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Abstract. Identity uncertainty is the task of deciding whether two descriptions
correspond to the same object. It is a difficult and important problem in real world
data analysis. It occurs whenever objects are not assigned with unique identifiers
or when those identifiers may not be observed perfectly. Traditional approaches
to identity uncertainty assume that the attributes in the descriptions are indepen-
dent of each other given whether or not the descriptions refer to the same object.
However, this assumption is often faulty. For example, in the person identity un-
certainty problem – the problem of deciding whether two descriptions refer to
the same person, the attributes “date of birth” and “last name” have the same
values for twins. In this paper we discuss the identity uncertainty problem in the
context of person identity uncertainty. We model the inter-dependence of the at-
tributes and the probabilistic relations between the observed value of attributes
and their actual values using a similarity network representation. Our approach
allows queries such as, “what is the distribution over the actual names of a per-
son given the names that appear in the description of the person”, or, “what is
the probability that two descriptions refer to the same person”. We present re-
sults that show that our method outperforms the traditional approach for person
identity uncertainty which considers the attributes as independent of each other.

1 Introduction

Identity uncertainty is a significant problem in many fields. The key task of this prob-
lem is to determine whether two descriptions refer to the same object. This problem has
been studied independently under various names by different user communities. Within
the statistics community, this problem has been studied as record linkage since at least
1969 [5]. Record linkage is used for matching records in one or more data files. The
Fellegi-Sunter method [5] is the standard probabilistic method for solving this problem.
In this method, for each pair of records, agreement and disagreement probabilities for
each attribute are computed using frequency counts and error rates. The values of these
match weights are then used to decide whether a pair of records is to be considered as
a match, a possible match, or a nomatch. In the computer science literature the same
problem has been studied under various names, duplicate detection [11], merge/purge
problem [10], hardening soft information [3], or identity uncertainty [12]. Here we dis-
cuss some of the main work, but the review is not exhaustive. For summary reports on
identity uncertainty or record linkage see [17, 8]. In [11, 10] this problem was consid-
ered as an extension of the string matching problem and the string matching algorithms
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are used to determine whether two values of attributes or records are similar enough to
be duplicates. In [12] the authors proposed a relational approach for identity uncertainty
for citation matching using the Relational Probabilistic model that captures the depen-
dence between multiple records but not between the attributes. In [15] Ravikumar et al.
consider the record-linkage problem as an unsupervised classification problem. They
describe a hierarchical graphical model framework for the record linkage problem in an
unsupervised setting.

With the exception of [15], in all of the above approaches, an independence assump-
tion is made: i.e., matching of one attribute doesn’t depend on other attributes. However,
this assumption is often faulty. For example, people living in the same household have
the same address, phone number and often the same last name. In this situation, if we
assume that the last name, address and phone number are independent of each other,
it becomes more likely that we have a “false positive match”. As an another example,
when a person moves to a different city, his address, phone number, and postal code
all change together. In this situation, the independence assumption can cause a “false
negative match”.

In this paper we discuss the identity uncertainty problem in the context of person
identity uncertainty (or person identification) using the person’s demographic attributes.
We model the dependence/independence between attributes using a similarity network
representation [9]. In a similarity network of person identification some variables have
very large domains. For example, the attribute first name has as domain all possible
first names, which we may never know to the full extent because people can make up
names. For efficient inference we represent the large CPTs using both extensional and
intensional representation [16].

In the person identity uncertainty problem we need to compare a test person’s de-
scription with each person’s description in the database. Since we usually have large
databases, instead of comparing a test record against every other record in the database,
a pool of potentially matching records is created using a myopically constructed query.
To deal with data entry errors, we use different error models. To test the proposed ap-
proach, as real databases are confidential, we model a reasonably realistic distribution of
attribute values by modelling the people in a set of households and model, for example,
how twins are born.

