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Abstract

The aim of semantic science is to have scientific
data and scientific theories represented and pub-
lished in machine understandable form. There is
much work on developing scientific ontologies and
representing scientific data in terms of these ontolo-
gies. The next step is to publish scientific theories
that can make predictions on the published data and
can be used for prediction on new cases. This can
be used to advance the development of science and
to provide useful predictions that can be evaluated
according to all available data.
To make a prediction for a particular case, we need
to use an ensemble of theories that fit together (are
consistent) and make a prediction on a particular
case. We argue that this is a form of abduction,
that has similarities and differences to the standard
definitions of abduction. This is preliminary work,
presenting pre-theoretic foundations of the field.

Introduction
The basic idea of semantic science [Poole et al., 2008] is:

• Information is published using well defined ontologies
[Smith, 2003b] to allow semantic interoperability.

• People publish data [Fox et al., 2006; McGuinness
et al., 2007] described using the vocabulary specified
by the ontologies. Part of this data includes metadata
about what the data is about and how it was generated.
Data repositories include the Community Data Portal
(http://cdp.ucar.edu/) and the Virtual Solar-
Terrestrial Observatory (http://vsto.hao.ucar.
edu/index.php).

• Scientists publish theories that make predictions on data.
These theories make reference to ontologies. These pre-
dictions can be tested on the published data. As part of
each theory is information about what data this theory is
prepared to make predictions about.

• New data can be used to evaluate, and perhaps update,
the theories that make predictions on this data. Predic-
tions on new data can be used to judge the theories as

well as find outliers in the data, which can be statisti-
cal anomalies, fraudulent data or some new, little under-
stood phenomenon.
• The descriptions of competing theories can be used to

devise experiments that will distinguish the theories.
• If someone wants to make a prediction for a new case

(e.g., a patient in a diagnostic setting, or predicting a
landslide), they can use the best theories to make the
prediction. They would either use the best theory or the-
ories, or average over all theories weighted by they abil-
ity to predict this phenomenon of interest. The use will
be able to ask for what evidence there is for the theory.
• There is no central authority to vet as to what counts

as legitimate scientific theories. Each of us can choose
to make decisions based on the whichever theories we
want. We will be able to judge theories by their predic-
tions on unseen data and other criteria.
• We expect semantic science search engines to be devel-

oped. Given a theory, a search engine would be able to
find data that can be used to evaluate or tune the theory.
Given data, a search engine would be able to find the
theories that make predictions on the data.

The relationship amongst ontologies, data and theories is
given in Figure 1. The data depends on the world and the
ontology. The theories depend on the ontology, indirectly on
the world (if a human is designing the theory), and directly
on some of the data (as we would expect that the best theo-
ries would be based on as much data as possible). Given a
new case, theories make predictions about that case that can
be used for decision making. The ontologies, data sets and
theories, evolve in time.

The term “science” is meant to be as broad as possible.
We can have scientific theories about any natural or artificial
phenomenon. We could have scientific theories about tradi-
tional disciplines such as earth sciences, physics, chemistry,
biology, medicine and psychology but we would also imag-
ine theories as diverse as predicting which companies will be
most profitable, predicting where the best parties are, or pre-
dicting who will win football games. The only criteria is that
a scientific theory must put itself at risk by making predic-
tions about observable phenomenon.

Semantic science has no prior prejudice about the source or
the inspiration of theories; as long as the theories are prepared
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Figure 1: Role of Ontologies, Data and Theories in Semantic
Science

to make predictions about unseen data, they can be included.
We are not, a priori, excluding religion, astrology, or other
areas that make claim to the truth; if they are prepared to
make predictions about what will be observed, we can test
how well their predictions fit the available data, and use their
predictions for other data.

Semantic science is trying to be broad and bottom-up. It
should serve to democratize science in allowing not just the
elite to create data and theories. Like scientists themselves,
it should be skeptical of all of the information it is presented
with.

We anticipate that the most useful theories will make prob-
abilistic predictions, however theories can make whatever
predictions they like. Users of the theories can choose to
adopt theories based on whatever criteria they like, e.g., some
combination of fit to the existing data and simplicity or prior
plausibility. Users can also choose to ignore theories that
don’t make the sort of predictions they like.

