is
a rule h ← b in gr(F) such that b is true inM. Conjunction f ∧ g is true inM if
both f and g are true inM. Disjunction f ∨ g is true inM if either f or g (or both)
are true inM. Negation ∼f is true inM if and only if f is not true inM.

Definition 2.2 ([1]) A logic program F is acyclic if there is an assignment of a
natural number (non-negative integer) to each element of the Herbrand base of F
such that, for every rule in gr(F) the number assigned to the atom in the head of
the rule is greater than the number assigned to each atom that appears in the body.

Acyclic programs are surprisingly general. Note that acyclicity does not pre-
clude recursive definitions. It just means that all such definitions have to be well
founded. They have very nice semantic properties, including the following that
are used in this paper:

Theorem 2.3 ([1]) Acyclic logic programs have the following properties:

1. There is a unique stable model.

2. Clark’s completion [5] characterises what is true in this model.

Section 7 discusses where we may want to go beyond acyclic programs.

4This is a slight generalization of the normal definition of a stable model to includemore general
bodies in clauses. This is done here because it is easier to describe the abductive operations in
terms of the standard logical operators. Note that under this definition b ← ∼∼a is the same as
b ← a.
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3 Independent Choice Logic

In this section we define the semantics of the independent choice logic (ICL) where
the base logic is the set of acyclic logic programs under the stable model semantics.
Section 4 gives an abductive characterisation of the logic.

Definition 3.1 An independent choice logic theory is a pair 〈C,F〉, where
C, the choice space, is a set of non-empty sets of ground atomic formulae, such

that if χ1 ∈ C, χ2 ∈ C and χ1 �= χ2 then χ1 ∩ χ2 = {}. An element of C
is called an alternative. An element of an alternative is called an atomic
choice.

F, the facts, is an acyclic logic program such that no atomic choice unifies with
the head of any rule.

In this paper we assume that each alternative is finite, and that there are countably
many alternatives.

The semantics is defined in terms of possible worlds. There is a possible world
for each selection of one element from each alternative. The atoms which follow
from these atoms together with F are true in this possible world. This is formalised
in the next two definitions.

Definition 3.2 Given independent choice logic theory 〈C,F〉, a selector function
is a mapping τ : C → ∪C such that τ(χ) ∈ χ for all χ ∈ C. The range of
selector function τ , writtenR(τ ) is the set {τ(χ) : χ ∈ C}. The range of a selector
function is called a total choice.

Definition 3.3 Supposewe are given ICL theory 〈C,F〉. For each selector function
τ , we construct a possible world wτ . If f is a closed formula, and wτ is a possible
world, f is true in world wτ based on 〈C,F〉, written wτ |=〈

C,F
〉 f , if f is true in

the (unique) stable model of F ∪ R(τ ). f is false in world wτ otherwise.

When understood from context, the 〈C,F〉 is omitted as a subscript of |=. The
uniqueness of the model follows from the acyclicity of F ∪ R(τ ).

Note that, for each alternative χ ∈ C and for each world wτ , there is exactly
one element of χ that is true in wτ . In particular, wτ |= τ(χ), and wτ |= ∼α for
all α ∈ χ − {τ(χ)}.



Abducing Through Negation as Failure 7

4 Abductive Characterisation of the ICL

The semantic framework here, with probabilities on the choices5 and acyclic logic
programs without negation as failure (with some other restrictions that are relaxed
here; see Section 8.3) was the basis for probabilistic Horn abduction [19]. One of
the main results of [19] (proven in the appendix of that paper) was that the set of
minimal explanations of g is a concise description of the possible worlds in which
g is true.

In this paper we give an abductive characterisation of the above semantic def-
inition of consequence that allows for negation as failure. In particular, the ex-
planations of a proposition will be a description of the set of possible worlds in
which the proposition is true. This can be related to previous work on abductive
logic programming [12], but there is a different interaction between abduction and
negation as failure. If g has some set of explanations, then ∼g also has a set of
explanations which are the dual of the explanations of g (Section 4.2). We interpret
negation quite differently from the interpretation as “failure to prove” [5] that is
appropriate when there is complete knowledge of all propositions. Negation is
interpreted with respect to each world; ∼g is true in a world if g is false in the
stable model defining that world. This is in contrast to the view that∼gmeans that
g cannot be proved—there may be many proofs for g (each relying on different
assumptions) but this doesn’t meanwe can’t also explain∼g. Section 8.2 discusses
the relationship with abductive logic programming in more detail.

4.1 Composite Choices

The notion of a composite choice is defined to allow us to partition the worlds
according to which atomic choices are true. This forms the basis for the abductive
characterisation.

Definition 4.1 A set κ of atomic choices is consistentwith respect to choice space
C if there is no alternative which contains more than one element of κ . Where
C is understood from context, we just say that κ is consistent. A consistent set
of atomic choices is called a composite choice. If A is a set of alternatives, a
composite choice on A is a set of atomic choices that contains exactly one member
of each element of A (and no other members).

5There is a probability distribution on each alternative (a functionP0 : ∪C → [0, 1] such that for
all χ ∈ C,∑α∈χ P0(α) = 1), where the different alternatives are probabilistically unconditionally
independent (see Section 5).
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A consistent set of atomic choices is satisfiable: it can always be extended to
a total choice, which is true in a possible world.

The following lemma shows the relationship between composite choices and
total choices.

Lemma 4.2 A set of atomic choices is a total choice if and only if it is a maximal
composite choice.

This is because each total choice is a composite choice, and there is no composite
choice that is a (strict) superset. Each maximal composite choice is the range of a
selector function and so is a total choice.

The elements of a composite choice are implicitly conjoined: composite choice
χ is true in world wτ , written wτ |= χ , if χ ⊆ R(τ ). A set of composite choices
is implicitly disjoined: a set of composite choices is true in a world wτ if one of
the elements is true in wτ . Thus a set of composite choices can be seen as a DNF
formula made up of atomic choices.

Definition 4.3 Two composite choices are compatible if their union is consistent.
A setK of composite choices ismutually incompatible if for all κ1 ∈ K, κ2 ∈ K,
κ1 �= κ2 implies κ1 ∪ κ2 is inconsistent.

Given the syntactic definitions of incompatible and mutually incompatible, we can
give an equivalent semantic characterisation:

Lemma 4.4 Two composite choices are compatible if and only if there is a world
in which they are both true. A setK of composite choices is mutually incompatible
if and only if there is no world in which more than one element of K is true.

We use sets of composite choices as descriptions of sets of worlds. These are typi-
cally much more concise descriptions than describing the possible worlds directly
(see section 6). This is used to develop an abductive characterisation of the ICL. In
order to develop the theory, we define some operations on composite choices. The
first is finding the complement of a set of composite choices (a set of composite
choices that describe the complementary sets of worlds to the original set), and
the notion of a dual, which is a syntactic operation to find a complementary set of
composite choices. We then give an abductive characterisation of the ICL, where
explanations of a formula correspond to composite choices that entail the formula.
This characterisation shows the interaction between the choices and the rules. In
particular, negation as failure is handled using the duals of sets of explanations.
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The final operation is splitting composite choices which is useful for making mu-
tually incompatible sets of composite choices that describe the same set of possible
worlds as the original.

4.2 Duals and Complements

If K is a set of composite choices describing a set of worlds, we often want a
description of all of the other worlds. This will be crucial in defining abduction
through negation as failure; if some set of composite choices describes the worlds
in which g is true, then g is false in all of the other worlds, so ∼g is true in these
other worlds.

Definition 4.5 IfK is a set of composite choices, then a complement ofK is a set
K′ of composite choices such that for all worlds wτ , wτ |= K′ iff wτ �|= K.