The remainder of this paper is organised as follows. Section 2 describes the identity
uncertainty problem. Section 3 describes the probabilistic modelling of person identity
uncertainty. In Section 4 we discuss how the large CPTs can be represented compactly
using the intensional predicates and functions. In Section 5 we describe the probabilistic
inference. Section 6 describes how an optimum query can be constructed using the
bits of information provided by the attributes. In Section 7 we evaluate our approach
followed by the conclusion in Section 8.

2 Identity Uncertainty

In the identity uncertainty problem, any two descriptions X and Y may or may not
refer to the same object. Suppose DescX and DescY denote the attributes values for
descriptions X and Y . Let Psame be the posterior probability that descriptions X and
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Y refer to the same object (X = Y ) given their attribute values and Pnotsame be the
posterior probability that descriptions X and Y refer to different objects (X ̸= Y ) given
their attribute values. The odds, Odds, for hypotheses X = Y and X ̸= Y

Odds =
Psame

Pnotsame
=

P (X = Y ) P (DescX ∧ DescY |X = Y )
P (X ̸= Y ) P (DescX ∧ DescY |X ̸= Y )

We would expect that description Y ’s attributes value are independent of X = Y or
X ̸= Y given no information about the other description’s attributes value. That is,

P (DescY |X ̸= Y ) = P (DescY |X = Y )

Thus,
Odds =

P (X = Y )
P (X ̸= Y )

× P (DescX |DescY ∧ X = Y )
P (DescX |DescY ∧ X ̸= Y )

The ratioP (X=Y )
P (X ̸=Y ) is a prior odds and the ratio P (DescX |DescY ∧X=Y )

P (DescX |DescY ∧X ̸=Y ) is a
likelihood ratio.

There are three possible actions (decisions) that can be taken for records X and
Y : match – decide that X and Y refer to the same object, possible match – hold for a
clerical review, nomatch – decide that X and Y refer to different objects.

The decision can be made using decision theory [4], given the likelihood ratio
and the cost of false positive and negative matches. Suppose we have a cost function
E (α|ω) that describes the cost of action α when ω is true in world. If the action is
match, the expected cost Ematch is:

Ematch = E (match|same) ∗ Psame + E (match|diff) ∗ Pnotsame

Similarly, we can compute the expected cost for other two actions. We select that action
for which the cost is minimum. The conditions for action match, possible match, and
nomatch are the following:

– Action match if Psame
Pnotsame

> max (C1, C2)

– Action possible match if min (C2, C3) <
Psame

Pnotsame
< max (C1, C2)

– Action nomatch if Psame
Pnotsame

< min (C2, C3)

where,

C1 =
E (match|notsame) − E (posmatch|notsame)

E (posmatch|same) − E (match|same)

C2 =
E (match|notsame)− E (nomatch|notsame)

E (nomatch|same)− E (match|same)

C3 =
E (posmatch|notsame) − E (nomatch|notsame)

E (nomatch|same) − E (posmatch|same)
Note that we assume here that E (match|same) < E (posmatch|same) < E (nomatch|same)

and E (nomatch|notsame) < E (posmatch|notsame) < E (match|notsame). The
constant prior odds can be merged with constants C1, C2, and C3; then all we need is
the likelihood ratio for making the decision.
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3 Probabilistic Modelling of Person Identity Uncertainty

The key task in person identity uncertainty is to identify persons based on their demo-
graphic attributes (e.g., first name, last name, etc.). It occurs in many different person-
centric applications. For example, in health care applications [6, 1] to identify patients,
in social services applications to identify clients etc. The standard probabilistic ap-
proach for this problem [5] consider that the attributes are independent of each other.
We relaxed this assumption and model the inter-dependence between the attributes us-
ing a similarity network representation [9]. This representation exploits the hypothesis-
specific independence between variables. In particular, separate local Bayesian net-
works are constructed for each hypothesis. To identify a person we consider the fol-
lowing seven attributes: Social insurance number (SIN), first name (Fname), last name
(Lname), date of birth (DOB), gender (Gen), phone number (PH), and postal code (PC).