This is like the machine learning vision, where the data
sets are heterogeneous and published with respect to formal
ontologies. The theories also persist and can be compared
when new data arrives. We expect the highest standards to
be used in evaluation of the theories. For the foreseeable fu-
ture virtually all theories will be a mix of human generated
and machine learned; humans define the structure and param-
eter space and the machines optimizes these with respect to
fit to data and learning biases. Semantic science provides a
mechanism for Bayesian inference, where we need to condi-
tion on all relevant information that was not part of building
the model. A semantic science search engine should allow us
to find all of the relevant data on which to condition.

To make this project manageable, we can define four levels
of semantic science:

0. Deterministic semantic science where all of the theories
make definitive predictions. This class includes both
propositional and first-order theories. This has been
studied under the umbrella of abductive logic program-
ming [Kakas and Denecker, 2002].

1. Feature-based semantic science, where there are non-
deterministic1 predictions are about feature values of
data. This is the most common form of machine learn-
ing. Such theories can be specified in terms of random
variables that represent the values of features.

2. Relational semantic science, where the predictions are
about the properties of objects and relationships among
objects. In this case, the values of properties may be
meaningless names; the structure of the relationships is
used to make predictions. This is what has been stud-
ied in relational learning [Getoor and Taskar, 2007; De
Raedt et al., 2008].

3. First-order semantic science, where the aim is to make
predictions about the existence of objects or predictions
about universally quantified statements. This is more
challenging as conditioning is not well-defined [Poole,
2007]. We may not know which object in the world the
theory is making a prediction about, as the theory may
refer to the existence of object filling a role, but we may
know which object fills the role.

In the rest of this paper, we only consider the first two of
these. We will describe these in terms of features. Features
generalize propositions, as a proposition is a Boolean feature.
Features can also be seen as properties of a single individual
under consideration. There can also be global features that
are not about any individual. Seeing the features as proper-
ties allow for a correspondence with the work on ontologies.
An attribute is a feature-value (or property-value) pair, for ex-
ample that rock’s age is 50 million years is an attribute of the
rock.

Predictions from Theories
Scientific theories are typically narrow; they don’t make pre-
dictions on arbitrary sets of data. For example, someone may
develop a theory for the prognosis of a particular type of lung
cancer. To use this theory for a prediction of a particular pa-
tient, we first predict whether the patient has this form of lung
cancer, then use this theory to predict the prognosis. We need
other theories about the prognosis for the possibility that the
patient has a different form of lung cancer, or doesn’t have
lung cancer.

A set of theories that fit together to make a prediction for a
particular case is called a theory ensemble. The theories in a
theory ensemble must be consistent, in a way we describe be-
low, and must be enough to make a prediction in a particular
case.

There is a correspondence between theory ensembles and
explanations in abduction. There will be a direct match for

1Non-deterministic can mean many things. Here we consider
just the case where there are probabilistic predictions. But there are
many alternatives, such as qualitative predictions, probability ranges
or fuzzy predictions.



level 0 semantic science. The other levels will be more com-
plicated when the theories make probabilistic predictions, and
when we can’t even be sure that a theory makes semantic
sense for a particular data set.

We don’t assume that theories are explicitly specified, in
the sense that theories can can be arbitrarily complex and use
arbitrary computation to make predictions.

Ontologies
In AI, an ontology [Smith, 2003b; Noy and Hafner, 1997;
Gómez-Pérez et al., 2004] is a specification of the meaning
of vocabulary used by an information system. Ontologies
form the backbone of the Semantic Web [Berners-Lee et al.,
2001]. There has recently been much work in standardizing
ontologies, such as using the Web Ontology Language OWL
[McGuinness and van Harmelen, 2004]. Science is one of the
areas where ontology development and deployment is well
under way [Smith et al., 2007].

Ontologies can be very complicated, as would be expected
in a world where language has evolved to be useful and new
terminology is invented to describe what was not easy to de-
scribe using previous terminology.

We have been advocating a structure for ontologies using
what we call Aristotelian definitions [Smith, 2003a; Poole
et al., 2009], based on the idea of Aristotle [350 B.C.] that
each class should be described in terms of a super-class (the
genus) and property values (the differentia) that differentiate
this class from other subclasses of the genus. Defining all
classes in terms of properties, as opposed to specifying sub-
class relationships directly, simplifies reasoning as we only
need to give the values of properties and the class structure
logically follows. It is also a natural way to define concepts
in many cases. Simple Aristotelian definitions often give rise
to complicated subclass relationships, but simple subclass re-
lationships give simple Aristotelian definitions.