The notion of a dual will be defined to give a way to construct a complement of
a set of composite choices. The idea is that a dual of K contains choices that are
incompatible with every element of K:

Definition 4.6 If K is a set of composite choices, then composite choice κ ′ is a
dual of K with respect to choice space C if ∀κ ∈ K, ∃α ∈ κ, ∃α′ ∈ κ ′, α �= α′,
∃χ ∈ C such that {α, α′} ⊂ χ . A dual is minimal if no proper subset is also a dual.
Let dualsC(K) be the set of minimal duals of K with respect to C. (Usually the
choice space C is implicit from the context.)

Example 4.7 Suppose C = {{a, b, c}, {d, e, f }}, then
dualsC({{a, d}, {b, e}}) = {{c}, {f }, {b, d}, {a, e}}.

The following lemma shows the relationship between duals and negation. The
duals of a setK of composite choices is a description of the complementary set of
possible worlds that is described by K:

Lemma 4.8 If K is a set of composite choices, duals(K) is a complement of K.

In other words, for every world wτ an element of K is true in wτ iff no element of
duals(K) is true in wτ . For a proof of this lemma see Appendix A.
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4.2.1 Computing Duals

There is a strong relationship between the idea of a dual of K and the notion of a
hitting set [27]. Instead of hitting one member of every element of the set, a dual
hits a complement of one of the members of each element of K.

Definition 4.9 [27, Definition 4.3] Suppose C is a collection of sets. A hitting
set for C is a set H ⊆ ⋃

S∈C S such that H ∩ S �= {} for each S ∈ C.

Definition 4.10 If α is an atomic choice, the contrary to α with respect to choice
spaceC, written contC(α) is χ −{α}where χ is the alternative inCwhich contains
α. This is well defined as α is in a unique alternative. If κ is a composite choice, the
contrary of κ with respect to choice spaceC, written contC(κ), is

⋃
α∈κ contC(α).

Example 4.11 Consider example 4.7, where C = {{a, b, c}, {d, e, f }}, then
contC({a, d}) = {b, c, e, f }
contC({b, e}) = {a, c, d, f }

κ ′ is a dual of K, means that for every element κ ∈ K, κ ′ contains an element
that is contrary to one element of κ . But this is that same as κ ′ contains an element
of contC(κ). Thus we have:

Theorem 4.12 κ ′ is a dual of K with respect to C iff κ ′ is a consistent hitting set
of {contC(κ) : κ ∈ K}.

Reiter’s hitting set algorithm [27, Section 4.2] is directly applicable for comput-
ing duals. We can prune any branches in the hitting set treewhere the corresponding
set of atomic choices is inconsistent. This is shown in Figure 1.

Example 4.13 Continuing Example 4.11, the set of consistent minimal hitting
sets of {{b, c, e, f }, {a, c, d, f }} is {{c}, {f }, {b, d}, {a, e}}. Although the set {b, a}
is a hitting set it is inconsistent, and so not considered in the set of duals. It
is easy to check that each of the 9 worlds is covered by either {{a, d}, {b, e}} or
{{c}, {f }, {b, d}, {a, e}}, but not both.
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procedure duals(K)

Input: K— a set of composite choices
Output: the set of duals to K

Suppose K = {κ1, . . . , κn}.
Let D0 = {{}}; % Di is the set of duals of {κ1, . . . , κi}
for i = 1 to n do

Let Di = {d ∪ {c} : d ∈ Di−1, c ∈ contC(κi)};
remove inconsistent elements from Di;
remove any κ from Di if ∃κ ′ ∈ Di such that κ ′ ⊂ κ

endfor;
return Dn.

Figure 1: Finding the dual of a set of composite choices K

4.3 Entailment

Definition 4.14 Ifα andβ are propositions,α entailsβwith respect to independent
choice framework theory 〈C,F〉 if β is true in all worlds in which α is true.

Example 4.15 If C = {{a, b}} and F = {c ← a, d ← b} then ∼d entails c and d
entails ∼c. There are two worlds here: one with a, c, ∼b, ∼d true and one with
b, d, ∼a, ∼c true.
Entailment can be contrasted with the consequence relation of a logic program:

Definition 4.16 If α is a composite choice, we write α |∼ β if β is true in the stable
model of F ∪ α.

If α |∼ β then α entails β. The following example shows how entailment in the
sense of Definition 4.14 is richer than consequence by |∼ , even when the left-side
is a composite choice:

Example 4.17 Suppose C = {{a, b}, {c, d}} and the facts are:
g1 ← a ∧ c.

g1 ← b ∧ c.

c entails g1 but c � |∼ g1. In every world in which c is true, either a is true or b is
true, and so g1 is also true.
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We can characterise entailment in terms of a completion of an ICL theory. This
will consist of the completion (in the sense of Clark [5]) of the facts, where we
complete all predicates except the atomic choices (similar to [6]). Each alternative
gets mapped into a formula expressing the exclusivity and covering of the choices
in an alternative.

Definition 4.18 The completion of independent choice framework theory 〈C,F〉
is the conjunction of

1. Clark’s completion of each predicate that is not an atomic choice.

2. (α1 ∨ · · · ∨ αk) ∧ ∧
i �=j ∼(αi ∧ αj) for each {α1, . . . , αk} ∈ C.

3. Clark’s identity theory [5].

The following theorem gives the relationship between entailment and comple-
tion. It should not be too surprising as we are restricting F to be acyclic logic
programs, and the completion of each non-atomic choice is true in every world
(only the atomic choices in each world changes).

Theorem 4.19 α entails β with respect to independent choice framework theory
〈C,F〉 iff α → β logically follows from the completion of 〈C,F〉.

For a proof see Appendix A.

Example 4.20 The completion of the ICL theory of example 4.15 is

(c ↔ a) ∧ (d ↔ b) ∧ (a ∨ b) ∧ ∼(a ∧ b)

which is equivalent to

(c ↔ a) ∧ (d ↔ b) ∧ (a ↔ ∼b)
Aside: The theory in this paper could have been presented in the form of these
sentences. Unfortunately, given this representation, the assumption that each total
choice leads to a single possible world is very sensitive to the form of the sentences.
If the language is expanded to much beyond what is the completion of an acyclic
ICL theory, choices in some alternatives would constrain choices that can be made
in other alternatives (some total choiceswill be inconsistent with the facts) or a total
choice would not completely define a possible world (a total choice together with
the facts may imply a disjunction a∨ b without entailing a or b). The formulation
in terms of stable models for acyclic logic programs seems very natural and allows
for simple semantics.
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4.4 Explanations

Definition 4.21 If g is a ground propositional formula, an explanation of g is a
composite choice that entails g. A minimal explanation is an explanation such
that no subset is an explanation. A covering set of explanations of g is a set of
explanations of g such that one element of the set is true in all worlds in which g
is true.

A covering set of explanations of g will be true in exactly the worlds in which g is
true. This will form a concise description of the worlds in which g is true.

Definition 4.22 IfK1 andK2 are sets of composite choices, define the conjunction
of K1 and K2 to be the set of composite choices:

K1 ⊗K2 = {κ1 ∪ κ2 : κ1 ∈ K1, κ2 ∈ K2, consistent(κ1 ∪ κ2)}.
It is easy to see thatK1⊗K2 defines those worlds where bothK1 andK2 are true.
We use the symbol “⊗” as the conjunction is like the cross product, but where we
are unioning the pairs and removing inconsistent sets.