3.1 The Model of Attribute Dependence for HypothesisX ̸= Y

When records X and Y refer to different people, we expect that their attributes val-
ues are independent. However, this is not always the case. We model the dependence
between the attributes using the known relationships between people 1. The statistical
dependence among the attributes that we assume is shown in Figure 1. Propositions
twins, relative, samehousehold, and samelastname represent that X and Y are twins,
relatives, living in the same household, or have the same last name. We assume here
that the gender of two different people is independent of each other 2.

twins

samehousehold

PCx

PCy Geny

Genx

SINy

PHy

PHx

DOBx

DOBy

Lnamey

Lnamex

samelastname

Fnamex

Fnamey

relative

SINx

Fig. 1. Similarity network representation of attribute dependency for hypothesis X ̸= Y (shaded
nodes are observed).

1 The dependence may be derived from knowledge of domain experts or potentially can be
learned.

2 A more detailed model may specify that twins are more likely to be of the same gender and
adults who live with children are more likely to be of different genders.
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Attribute SIN doesn’t depend on the other attributes. However, we cannot assume
that the SIN of two different people is independent. Knowing a different person’s SIN
changes our belief in X’s SIN, because, we expect that they shouldn’t be the same.
Thus,

P (SINx|SINy ∧ X ̸= Y ) =
{

r if SINx = SINy

P (SINx) if SINx ̸= SINy

where, r denotes the probability that two different persons have the same SIN recorded,
which is very, very small.

3.2 The Model of Attribute Dependence for HypothesisX = Y

If records X and Y refer to the same person, we expect that the attributes values should
be the same for both X and Y . However, there may be differences because of errors,
for example: typing errors, nick names, and so on. We consider two cases of attribute
dependence: first, the typist could have been sloppy, and second, the person could have
moved to a new place of residence between the times that the records were input. We
model the dependence among attributes using their actual values, the sloppiness of the
data entry person (SloppyX, SloppyY), and the possibility of movement (move). Here,
we consider the change in phone number and postal code because of the move.

move

EFx EFy EPHx EPHy
Sex

Fnamex

Afname

Fnamey Phonex Phoney

Aphone

SloppyX SloppyY

Fig. 2. Similarity network representation of attribute dependency for hypothesis X = Y (shaded
nodes are observed).

The dependence between attributes is shown in Figure 2. The unshaded nodes show
the hidden variables. The proposition Afname represents the actual first name. The
proposition move represents the possibility that the person has moved. The proposition
EFx represents the error in first name for record X . To make this paper more readable,
we consider only the following errors3 (values of EFx): copy error (ce), an error where a
person copies a correct name, but from the wrong row of a table, single digit/letter error
(sde), and the lack of any errors, or no error (noerr). The random variables Fnamex,
Fnamey, and Afname have, as domains, all possible first names.

We assume that we have a procedural way for generating the prior probabilities
of the variables that have very large domains (even unbounded). For the probability

3 Although, we consider many more errors in the experiment.
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P (Afname|Sex), we use name lists available from the U.S. Census Bureau4. There
are two name lists with associated probabilities: one for male names, and the other for
female names. These lists cover 90% of all first names for both males and females.
We need a different mechanism for names that do not exist in these lists. A number of
approaches have been proposed to solve this problem [2, 7]. In our implementation, we
use a very small probability as the estimate of the probability of a new name 5.

To compute the probability P (Aphone) a model for generating phone numbers can
be used. We use the simple procedure P (Aphone) is 1/N , where N is the number of
legal phone numbers if Aphone is a legal phone number and is 0 otherwise.

The probability table P (Fnamex|Afname ∧ Sex ∧ EFx) can not be represented
in a tabular form as we do not know all names, and even if we did, the domains of
Afname and Fnamex are very large. The conditional probability table P (Afname|sex)
is also very large. To represent these large CPTs we need a compact representation so
that we can reason in an efficient manner.