For the rest of this paper, we will thus ignore classes,
and consider only features (conflating features and proper-
ties as we are only considering feature-based semantic sci-
ence). Properties, however, have domains; they are only de-
fined in the context where other properties have particular val-
ues. Properties are not defined in when their domain does not
hold.

Data
We assume that data is published referring to the ontologies
used. As part of each data set, for the purpose of this paper,
assume the following meta-data is specified:
• The context in which the data was collected. This is

a proposition made up of assignments to features. For
example, if the data was of people who have a certain
type of cancer, the context would be the attributes that
define the people and the attributes that define the type
of cancer.
• The features that this data makes predictions about (what

is often called the dependent variables).
• The features that were controlled for in the data (the in-

dependent variables).

To predict such data, a theory needs to predict the values of
the dependent variables as a function of the context and the
independent variables.

Theories
Each theory makes predictions about some feature values or
property values of an individual.

We assume a theory has three components:

• A context in which specifies preconditions of when it
can be applied. This is a proposition that must be true
for the theory to make sense.

• A set of input features about which it does not make pre-
dictions.

• A set of output features about which is can make a pre-
diction (as a function of the input features).

For example, the ideal gas law is a theory that makes pre-
dictions about the pressure P, volume V , number of particles
n and the temperature in the context of a gas, namely that
PV ∝ nT . It makes predictions that can be judged against
data. There are alternative theories are be more accurate
for real gasses, e.g., when the pressure is high, and the gas
molecules are heterogeneous. This theory is not applicable to
rocks or to lung cancer.

Theories are not universally applicable; for example we
can’t use a theory about the prognosis of people with can-
cer on rocks. Theories have preconditions that specify what
they make predictions about. These preconditions are of three
different sorts:

• Conditions which define when the theory makes sense.
When these conditions are false, the theory is nonsense.
The conditions are the domains of the features used in
the theories.

• Conditions which define the intended scope of the the-
ory. These conditions specify what the theory was de-
signed to predict.

• Conditions which specify when the theory will be used
in a particular theory ensemble.

For example, a theory that makes predictions of the prognosis
of patients with lung cancer may be applicable for arbitrary
people. In a particular theory ensemble, it may only be used
for the patients with lung cancer who have not had some par-
ticular drug, as the theory ensemble may use another theory
that makes predictions in that case.

One class of theories that is of particular interest is the “null
hypothesis”. There is a null hypothesis for each feature. This
theory says that the feature has randomly distributed values,
with probabilities that are independent of the other features.
It is important as it is always applicable, and gives a base case
upon which to compare other theories.

Theory Ensembles
To make a prediction, we need more than a single theory. We
need to use multiple theories that fit together to make a pre-
diction. We call such a collections of theories a theory en-
semble. We expect a formal definition of theory ensembles to



be quite complex to cover the richness of real theories. How-
ever, there does seem some to be properties that we can define
independently of any formalism.

A theory ensemble T needs to satisfy the following prop-
erties:
• T is coherent: it does not rely on the value of a feature in

a context where the features is not defined (i.e., outside
of the domain of the feature). Thus if feature f has do-
main d, it has to be used in a context where d is true. For
example, writing d∧ f , which is false if d is false, and
has the value of f otherwise, would satisfy coherence.
• T is consistent: it does not make different predictions for

any feature in any context.
• T is predictive: it makes a prediction in every context

that is possible. Thus if we have a theory that includes
a→ b, and we need to make a prediction on b, then we
need to have our theory ensemble imply a, or also pre-
dict b in the context of ¬a.
• T is minimal in that it does not include theories that are

not required to be predictive.
For level-0 semantic science, this corresponds to the stan-

dard definition of abduction. The predictive condition cor-
responds to being able to prove the goal. Coherence is also
needed for theories that use ontologies, but if we make the
domain of a property as a precondition for the property, co-
herence is entailed by the other three properties for the deter-
ministic case.