This operation is used in the following recursive procedure to compute expla-
nations:

Definition 4.23 If G is a ground propositional formula, expl(G) is the set of com-
posite choices defined recursively as follows:

expl(G) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

mins(expl(A) ⊗ expl(B)) if G = A ∧ B
mins(expl(A) ∪ expl(B)) if G = A ∨ B
duals(expl(A)) if G = ∼A
{{G}} if G ∈ ∪C
{} if G ∈ gr(F)

mins(
⋃

i expl(Bi)) if G �∈ ∪C,G ← Bi ∈ gr(F)

where mins(S) = {κ ∈ S : ∀κ ′ ∈ S, κ ′ �⊂ κ}. duals is defined in Figure 1. expl is
well defined as the theory is acyclic.

Note that the set the explanations of a formula is compositional on the explanations
on the atomic formulae that make up the formula. In particular, the explanations
of∼A are computed from the explanations of A, and the explanations of A∧B are
derived from the explanations of A and the explanations of B.

expl can be used directly as a recursive procedure to compute explanations,
either top-down or bottom-up. The following theorem establishes the correctness
of the expl procedure:
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Theorem 4.24 Ground formula g is true in world wτ iff there is some κ ∈ expl(g)
such that κ ⊆ R(τ ). Moreover expl(g) is a finite set of finite sets.

For a proof see Appendix A.

Corollary 4.25 expl(G) is a covering set of explanations of G.

Note that expl(G) is not necessarily the set of minimal explanations, as the
following example shows.

Example 4.26 Suppose C = {{a, b}, {c, d}, {e, f }} and the facts are:
g1 ← a ∧ c.

g1 ← b ∧ c.

g2 ← a ∧ c.

g2 ← b ∧ e.

In this case expl(g1) = {{a, c}, {b, c}}. There is one minimal explanation for g1,
namely {c}.

Also expl(g2) = {{a, c}, {b, e}}, but the set of minimal explanations of g2
is {{a, c}, {b, e}, {c, e}}. {c, e} is an explanation, because if c and e were true,
whichever of a or b were true in a possible worlds would make g2 true in that
possible world.

This shows that the set of minimal explanations of a goal is not necessarily a
minimal covering set of explanations. This idea should be compared to the idea of
kernel diagnoses and an irredundant set of kernel diagnoses [8].

The set of minimal diagnoses can be computed using a notion of generalised
resolution of explanations:

Definition 4.27 Ifχ = {α1, · · · , αk} ∈ C, and {L1, · · · , Lk} is a set of explanations
of g such that αi ∈ Li for each i ∈ {1, · · · , k}, the generalised resolution of
the explanations {L1, · · · , Lk} with respect to alternative χ is L1 ∪ · · · ∪ Lk −
{α1, · · · , αk}.
Figure 2 gives an algorithm to repeatedly resolve clauseswith respect to alternatives
in the choice space and remove redundant clauses. It is similar to the use of binary
resolution to compute the prime implicates of a set of clauses [13].

Lemma 4.28 The set of all minimal explanations of g is the set K resulting from
termination of the algorithm of Figure 2.
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K := mins(expl(g));
while ∃χ ∈ C

∧ ∀αi ∈ χ ∃Li ∈ K such that αi ∈ Li
∧ consistent(L1 ∪ · · · ∪ Lk − χ)

∧ � ∃E ∈ K such that E ⊆ L1 ∪ · · · ∪ Lk − χ

do K := mins(K ∪ {L1 ∪ · · · ∪ Lk − χ})

Figure 2: Finding all minimal explanations of g

For a proof of this lemma see Appendix A.

Example 4.29 Consider the ICL theory of example 4.26.
To find the minimal explanations of g1 we start off with K = expl(g1) =

{{a, c}, {b, c}}. As {a, b} ∈ C, we can resolve {a, c} and {b, c} resulting in {c}.
mins(K ∪ {{c}}) = mins({{a, c}, {b, c}, {c}}) = {{c}}.

To find the minimal explanations of g2 we start off with K = expl(g2) =
{{a, c}, {b, e}}. As {a, b} ∈ C, we can resolve {a, c} and {b, e} resulting in {c, e}.
mins(K ∪ {{c, e}}) = mins({{a, c}, {b, c}, {c, e}}) = {{a, c}, {b, c}, {c, e}}. No
more resolutions can be carried out, and the procedure stops.

4.5 Splitting Composite Choices

The final operation on (sets of) composite choices is splitting a composite choice
into a number of composite choices. This will be used to make sets of mutually
incompatible composite choices. This will be used for using explanations to com-
pute probabilities (Section 5), but can be used whenever we do not want redundant
proofs. Recall that we are assuming that each alternative is finite.

Definition 4.30 If χ = {α1, . . . , αk} is an alternative and κ is a composite choice
such that κ ∩ χ = {}, the split of κ on χ is the set of composite choices

{κ ∪ {α1}, . . . , κ ∪ {αk}}
It is easy to see that κ and a split of κ describe the same set of possible worlds:

Lemma 4.31 If wτ is a possible world, wτ |= κ iff there is some αi ∈ χ such that
wτ |= κ ∪ {αi}.
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procedure disjoint(K)

Input: K— set of composite choices
Output: mutually incompatible set of composite choices equivalent to K

repeat
if ∃κ1, κ2 ∈ K and κ1 ⊂ κ2

then K := K− {κ2}
else if ∃κ1, κ2 ∈ K, such that κ1 ∪ κ2 is consistent

then
choose α ∈ κ1 − κ2 and χ ∈ C such that α ∈ χ

let K2 be the split of κ2 on χ

K := K− {κ2} ∪K2
else exit and return K

forever

Figure 3: Make set of composite choices K mutually incompatible

If there is a finite number of alternatives, starting from setK of composite choices,
repeated splitting of composite choices can produce the set of total choices (and so
possible worlds) in which K is true. Such an operation is not, however, of much
use.

The main use for splitting is, given a set of composite choices to construct a set
of mutually incompatible composite choices that describes the same set of possible
worlds as the original set. Suppose K is a set of composite choices, there are two
operations we consider to form a new set K′ of composite choices:

1. removing dominated elements: if κ1, κ2 ∈ K and κ1 ⊂ κ2, letK′ = K−{κ2}.
2. splitting elements: if κ1, κ2 ∈ K, such that κ1 ∪ κ2 is consistent (and neither
is a superset of the other), there is a α ∈ κ1− κ2 and χ ∈ C such that α ∈ χ .
We replace κ2 by the split of κ2 on χ . Let K2 be the split of κ2 on χ , and
K′ = K− {κ2} ∪K2.

It is easy to see that K and K′ describe the same set of possible worlds.
If we repeat the above two operations until neither is applicable, the procedure

stops (if K is a finite set of finite composite choices) and we end up with a set of
mutually incompatible composite choices that is equivalent to the original set (is
true in the same set of possible worlds). This procedure is depicted in Figure 3.
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Example 4.32 Suppose

C = {{a1, a2, a3}, {b1, b2, b3}, {c1, c2, c3}}.
K = {{a1, b1}, {a1, c1}}.

The elements of K are not mutually incompatible (there is a world in which they
are both true — namely the world with total choice {a1, b1, c1}). We can split the
second element of K on {b1, b2, b3}, resulting in

K′ = {{a1, b1}, {a1, b1, c1}, {a1, b2, c1}, {a1, b3, c1}}.
The second element can be removed, and we end up with

K′′ = {{a1, b1}, {a1, b2, c1}, {a1, b3, c1}}
which is a mutually incompatible set of composite choices equivalent to K.

It is possible, even with only two composite choices that we will need to spilt
multiple times, as the following example shows:

Example 4.33 Suppose

C = {{a1, a2}, {b1, b2}, {c1, c2}, {d1, d2}, {e1, e2}, {f1, f2}, {g1, g2}}.
K = {{a1, b1, c1}, {a1, d1, e1, f1}}.

We can split the second element of K on {b1, b2} resulting in
K′ = {{a1, b1, c1}, {a1, b1, d1, e1, f1}, {a1, b2, d1, e1, f1}}.