4 Representation of Large CPTs

To represent the large CPTs that arise in the probabilistic model of identity uncertainty
we don’t assume that there are explicit tables for its values. Rather, the conditional
probabilities are computed from the structure of the values involved. We can represent
these big CPTs in a compact form using both intensional and extensional representa-
tion. For example, the CPT P (Fnamex|Afname ∧ Sex ∧ EFx) of Figure 2 can be
represented in a decision tree form by conditioning on the values of EFx as shown in
Figure 3.

EFx

singlet(Afname,Fnamex)

sde

equal(Afname,Fnamex)

noerr ce

prsing(Fnamex)

noyes

Sex
femalemaleyes no

Pnew

yes no yes no0

1 0

lookup(Fnamex,male)
Pnew

lookup(Fnamex,female)

intable(Fnamex,male) intable(Fnamex,female)

Fig. 3. A Decision Tree Representation of the CPT P (Fnamex|Afname∧ Sex ∧ EFx)

The tree representation as shown in Figure 3 uses the intensional functions and
predicates. The predicate equal tests whether variables Fnamex and Afname have
the same value or not, predicate singlet tests whether the values for variables Fnamex

4 http://www.census.gov/genealogy/names/
5 The data available from U.S. Census Bureau is too noisy and incomplete to apply any of these

approaches.
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and Afname’ are a single letter apart or not, and predicate intable (Fnamex, male)
tests whether the value of Fnamex exist is in the male name file or not. The function
prsing is used to compute the probability when the data entry person makes the “single
digit error” (sde). For example, if EFx = sde, Fnamex = dave then prsing(dave) =
1

100 . The function lookup(Fnamex, male) computes the probability of Fnamex by
looking in the male name file.

Example: Suppose the data-entry person makes a copying error (EFx = ce). In this
case we can consider that the value of Fnamex is distributed according to the distribu-
tion on names. To compute the probability of Fnamex we can use male or female name
files depending upon the value of Sex. If Sex = male then intable(Fnamex, male)
tests whether Fnamex exists in the male name. Now, if intable(Fnamex, male) =
yes, lookup(Fanmex, male) computes the probability of Fnamex, otherwise, the
probability of Fnamex is taken as the probability of a new name (Pnew). Thus,

P (Fnamex|Afname ∧ Sex = male ∧ EFx = ce) = lookup(Fnamex, male)
if intable(Fnamex, male) = yes

= Pnew
if intable(Fnamex, male) = no

We assume here that we have the procedures that can compute these predicates and
functions in an efficient manner. To compute efficiently the predicates and functions that
involve query to large files, such as intable(Fnamex, male), and lookup(Fnamex, male),
we need some efficient data structure for storing these files.

5 Inference

To compute the likelihood ratio we need to condition on the observations and marginal-
ize over the unobserved variables in the Bayesian networks shown in Figures 1 and 2.
We can marginalize over the unobserved variables for Bayesian network shown in Fig-
ure 1 using the Variable Elimination (VE) algorithm [18]. We get the likelihood of the
observed data given the hypothesis X ̸= Y . The marginalization for the network shown
in Figure 2 is complicated. Although, we can represent the large CPTs of Figure 2 in
a tree structure form we cannot use the standard Bayesian network inference algorithm
that uses tree structure CPTs. These algorithms don’t allow the intensional representa-
tion. To overcome this, we use the Large Domain VE algorithm [16] that allows us to
make inference with intensional representation. Like the VE algorithm, Large Domain
VE also has two main steps: conditioning on observations, and summing out all non
observed non-query variables according to some elimination ordering.