For type 1 semantic science, the situation is more complex,
and there is still much more research required to get a satis-
factory definition of a theory ensemble. A simplistic notion of
a theory ensemble for a particular piece of data (that contains
a context, values for its independent variables and values for
its dependent variables) consists of a set of 〈c, t〉 pairs where
t is a theory and c is a proposition which implies the domains
of the properties used in t. The pair 〈c, t〉 specifies that theory
t will be used for predictions in the context c. The following
example shows how this notion of a theory can be used with
the properties defined above to give a prediction:

Example 1 Suppose we have data about a person who
coughs, and we want to make predictions about their prog-
nosis. We have the following Boolean random variables (we
will use the lower case variant as the proposition that the vari-
able is true):
• Person is true if the object is a person.
• L is true if the person will live for more than a year (it

gives the prognosis of a person).
• HC is true if the person has cancer
• HLC is true if the cancer the person has is lung cancer
• Coughs is true if the person coughs

Suppose the background ontology specifies the person is the
domain of the properties L, HC and Coughs. The domain of
HLC is hc (i.e., we can only talk about the value of HLC when
HC is true).

Suppose we have the following theories that have been
published:

• T1 is about the prognosis of people with lung cancer.

• T2 is about the prognosis of people with cancer.

• T3 is the null hypothesis that gives the prognosis of peo-
ple in general.

• T4 predicts (probabilistically) whether people with can-
cer have lung cancer, as a function of coughing (i.e., hc
is the context, Coughs is the independent variable and
HLC is the dependent variable).

• T5 predicts (probabilistically) whether people have can-
cer

A possible theory ensemble is {〈person,T5〉, 〈¬hc,T3〉,
〈hc,T4〉, 〈hlc,T1〉, 〈hc∧¬hlc,T2〉}

In this ensemble, although T2 can make predictions for
anyone with cancer, it is only used for those without lung
cancer. Similarly T3 is only used when the person does not
have cancer.

If T4 made definitive predictions about lung cancer, only
one of 〈hlc,T1〉 and 〈hc∧¬hlc,T2〉 would be in the theory
ensemble.

This example has ignored many of the details of real theo-
ries. Theories can make predictions about many features and
an ensemble may not need to use all of them. We need to treat
conditions differently depending of whether they are part of
the context, whether they are observed in the data and when
they are not observed in the data. We also need to be con-
cerned with how the theories interact with the ontologies.

Frequently Asked Questions
There are a number of questions that have been asked. Some
for which I have a reasonable answer are here.

Will this replace peer review?
There is a related question of “What is the role of humans in
semantic science?” In some sense the goal of semantic sci-
ence is to let the computers do what that are good at, and let
humans do what they are good at. This is true for evalua-
tion too; we should use computers to evaluate what comput-
ers are good at evaluating and let humans evaluate what they
are good at evaluating. Computers are (should be) good at
evaluating how well theories fit data. But fit to data isn’t the
only property we want of a scientific theory. We also want
insight; computers are not as good at evaluating this. We also
want a notion of simplicity and elegance of theories, which
may be hard to formally specify for a computer. So semantic
science will not replace peer review, but will give extra tools
for which to evaluate science.

What is to prevent fraudulent data and theories?
It might seem that the enterprise will break down on fraudu-
lent data, as people publishing fraudulent data can make their
theories look good. Suppose someone was to post fraudulent
data. First, existing theory ensembles that make predictions
on that data will be surprised by the data; they will conclude
that the data is very unlikely. Conditioned on the new data,
the theory ensembles will become less likely. Next someone
could propose a theory that the data is anomalous or fraudu-
lent (or perhaps such a hypothesis could always automatically



available). This could have a small prior probability that may
depend on the source of the data. The theory ensembles will
then split into those that adopt the theory that the data is fraud-
ulent, and those that do not. These new theory ensembles can
be evaluated. A theory ensemble that concludes that all of the
data is anomalous will not be very likely. A theory ensem-
ble that can account for anomalous data will be become more
likely. Thus the general mechanism of evaluating theory en-
sembles can handle anomalous and fraudulent data.

As theories can make any predictions, it seems as though
there could not be fraudulent theories. However, there are two
cases that need to be taken into account.

We may expect that theories would declare what data they
used to learn from. However a theory could lie. This may
be problematic if the theory is trained on the data used to
evaluate theories. Such a theory would look good. However,
such theories will not continue to look good when tested on
brand new data.