We can split the second element of K′ on {c1, c2} resulting in
K′′ = {{a1, b1, c1}, {a1, b1, c1, d1, e1, f1}, {a1, b1, c2, d1, e1, f1}, {a1, b2, d1, e1, f1}}.

The second element of K′′ is subsumed, so we can remove it, resulting in

K′′′ = {{a1, b1, c1}, {a1, b1, c2, d1, e1, f1}, {a1, b2, d1, e1, f1}},
which is a mutually incompatible set of composite choices equivalent to K.

A few interesting complexity questions about the procedure of Figure 3 can be
answered:
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1. How many splits may be needed?

2. How many composite choices are in the resulting set of mutually incompat-
ible composite choices?

3. Is there a heuristic that tells us on which element we should split? In the
second operation we can split on κ1 or on κ2; does one result in fewer
composite choices?

The first thing to notice is that to make a set of composite choices mutually
incompatible, it may be the case that we have to consider each pair of composite
choices. Given a pair of composite choices we can analyze exactly the number of
splits and the number of resultant composite choices.

Suppose we are trying to make composite choices κ1 and κ2 incompatible. Let
K2 be the split of κ2 on χ (where κ1 contains an element of χ ). We must have
|K2| = |χ |. All but one of the elements of K2 are incompatible with κ1 (thus
there are |χ | − 1 of these composite choices incompatible with κ1). Let κ3 be the
element of K2 compatible with κ1 (κ3 will be (κ1 ∩ χ) ∪ κ2). Either κ1 is a subset
of κ3 (this occurs iff |κ1 − κ2| = 1), or we have have to repeat the loop to make κ1
and κ3 incompatible.

Suppose κ1 − κ2 = {α1, . . . , αk}, where αi ∈ χi. Either we are going to
eventually split κ2 on χ1, . . . , χk , or else we are going to have to split κ1 on the
analogous set, in order to make the resultant set of composite choices mutually
incompatible. It makes no sense to split both κ1 and κ2 in order to make them
incompatible. If we repeatedly split κ2 on the χi we will need k = |κ1− κ2| splits.
The resulting set of composite choices will contain (

∑k
i=1 |χi|) − k − 1 elements.

Thus if all of the alternatives have the same length, to minimise the number of
composite choices in the mutually incompatible set we should repeatedly split the
larger of a pair of composite choices.

4.6 An Example in Detail

Continuing Example 1.1, suppose we also have that the agent often drops the key
if it is slippery and if the key isn’t slippery, it sometimes fumbles and drops the
key:

drops(key, T) ←
slippery(key, T) ∧
drop_slippery_key(T).
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drops(key, T) ←
∼slippery(key, T) ∧
fumbles_key(T).

Suppose that, independently at each time, the agent either drops or holds a slippery
key and either fumbles or retains an unslippery key. This is specified by:

∀T {drop_slippery_key(T), holds_slippery_key(T)} ∈ C
∀T {fumbles_key(T), retains_key(T)} ∈ C

Suppose that the key could start slippery and subsequently become unslippery.
(We could model the key becoming slippery by adding an extra clause, but this
makes the example more complicated.)

slippery(key, s(T)) ←
slippery(key, T) ∧
stays_slippery(T).

slippery(key, 0) ←
initially_slippery(key).

Whether the key remains slippery at each step and whether it is initially slippery
are both choices:

∀T {stays_slippery(T), stops_being_slippery(T)} ∈ C
∀T {initially_slippery(key), initially_unslippery(key)} ∈ C

We can axiomatise the location of the robot and the key in a similar manner. The
robot, goes to the location of the action if the move was successful, otherwise it
stays still. The key stays where it is unless it is being carried in which case it is at
the location of the robot.

at(robot,Pos, s(T)) ←
do(goto(Pos), T) ∧
goto_succeeds(T).

at(robot,Pos1, s(T)) ←
do(goto(Pos), T) ∧
at(robot,Pos1, T) ∧
∼goto_succeeds(T).
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at(robot,Pos, s(T)) ←
∼goto_action(T) ∧
at(robot,Pos, T).

at(key,Pos, T) ←
carrying(key, T) ∧
at(robot,Pos, T).

at(key,Pos, s(T)) ←
∼carrying(key, s(T)) ∧
at(key,Pos, T).

There is only one goto action.6

goto_action(T) ←
do(goto(Pos), T).

The goto action either succeeds or fails at each time.

∀T {goto_succeeds(T), goto_fails(T)} ∈ C
Consider the following particular scenario of actions:

do(goto(loc1), 0).

do(pickup(key), s(0)).

do(goto(loc2), s(0)).

at(key, loc1, 0).

at(robot, loc0, 0).

Example 4.34 There is one explanation for slippery(key, s(s(0))):

[stays_slippery(s(0)), stays_slippery(0), initially_slippery(key)]
Example 4.35 The explanation for slippery(key, s(s(0))) has three duals:

[stops_being_slippery(s(0))]
[stops_being_slippery(0)]
[initially_unslippery(key)]

6This is needed as we don’t have explicit quantification, and all variables are universally quan-
tified outside the scope of the clause. Existentially quantified variables in the scope of a negation
can be handled by introducing a new clause.
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These thus form the explanations for ∼slippery(key, s(s(0))). These can be made
disjoint giving the explanations:

[initially_slippery(key), stays_slippery(0), stops_being_slippery(s(0))]
[initially_slippery(key), stops_being_slippery(0)]
[initially_unslippery(key)]

Example 4.36 Consider the explanations for drops(key, s(s(0))). The first clause
for drops results in one explanation:

[drop_slippery_key(s(s(0))), stays_slippery(s(0)), stays_slippery(0),
initially_slippery(key)]

The secondclause fordrops results in threemore explanations fordrops(key, s(s(0))),
namely:

[fumbles_key(s(s(0))), initially_slippery(key), stays_slippery(0),
stops_being_slippery(s(0))]

[fumbles_key(s(s(0))), initially_slippery(key), stops_being_slippery(0)]
[fumbles_key(s(s(0))), initially_unslippery(key)]

Example 4.37 There are four explanations for ∼drops(key, s(s(0))):
[initially_slippery(key), stays_slippery(0), retains_key(s(s(0))),

stops_being_slippery(s(0))]
[initially_slippery(key), retains_key(s(s(0))), stops_being_slippery(0)]
[retains_key(s(s(0))), initially_unslippery(key)]
[initially_slippery(key), stays_slippery(0), stays_slippery(s(0)),

holds_slippery_key(s(s(0)))]
Example 4.38 Consider explaining carrying(key, s(s(s(0))). Using the second
clause for carrying, weneed to combine these four explanations for∼drops(key, s(s(0)))
with explanations for carrying(key, s(s(0))).

There are four explanations of carrying(key, s(s(s(0)))):

[initially_slippery(key), stays_slippery(0), retains_key(s(s(0))),
stops_being_slippery(s(0)), pickup_succeeds(s(0)), goto_succeeds(0)]

[initially_slippery(key), retains_key(s(s(0))), stops_being_slippery(0),
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pickup_succeeds(s(0)), goto_succeeds(0)]
[retains_key(s(s(0))), initially_unslippery(key), pickup_succeeds(s(0)),

goto_succeeds(0)]
[initially_slippery(key), stays_slippery(0), stays_slippery(s(0)),

holds_slippery_key(s(s(0))), pickup_succeeds(s(0)), goto_succeeds(0)]
Example 4.39 From the above explanations of carrying(key, s(s(s(0))), we can
derive explanations for ∼carrying(key, s(s(s(0))), three of which are:

[goto_fails(0)]
[goto_succeeds(0), pickup_fails(s(0))]
[goto_succeeds(0), pickup_succeeds(s(0)), drop_slippery_key(s(s(0))),

initially_slippery(key), stays_slippery(0), stays_slippery(s(0))]
There are six other explanations.