In the conditioning on observation step the observed values of the variables are
incorporated in the tree structure representation of factors. The intensional represen-
tation that have observed values are computed to simplify the factors. For example,
suppose that for records X and Y we observed the first names, Fnamex = david and
Fnamey = davig. After setting the observed values for Fnamex and FnameY in
the tree representation as shown in Figure 3 the tree gets simplified as shown by the tree
T 1 in Figure 4.
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Like VE algorithm, in Large Domain VE to sum out a variable, first we need to
multiply all those factors that contain that variable, then from the resulting factor, we
sum out the variable [18, 16]. Since, the factors are represented by the tree structures,
in Large Domain VE the factors are multiplied using two tree operations [16]: Tree
pruning and Tree merging. After multiplying the factors the variable is summed out
from the tree representation of the new factor. To sum out a variable from a tree in Large
Domain VE we need to do two main steps: first, we need to compute the probability
mass for all the values of the summing variable that end up at each leaf, and second, sum
the subtrees that correspond to different blocks (subsets) for a partition of the summing
variable; see ([16]) for details. Note that the complexity of Large Domain VE is mostly
governed by the computation of the probability masses that involve the computation of
the predicates and functions that are particular to a problem.

The main challenges of applying the Large Domain VE algorithm to “person iden-
tity uncertainty” problem are in the computation of intensional functions and predicates
that arise in this problem. In the next section we discuss how we computed these inten-
sional function and predicates without actually enumerating the values of variables.

Example: Suppose after conditioning on Fnamex = david, and Fnamey = davig
we want to eliminate the variable Afname from the Bayesian network shown in Figure
2. As shown in Figure 4 T 1, T 2 and T 3 are the decision tree representations of factors
corresponding to CPTs P (Fnamex|EFx∧Sex∧Afname), P (Fnamey|Afname∧
Sex∧EFy), and P (Afname|sex) that contain the variable Afname. After multiply-
ing trees T 1, T 2, and T 3 we get a new factor. Part of the tree representation, T , of the
new factor is shown in Figure 4. After we sum out the variable Afname from tree T
we get a new factor. Part of the tree representation, T ′, of the new factor is shown in
Figure 4.

5.1 Computation of Probability Masses

In this section we describe how the probability masses p1 ′ and p2′ as shown in Figure
4 can be computed efficiently. Let us first consider the computation of the probability
mass, p1′.

p1′ =
∑

∀Afname=afname∈dom(Afname)(C1∧C2∧C3=true)

p1

where, C1 = (singlet(Afname, david) = yes), C2 = (singlet(Afname, davig) =
yes), and C3 = (intable(Afname, male) = yes)

We can query to the male name file representation to get the values of Afname that
are a single letter apart from both david and davig, we get Afname = {davis}. Thus,

p1′ =
∑

Afname={davis}

p1 =
(

1
125

)2

× Pdavis

where, Pdavis is the probability of name davis from the male name file
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yes no
Pnew

lookup(Afname,female)
Pnew

yes no

male female

intable(Afname,female)intable(Afname,male)

equal(Afname,david)

EFx

femalemale

Pnew

noerrsde

yes no
Sex

yes no

1 0
T1

singlet(Afname,david)

0.023630

ce

EFy

ce

femalemale

Pnew Pnew

noerrsde

singlet(Afname,davig)

0

yes no
Sex

yes no

1 0

equal(Afname,davig)

T2

lookup(Afname,male)
T3

Sex

mult{T1,T2,T3}

Sex

intable(Afname,male)

singlet(Afname,davig)
yes

yes

male female

no

p1 p2 T

noerr
EFx

sde

no

sde

ce

ce
noerr

singlet(Afname,david)

EFy

yes

no

0

p2 = (1/(125*125))*Pnew

1/125

1/125

p1 = (1/(125*125))*lookup(Afname,male)

p2’ = probability mass of the leaf corresponding to p2 
p1’ = probability mass of the leaf corresponding to p1 

summing out Afname

p1’+p2’

male

EFx
sde

ce

sde
ce

noerr
EFy

Sex
female

noerr

T’

0

Fig. 4.Decision tree representations for trees: after multiplying trees T1, T2, and T3 together we
get a new tree T and after summing out variable Afname from T we get new tree T’(∗ represents
multiplication operator).