The other way a theory can be fraudulent is to use other the-
ories without acknowledgment. If not all theories are open, it
is possible to steal parts of other theories. The use of theory
ensembles is meant to mitigate any advantage that could be
obtained by doing this. Reusing other theories is a legitimate
part of semantic science, so there seems to be no advantage
of stealing other theories. Theory ensembles also give credit
where credit is due.

How does it relate to ensemble learning?
Ensemble learning [Dietterich, 2002] is a common technique
for combining multiple learners to get a better prediction. The
ensembles are typically a combination of predictions of a tar-
get feature based on the input features. Combining predic-
tions for a single feature is definitely allowed as part of a the-
ory ensemble. There are however reasons why this may not
become commonplace. First, we don’t expect the theories to
be developed independently; theories are developed building
on previous theories, trying to improve them. Much of the
work on ensemble learning is about how to sensibly generate
the classifiers that will be combined, whereas here we have
predictors that are not designed to be combined. Second, the
producers of such theories will want to make the best theories
possible. The tools that are available to them include ensem-
ble learning. It doesn’t seem that cascaded ensemble learning
will work well.

Theory ensembles can be an arbitrary combination of the-
ories. This will range from the linear averaging of bagging
to the conditional application of the example given above.
A specification language for theory ensembles will allow all
such combinations.

Theory ensembles are also related to algorithm portfolios
[Xu et al., 2008], which learn which algorithms to run based
on features of the problem being solved. We expect that sim-
ilar learning could be used to choose which theories make the
best predictions under which circumstances. Just as the al-
gorithm portfolio learning can use algorithms that were not
designed to be used with the portfolio, we expect that scien-
tists will develop theories without needing to be concerned
about how they will be used.

How can data, theories, ensembles and ontologies evolve
in time?
We expect data to be continually published. Ontologies
evolve to accommodate new categories of observations. The-
ories also improve. Theories can use whatever internal com-
putations they like to make predictions. However, if one the-
ory wants to use the some internal feature of an another the-
ory, or if that feature is added to the data, the vocabulary to
describe that feature needs to be added to the ontology. On-
tologies can be evaluated by whether the distinctions they de-
scribe are useful in making predictions. Thus as theories be-
come more sophisticated, the distinctions they need to make
their predictions are added to the vocabulary, and are incor-
porated into the data.

How do we get there?
There is currently much work on developing scientific on-
tologies and publishing data with respect to these ontologies
[Smith et al., 2007; Fox et al., 2006; McGuinness et al., 2007].
It would seem that publishing ontologies and data will only
continue to grow. Scientists want others to use their data, as
do their funders. There is growing recognition of the need to
develop ontologies to allow for the sharing of such data and
other information. Scientists care about the language used to
describe their science. Many become involved in developing
scientific vocabulary, and the formal representation in ontolo-
gies, because they don’t want others to define the vocabulary
that will become standard.

There has been much less work on developing theories. We
have built some systems in geology, for minerals exploration
and landslide susceptibility [Jackson, Jr. et al., 2008; Sharma
et al., 2009] that represent published theories that make pre-
dictions about a limited number of properties. These systems
were quite complicated as they reasoned about the probability
of existence of individuals that filled roles.

Based on this experience, we recognized that there is still
work to be done on feature-based representations before we
try to extend it to relational and first-order representations.
We need to build future systems on solid foundations.

By first developing level-1 semantic science based on fea-
tures, we should be able to develop firm foundations for this
case, in much the same way that machine learning has been
able to develop in this context. We can then move to relations
and then to first-order semantic science.

Conclusion
This paper has sketched some pre-theoretic ideas on how the-
ory ensembles work and their relationship to explanations in
abduction. I believe that it is important to get the pre-theoretic
notions correct before creating a formalism that can be stud-
ied as an abstract entity. I also expect that there will be many
iterations of getting the definitions of theories and theory en-
sembles right.

The potential of semantic science seems huge, but there are
many technical and social issues that need to be solved before
it can come to maturity. The development of ontologies and
the publishing of data using those ontologies has advanced
greatly in recent years. The main technical issues remain-
ing are to do with the representations of the theories and the-



ory ensembles and the infrastructure to publish and search for
data and theories. To bring this vision of semantic science to
fruition will require advances in many fields.
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