What is important to notice about these examples is thatwe canwrite declarative
clauses defining the dynamics of the world, forgetting about the fact that some of
the conditions will be uncertain. The explanations of a ground formula are a
description of exactly those worlds in which it is true. The mutual incompatibility
means that each world is only described by one explanation.

5 Probabilities

Inmany applications wewould like to assign a probability over the alternatives [19,
23]. This lets us use the logic programming representation for standard Bayesian
reasoning. The rule structure mirrors the independence of Bayesian networks, and
provides a form of contextual independence that can be exploited in probabilistic
inference [24].

Suppose we are given a function P0 from atomic choices into [0, 1] such that∑
α∈χ P0(α) = 1 for all alternatives χ ∈ C. That is, P0 is a probability distri-

bution on each alternative. We assume that the alternatives are unconditionally
probabilistically independent.

Intuitively, wewould like the probabilitymeasure of anyworld to be the product
of the probabilities of the atomic choices that make up the total choice defining
the world. That is, µ(wτ ) = ∏

α∈R(τ ) P0(α). The probability of any proposition
is the sum of the probabilities of the worlds in which proposition is true. That is,
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P(α) = ∑
wτ |=α µ(wτ ). This only works when the choice space is finite. However,

when the alternatives are parametrized and there are function symbols (as in Section
4.6), there are infinitely many possible worlds, each with measure zero, and we
need a more sophisticated construct. The general idea is to define a measure over
sets of possible worlds.

LetW〈
C,F

〉 = {wτ : τ is a selector function onC}. ThusW〈
C,F

〉 is the set of all

possible worlds. We define the algebra of subsets ofW〈
C,F

〉 that can be described

by finite sets of finite composite choices.

�〈
C,F

〉 = {ω ⊂ W〈
C,F

〉 : ∃ finite set of finite composite choices K
such that ∀w, w ∈ ω iff w |= K}

�〈
C,F

〉 is closed under finite unions and complementation. That is, if ω1, ω2 ∈
�〈
C,F

〉 then ω1 ∪ ω2 ∈ �〈
C,F

〉 and W〈
C,F

〉 − ω1 ∈ �〈
C,F

〉.

As shown in Section 4.5, every set of composite choices is equivalent to a
mutually incompatible set of composite choices. Thus, for every ω ∈ �〈

C,F
〉,

there exists a mutually incompatible set of composite choices K such that w ∈
ω iff w |= K.

Lemma 5.1 IfK andK′ are both mutually incompatible sets of composite choices
such that K ≡ K′, then

∑
κ∈K

∏
α∈κ P0(α) = ∑

κ ′∈K′
∏

α′∈κ ′ P0(α′).

This lemma is the same as Lemma A.8 in [19].
We can then define a probability measure µ : �〈

C,F
〉 → [0, 1] by:

µ(ω) =
∑

κ∈K

∏
α∈κ

P0(α)

where K is a mutually incompatible set of composite choices such that w ∈
ω iff w |= K. Lemma 5.1 implies that it doesn’t matter which K is chosen.

Lemma 5.2 µ satisfies the axioms of probability,7 namely:
• µ(ω) = 1− µ(ω) where ω is the complement of ω and,
• if ω1 and ω2 are disjoint sets, µ(ω1 ∪ ω2) = µ(ω1) + µ(ω2).

7Note that we don’t require σ -additivity (the sum rule for infinite disjuncts) as, by acyclicity,
each ground formula has a finite set of finite explanations.
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We can now define the probability of ground formula g byP(g) = µ({w : w |= g}).
This is well defined as for any g, by the acyclicity of the facts, there is a finite
covering set of finite explanations of g. That is, {w : w |= g} ∈ �〈

C,F
〉. In

particular, we have the following:

Proposition 5.3 If K is a covering and mutually incompatible set of explanations
of g, then

P(g) =
∑

κ∈K

∏
α∈κ

P0(α)

We can define a conditional probability in the normal manner: If P(β) �= 1,

P(α|β) =def
P(α ∧ β)

P(β)
.

From this we can see that Bayesian conditioning corresponds to abduction. When
we observe β and condition on it, this means that we find the explanations for it.

Section 4.4 shows how to construct a set of covering explanations of g. The
problem is to generate a covering and mutually incompatible set of explanations
of g. There are three approaches than can be used:

1. build the fact base to guarantee that onlymutually incompatible explanations
are returned by expl(g).

2. construct a covering and mutually incompatible set of explanations from a
covering set of explanations.

3. compute the probabilities directly from the set of explanations generated by
expl(g).

These are discussed in the next three sections.

5.1 Disjointed Rule Bases

Poole [19] shows the relationship to abduction in the acyclic definite clause case
(without negation as failure) under the constraint that the bodies of the ground
instances of the rules for any atom are incompatible. That is, if a ← b1 and
a ← b2 are two ground instances of rules for a, there is no possible world in which
b1 and b2 is true. Under this restriction, the probability of g can be obtained by
adding the probabilities of the explanations of g [19]. In this section we extend
this idea to the more general rule formulation given in this paper.



Abducing Through Negation as Failure 25

Definition 5.4 A rule base F is disjointed if

• for every pair of different rules h1 ← b1 and h2 ← b2 in F and for every
pair of grounding substitutions θ1 and θ2, if h1θ1 = h2θ2, there is no world
in which b1θ1 ∧ b2θ2 is true,

• for every rule h ← b inF and for every pair of grounding substitutions θ1 and
θ2 such that hθ1 = hθ2 and bθ1 �= bθ2, there is no world in which bθ1 ∧ bθ2
is true, and

• whenever b1 ∨ b2 appears in the body of any ground rule, there is no world
in which any ground instance of b1 ∧ b2 is true.

Suppose we have a disjointed knowledge base. We can use a variant of expl
to compute a mutually incompatible and covering set of explanations of g. In
particular, none of the mins functions are needed (no subset of an explanation will
ever be generated as an explanation). The only time that mutually incompatible
composite choices can be generated is in computing duals (Section 4.2.1). We
can make these disjoint using the algorithm of Figure 3. This is summarised in
algorithm expld :

expld(G) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

{} if G = true
expld(A) ⊗ expld(B) if G = A ∧ B
expld(A) ∪ expld(B) if G = A ∨ B
disjoint(duals(expld(A))) if G = ∼A
{{G}} if G ∈ ∪C⋃

i expld(Bi) if G �∈ ∪C,G ← Bi ∈ gr(F)

Proposition 5.5 IfF is a disjointed rule base, expld(g)will always return aminimal
mutually incompatible and covering set of explanations of g.

The coveringness is a direct consequence of Theorem 4.24. The mutually incom-
patibility is due to the disjointedness of the rule base; ⊗ preserves the mutual
incompatibility, and union is only used on pairwise incompatible sets. The mini-
mality is a consequence of the mutually incompatibility — a subset is compatible
with its superset if the superset is consistent.

Note that the term minimal here means that the set of explanations is minimal;
i.e., no subset also has this property. It does not mean that the explanations are
minimal.
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This idea of exploiting properties of rules to gain efficiency is a powerful and
general idea. From experience, it seems that obeying the discipline of writing
disjointed rule sets helps to debug knowledge bases and to write clearer and more
concise knowledge bases.

5.2 Making Explanations mutually incompatible

Given a covering set of explanations of g, as produced, for example by the use of
expl, we can use the repeated splitting algorithm of Section 4.5 to create a covering
and mutually incompatible set of explanations of g.

5.3 Computing probabilities from arbitrary sets of composite
choices

We do not need to create a mutually incompatible set of explanations. Probabilities
can be computed from an arbitrary covering set of explanations. The general idea
is when adding probabilities of disjunctions we have to subtract the part we have
double counted.

The following formula is true whether or not κ1 and κ2 are incompatible.

P(κ1 ∨ κ2) = P(κ1) + P(κ2) − P(κ1 ∧ κ2)

The general case is more complicated. If we have {κ1, . . . , κn} as a covering set
of explanations of g, we can use the following formula to compute the probability
of g:

P(κ1 ∨ · · · ∨ κn) =
n∑
j=1

∑

i1 · · · ij
1 ≤ i1 < · · · < ij ≤ n

(−1)j+1P(κi1 ∧ · · · ∧ κij)

The second sum is summing over all subsets of {κ1, . . . , κn} that contain exactly j
elements.

P(κi1 ∧ · · · ∧ κij) is easy to compute. It is 0 if κi1 ∪ · · · ∪ κij is inconsistent, and
otherwise it is

∏
α∈κi1∪···∪κij

P0(α).

The main problem with this sum is that we are summing 2n − 1 probabilities,
where n is the number of explanations of g. This can often be reduced as we do
not need to consider any supersets of an inconsistent composite choice.
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6 Combinatorics

In this section we explore how much the abductive view can save over the model
theoretic view, and provide some answers to the question: how much smaller will
a set of covering explanations be than the set of possible worlds? This is important
as it is the set of these covering explanations that we need to sum over to determine
probabilities.

In the general case with infinitely many finite alternatives, there are infinitely
many possible worlds, but any ground atom always has a finite set of covering
explanations, each of which is finite. This is guaranteed by the acyclicity of the
rule base.

When there are finitely many finite alternatives, there are examples where there
are the same number of covering explanations of some g as there are worlds in
which g is true. This occurs when (and only when) the explanations are total
choices.

It is interesting to consider the case where the ICL theory is the result of trans-
forming a Bayesian network as in [19]. Although any probabilistic dependence
can be modelled with independent choices (hypotheses) in the ICL, this is done at
the cost of greatly increasing the number of worlds. However, as we see below,
the abductive characterisation can be used to (often more than) counteract this
combinatorial explosion.

Suppose there are n (binary) random variables that we want to model, and
there are no independencies that we can exploit. The Bayesian network [17]
representation for this is a complete graph. There are 2n − 1 independent numbers
that can be assigned to specify the joint distribution (we can assign a non-negative
real number to each of the 2n worlds, but this is over constrained by one number—
we need to divide by the sum in order to get a probability). In order to model this
with independent choices, we have 2n − 1 binary alternatives. This is exactly the
number of alternatives (or disjoint declarations in the terminology of [19]) created
in the translation of the Bayesian network into a probabilistic Horn abduction
theory [19]. This, however creates 22

n−1 possible worlds in the independent choice
logic. This combinatorial argument would seem to indicate that the modelling by
independent choices can be ruled out on combinatorial grounds.

However, consider the size of the minimal explanations of any proposition.
Each minimal explanation has at most n assumptions; they at most assign one
value to each of the original propositions. At the extreme, for the root variable
(with n−1 parents), there are 2n−1 rules, each with its own alternative. Only one of
these rules and only one of the atomic choices will be in any minimal explanation,
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as there will only be one assignment of values to the parents of that node implied
by the explanation. There will be at most 2n explanations. For this case there
are thus logarithmically fewer explanations than there are possible worlds — the
abductive characterisation makes the combinatorics of the independent choice the
same as for the general case with arbitrary dependencies amongst the hypotheses
(exactly the same number of numbers have to be assigned as well).

The abductive characterization is interesting because:

1. Wecan exploit independencies amongst variables in the samewayasBayesian
networks [19].

2. We only need to consider the ancestors in the Bayesian network of what we
are trying to find the explanations of, and not the set of all valuations of the
Bayesian network (although such pruning can also be done in the Bayesian
network [2]).

3. Where there are contextual independencies (some variable may only depend
on another variable when a third variable has a particular value), the ab-
ductive characterisation naturally exploits these independencies. Such con-
textual independence have been exploited in dynamic programming [3, 21]
and probabilistic inference [23] — instead of considering the state space, as
dynamic programming traditionally does, we can consider just the explana-
tions of a proposition we were interested in (e.g., the different values of the
utility).

7 Beyond Acyclic Logic Programs

We chose acyclic logic programs [1] as the base logic as there is a unique stable
model for any acyclic logic program. This is important in properly defining truth in
possible worlds (Definition 3.3). The property that we want for our logic programs
is that each total choice leads to a single model. This means two things:

1. Each selection of an element from each alternative is consistent. This means
that the logic cannot allow a selection of choices from some alternatives to
impose any restrictions on choices fromother alternatives. This, for example,
disallows the logic from being the arbitrary predicate calculus, Horn clauses
with integrity constraints [14], or logic programs under the stable model
semantics with no stable models (such as a ← ∼a).
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2. Each total choice cannot be extended into more than one possible world.
This excludes us from having explicit disjunction in our logic. It also means,
for example, that we cannot have logic programs under the stable models
semanticswithmore thanone stablemodel (such asa ← ∼b, b ← ∼awhich
has two stable models, one with a true and one with b true). We are also
excluding three–valued models of logic programs [26] from consideration,
as we cannot give a probabilistic interpretation to them.

Acyclic logic programs were chosen because they guarantee the uniqueness of the
model for each total choice. The acyclic condition is, however, too strong. One
way to weaken the condition is by the use of what we call contingently acyclic
logic programs.

One thing that cannot be expressed in an acyclic logic program is to give a
relation a default value:

Example 7.1 Suppose r(O,V) is a relation between object O and value V . To
state that there is a default value d (i.e., objects should have value d unless they
have been given another value), we can use the logic program:

r(O, d) ← ∼has_another_r_value(O)

has_another_r_value(O) ← r(O,V) ∧ V �= d

This is not acyclic as there is no way to assign the natural numbers so that

r(o, d) > has_another_r_value(o)

has_another_r_value(o) > r(o, d)

But this second constraint seems to be superfluous, as it only applied to a rule
whose body is always false (as it has d �= d) in the body.

Example 7.2 Suppose we have the knowledge base:

above(X, Y) ← on(X, Z) ∧ above(Z, Y).

above(X, Y) ← on(X, Y).

on(a, b).

on(b, c).

on(c, d).

This knowledge base is not acyclic as the first rule has the acyclic constraint that
above(a, b) > above(a, b), which cannot be true. This relation however relies on



Abducing Through Negation as Failure 30

an instance of the rule with on(X,X), but there is no instance of this atom that
is true. Given the database for on, the only instances of the first rule that do not
immediately fail, are those for which on(X, Z) unify with one of the clauses. If
we only consider these instances, we can assign a natural number to make these
acyclic. If we were to add on(d, a) to the knowledge base, there is a cycle.

We define contingently acyclic programs to exclude from gr(F) those rules whose
body is always false.

Definition 7.3 Given a set of clauses, we say a ground atom is immediately false
if it does not resolve with the head of any clause or, when we have semantic
constraints (due to built-in relations like equality), if the atom is false due to the
semantic constraints (e.g., d �= d). If G is a set of ground clauses define

redundant(G) = {H ← B ∈ G : one conjunct in B is immediately false}
A logic program F is contingently acyclic if gr(F)−redundant(gr(F)) is acyclic.

This means that the rule bases of examples 7.1 and 7.2 above are contingently
acyclic. It is called contingently acyclic as the instances of the rules happen to be
acyclic based on the existence of other clauses and semantic constraints.

Corollary 7.4 The equivalences of theorem 2.3 hold for contingently acyclic pro-
grams.

This is true as the semantics of a logic program, and the completion formula
are completely determined by the the ground instances. Removing the rules with
always false bodies does not change any of the semantics referred to in Theorem
2.3.

The following lemma says that we can use the acyclic logic program results for
our semantics if F is acyclic (as R(τ ) imposes no constraints on the acyclicity).

Lemma 7.5 If F is a (contingently) acyclic logic program, and τ is a selector
function, then F ∪ R(τ ) is a (contingently) acyclic logic program.

One could imagine that the idea behind contingently acyclic logic programs
could be extended to remove instances that would never be generated at all by for-
ward chaining (contingently acyclic logic programs remove all of those instances
that provably cannot be generated by forward chaining one step). In Definition 7.3,
once a redundant set of clauses is removed, there may be more immediately false
ground atoms, that can in turn make more redundant clauses. However, which
clause is redundant depends on the total choice:
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Example 7.6 Consider a logic program, that contains the rules

a ← c ∧ b

b ← ∼c ∧ a

but is otherwise acyclic where the assignment of numbers is such that c is assigned
a lower number than both a and b. There is still a unique model for each total
choice, as each total choice, together with the facts, entail either c or ∼c. Which
it entails may depend on the total choice.

Extending the definition to cover such cases would not cover the class of all pro-
grams with a unique model for each total choice, as the following example shows:

Example 7.7 Here is an example, which is not contingently acyclic:

F = { someonewins ← int(N) ∧ wins(N),

int(0),

int(s(N)) ← int(N)}
C = { {wins(N), loses(N)} : N is a term}

This has the property of a unique model for each selection, but is not acyclic
because someonewins has to be assigned a number bigger than any integer. This
program can be interpreted according to our semantics given in Section 3; there
are 2ℵ0 possible worlds, where someonewins is true in all but one of them. When
we consider this probabilistically, unless there are only finitely many alternatives
with a non-zero probability of a win, the world where someonewins is false has
measure zero.

One could think of extending the notion of (contingently) acyclic programs to
include, for example, limit ordinals, but whether this would either cover all of the
naturally occurring cases or be needed for real applications is still an open question.

The motivation for restricting to acyclic programs was to ensure there was a
unique model for each total choice. Other uses for acyclic logic programs are the
ability to prove termination [16]. These are related, and it is interesting to note
that the terminating programs of Marchiori [16] result in unique models, but the
converse is not true. One complication is that we don’t want to have to, for each
total choice, prove there is a unique model, as there can be infinitely many total
choices.
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8 Comparison with other Formalisms

8.1 Propositional Satisfiability

When the alternatives are binary, the operations on sets of composite choices
correspond to operations on DNF formulae. The main point of this paper, is to
show how the composite choices interact with the rules that include negation as
failure.

Consider a binary alternative {a, b}. In any world where a is selected, b is false.
In any world where b is selected, a is false. Thus b ≡ ∼a. Whenever b appears in
the facts it can be replaced by∼a, without affecting what is entailed by the theory.
We could even thing of this alternative as {a, ∼a}.

For the binary case, a composite choice corresponds to a consistent conjunction
of literals. A set of composite choices corresponds to a DNF formula made up of
literals of atomic choices. The dual operation corresponds to negating the DNF
and converting the result to DNF. The operation ⊗ (Definition 4.22) corresponds
to conjoining the DNF formulae and distributing back into DNF. The algorithm of
Figure 2 corresponds to the use of binary resolution to compute the prime implicates
of a set of clauses [13].

Davydov and Davydova [7] have extended the above Boolean logic notions to
allow more that one element in each alternative (as in this paper). Their notion of
a dual corresponds to the hitting set in this paper. They have provided an algebra
of operations on these dual structures. Their work is orthogonal to the work in this
paper. What is important about this paper is how the sets of composite choices
interact with the rules. If we consider the constraints on the DNF formulae, then
we realise that any composite choices is consistent with the facts; the facts by
themselves impose no constraints on the composite choices. The constraints on
the composite choices is provided by the interaction between the facts and the
observations. Thus this paper is presenting a particular way to provide such con-
straints (one that corresponds to Bayesian conditioning). Based on this interaction,
we have presented an abductive characterization of the logic. We have provided
a limited set of operations on these dual structures that are applicable for eviden-
tial reasoning. Davydov and Davydova used the dual structures for optimization,
where they want to select the best total choice rather based on an evaluation func-
tion, rather than the evidential reasoning task of this paper, where we want to sum
the measures of the consistent total choices. For decision problems [23], we want
to both sum over choices by nature and optimize over choices by the decision
making agent. The combination of these techniques is an intriguing possibility,
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but beyond the scope of this paper.

8.2 Abductive Logic Programming

The combination of abduction and logic programming has a long history (see
Kakas et al. [12] for a good survey). The combination proposed in this paper is
quite different from other proposals mainly because the abductive characterisation
is a consequence of an independently defined semantics. The normal definition of
stable models [10] is used to define negation as failure — there is no alternative
notion of negation as failure that needs to be defined and motivated. There is a
much closer tie between negation as failure used in this paper and so-called “real”
negation; ∼a is true in a world if and only if a is not true in the world.

In abductive logic programming, the minimality of explanations has a semantic
significance; if E is an explanation for some g, it does not imply that E ∪ {a}, even
if internally consistent, is an explanation. However, in the ICL, any consistent
superset of an explanation is an explanation: if E is an explanation for g, and a is
an atomic choice that is consistent with E, then E ∪ {a} is an explanation for g.

One of the things unique about the work reported in this paper is that the
explanations of ∼g are a function of the explanations of g. In other frameworks
for abductive logic programming, if there is an explanation for g, and negation was
not used to prove g, there are no explanations for ∼g (all explanations of ∼g are
obtained from negation as failure used to prove g).

Themain semantic difference is thatwe interpret failure-to-prove in eachworld,
rather than failure given the whole theory. This means that equivalences that are
true for each world, such as Clark’s completion for nonassumables, hold for the
whole theory. Rather than forcing this meaning, it is a natural consequence of the
framework.

Much of the power comes from having a structured hypothesis space. It is this
structure that allows us to give such a clean semantics, upon which it is easy to
impose a probability measure (Section 5), and upon which it is easy to extend to
multiple agents making choices [23].

The use of a rule base that is a complete definition, even if all of the elements
of the body of rules are not completely defined, is similar to the completion of
non-abducible predicates in the completion semantics for abduction [6, 20], but
these don’t allow for negation as failure. It is also similar to the motivation for
OLP-FOL [9], but in the ICL the aim is to handle all uncertainty in terms of
Bayesian decision theory (or game theory when there is more than one agent) [23],
as opposed to handling uncertainty in the non-defined predicates using first order
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logic (as is done in OLP-FOL). Note that OLP-FOL takes a different approach to
badly defined predicates (such as p in p ← ∼p). Whereas, Denecker is quite happy
to have a three-valued semantics for these predicates (but not for predicates defined
in the FOL), we don’t allow these because we want to have a normal probabilistic
semantics. Rather than allowing a three-valued semantics, we restrict the language
to be acyclic to ensure we don’t have such badly defined predicates. It also seems
that writing acyclic programs is good programming practice; a cyclic program
usually indicates a bug.

8.3 Probabilistic Horn abduction

Probabilistic Horn abduction [19, 18] is a pragmatic framework for combining
logic and probability with independent hypotheses and definite clauses giving the
consequences of the hypotheses. There is a close relationship between Bayesian
networks [17] and probabilistic Horn abduction [19].

The independent choice logic extends the logical part of probabilistic Horn
abduction in allowing for negation as failure in the body of rules, and in allowing
for non-disjoint rules. The modelling language is thus much expanded without
losing semantic simplicity or elegance. A complementary paper [23] considers
allowing different agents to choose assumptions, and explores the relationship to
notions in game theory and stochastic dynamical systems. That paper uses only the
model-theoretic semantics and not the abductive characterization explored here.

9 Conclusion

This paper has presented a mix of abduction and logic programming (including
negation as failure) that allows for a clean mix of logic programming and prob-
ability. This was defined in terms of a semantic framework that allows for the
independent choices. This framework allows us to import directly the stable mod-
els semantics for our logic programs (or any other semantics that is definitive on
total choices). The abductive characterisation is a consequence of the semantics
— the set of explanations of a formula is a concise description of the worlds in
which the formula is true. The result of this is a clean and useful mix of abduction,
logic programming and probabilistic reasoning.

This has been implemented and used for applications in decision theory [23].
The code is available from my web site.
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A Proofs

Lemma 4.8 IfK is a set of composite choices, duals(K) is a complement ofK.

Proof: Let wτ be a world. To prove: an element ofK is true in wτ iff no element
of duals(K) is true in wτ . There are two cases to consider.

Case 1: There is an element κ ∈ K that is true inwτ . To show there is no element
of duals(K) that is true in wτ . If κ ′ ∈ duals(K) then, by definition of duals, there
is an α ∈ κ and α′ ∈ κ ′ such that {α, α′} ⊆ A ∈ C. As κ is true in wτ , α must be
true in wτ (i.e., τ selects α from A). So α′ is false in wτ . So κ ′ is false in wτ .

Case 2: There is no element of K that is true in wτ . This means that for every
element κ ∈ K, there is an element α ∈ κ such that τ doesn’t select α (and instead
selects some α′). Let κ ′′ be the range of selector function τ . Then κ ′′ satisfies all
of the conditions for membership in duals(K) except perhaps minimality. Then
there is some subset κ ′ of κ ′′ that is minimal and so in duals(K). κ ′ is true in wτ .
So there is an element of duals(K) that is true in wτ .
Q.E.D.

Theorem 4.19 α entails β with respect to independent choice framework theory
〈C,F〉 iff α → β logically follows from the completion of 〈C,F〉.

Proof: If M is a model of the completion of 〈C,F〉, then one element of each
alternative is true in M, as for each alternative {α1, . . . , αk} ∈ C, the completion
contains the formula (α1 ∨ · · · ∨ αk) ∧ ∧

i �=j ∼(αi ∧ αj). Each of these selections
is consistent with Clark’s completion (as we only completed the predicates that
were not atomic choices). Thus eachM is a model of a total choice, and each total
choice has a model M. The total choice together with Clark’s completion has a
unique stable model, as the theory is acyclic [1].

α entails β with respect to independent choice framework theory 〈C,F〉means
β is true in all possible worlds in which α is true. This is that same as for all total
choices α → β is true in the stable models of the total choice together with F,
which is true iff for all total choices α → β logically follows from the total choice
together with Clark’s completion of F [1], which is equivalent to α → β logically
follows from the completion of 〈C,F〉.
Q.E.D.
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Theorem 4.24 Ground formula g is true in worldwτ iff there is some κ ∈ expl(g)
such that κ ⊆ R(τ ). Moreover expl(g) is a finite set of finite sets.

Proof: The proof is by induction on structure of the formula and on the the level
assigned by the acyclicity of F. Acyclicity is needed to make sure the inductive
proofs ground out.

Base case: The base case for the induction is unstructured formulae (atoms) that
are minimal in the acyclicity ordering. These are atomic choices and atomic facts.
The theorem is trivially true for the atomic facts, where κ = {}.

Suppose α is an atomic choice. α is true in wτ iff α ∈ R(τ ). expl(α) = {{α}}
thus κ = {α}, and κ ⊆ R(τ ) is the same as α ∈ R(τ ).

Structural Induction: Suppose g is a structured formula, and that the theorem
is true for every substructure for g, to show it is true for g. g is either of the form
f ∧ h, f ∨ h or ∼f where f and h are formulae (for which the theorem holds).

Suppose g is of the form f ∧ h. g is true in world wτ iff both f and h are true
in wτ .

• Suppose g is true inworldwτ , thus f andh are true inwτ , then by the induction
there is a κ1 ∈ expl(f ) such that κ1 ⊆ R(τ ) and a κ2 ∈ expl(h) such that
κ2 ⊆ R(τ ). Then consistent(κ1 ∪ κ2) (as they are both true in wτ ), as so
κ1 ∪ κ2 ∈ expl(g) (or a subset of κ1 ∪ κ2 is in expl(g)), and κ1 ∪ κ2 ⊆ R(τ ).

• Suppose g is false in world wτ , then one of f or h is false in wτ . Suppose
(without loss of generality) that f is false in wτ . By the induction argument,
there is no κ ∈ expl(f ) such that κ ⊆ R(τ ), and as every element of expl(g)
is a superset of the elements of expl(f ), there is no κ ∈ expl(g) such that
κ ⊆ R(τ ).

The proof when g is of the form f ∨ h is similar.
Suppose g is of the form ∼f . g is true in wτ iff f is false in wτ iff there is

no element κ ∈ expl(f ) such that κ ⊆ R(τ ) (by the inductive assumption) which
holds if and only if there is some κ ′ ∈ duals(expl(f )) such that κ ′ ⊆ R(τ ) (by
Theorem 4.8), but then κ ′ ∈ expl(g).
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Acyclicity ordering induction Finally suppose g is a ground atom, and the
theorem holds for all atoms lower in the acyclicity ordering, and for all structured
formulae build from atoms lower in the acyclicity ordering. Suppose {g ← bi} is
the set of all ground instances of rules in gr(F) with g as the head. g is true in
wτ iff some bi is true in wτ which (by the inductive assumption) holds iff there is
some κ ∈ expl(bi) such that κ ⊆ R(τ ). But then κ ∈ expl(g) or a subset of κ is in
expl(g); in either case the theorem follows.
Q.E.D.

Lemma 4.28 The set of all minimal explanations of g is the setK resulting from
termination of the algorithm of Figure 2.

Proof: It is easy to see that only explanations are in K. Moreover, if all of the
minimal explanations are in K then because of the use of mins, there will be no
non-minimal explanations in K. The only thing remaining to show is that if κ is a
minimal explanation of g, then it is in K.

The proof of this will mirror proofs of the completeness of binary resolution,
with the splitting tree playing the part of the semantic tree (see, for example, [4]).

A splitting tree is a tree with nodes labelled with composite choices. A leaf
node is a node such that a subset of the label is in expl(g). If a node is not a leaf
node then the children of the node labelled with κ are labelled with the splits of κ
on alternate χ (where χ ∩ κ = {}).

If the root of the tree is an explanation of g, then no matter which choice is
made for the alternative to split on, there can be no branches that do not lead to
leaves, as eventually we will end up with nodes labelled with total choices, and a
subset of a total node is in expl(g) as expl(g) is a covering set of explanations of g.

Suppose κ is a minimal explanation of g. Consider a minimal (in the number
of nodes on the tree) splitting tree with a root labelled with κ . Claim: this splitting
tree can be converted into sequence of resolutions that will derive κ . This will
be carried out bottom up. Replace each leaf node by the element of expl(g) that
it covers. For each non-root node, when all of its children have been replaced,
then we can replace it by the resolution of its replaced children on the alternative
on which it was split. The only thing we need to demonstrate is that each of the
replaced children contain one element of the splitting alternative (and so can be
resolved together). Suppose one child does not contain an element of the splitting
alternative, then this split can be replaced by subtree at that node, and we get a
smaller splitting tree, which contradicts the minimality of the splitting tree.
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Q.E.D.
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