Let us now consider the computation of probability mass, p2 ′.

p2′ =
∑

∀Afname=afname∈dom(Afname)(C1∧C2∧C4=true)

p2

where C4 = ((intable(Afname, male) = no)
As shown in Figure 4, p2 is a not a function of Afname, to compute the value of

p2′ we need the count of the values of Afame that satisfy the predicates. To count effi-
ciently the number of values of Afname that are a single letter apart from both david
and davig, we first generate the patterns of names that are a single letter apart from
david. For example, ?avid, where ? is any letter except d. After generating these pat-
terns we test which of these patterns makes the predicate singlet(Afname, davig) =
yes. Here, the pattern davi? makes the predicate yes if ? ̸= d∧? ̸= g. Thus, the possi-
ble number of values for Afname is 24 that are a single letter apart from both david
and davig. Out of these 24 values of Afname we have already found that one value
“davis” exists in male name file. Thus,

p2′ = 23 ×
(

1
125

)2

× Pnew

6 Optimum Query Construction

In order to avoid comparing a test record against every record from the database, a test
record should be compared with only potential matches from the database. Potential
matches can be found using a query that can quickly retrieve a manageable but compre-
hensive set of records from a very large database. We can construct a query myopically
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using the number of bits of information provided by the attribute. We can compute
the bits of information provided by each attribute (for matched and unmatched states)
conditioned on other attributes using the Bayesian network shown in Figures 1 and 2.
The query is constructed in rounds of ascending numbers of query attributes. In each
round the attribute that provides the most bits of information is added to the query. The
greedy procedure terminates when the bits of information provided by the current query
attributes cannot be more than the lower threshold, min(C2, C3) (see Section 2), by
adding another attribute to the current query, or when bits of information cannot be
lower than upper threshold, max(C1, C2) (see Section 2).

7 Experimental Evaluation

To test our approach for the person identity uncertainty (as real databases are confiden-
tial), we model a reasonably realistic distribution of attribute values by modelling the
people in a set of households and model, for example, how twins are born. We model a
small town of 1500 households. We generate the population of the town. The generated
population was intended to be a good model of real world population. Persons living in
the same household have the same address and phone number. The probability that a
single person lives in a house is 0.4. The probability that a person is living with a part-
ner is 0.6. For a single person there is a 30% chance of having one child. The chances
for a subsequent child is 10%. For each birth there is a 3% chance that twins will be
born.

The probability that partners have the same last name is 0.5. For partners there is a
70% chance of having one child. The chances for a subsequent child is 30%. When both
partners have different last names then the probability that the child will have any of
the parent’s last name is the same. Each record of the population contains seven fields
as mentioned in Section 3. Personal first names and last names are chosen according to
the distribution from U.S. census file6.

After creating the true population, we made two datasets, DA and DB . To create DA

we randomly took 600 records from the true population. We corrupt the records using
the database generator of Hernandez and Stolfo [10], using typographical errors and
movement into the true record. The typographical errors introduced by the generator
occur with relative frequencies known from previous research on spelling correction
algorithms [13, 14]. We place these corrupted records in dataset D A. Similarly, we made
the database DB but we took 1500 records from the true population.

We compared each record of dataset DA with each record of dataset DB . In these
comparisons there were 227 duplicate cases. We compute the likelihood ratio consider-
ing both attribute dependence and independence. After computing the likelihood ratio
between all pairs of records, we set the deciding threshold equal to the maximum of
maximum likelihood ratio from both cases. The pair of records with likelihood ratio
greater than the deciding threshold were taken as duplicates. We compute the precision
and recall 7.

6 http://www.census.gov/genealogy/names/
7 We consider only two actions match and no match
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Fig. 5. Recall versus precision for both attribute dependence and attribute independence.

Precision =
#of correctly Identified Duplicate Pairs

#of Identified Duplicate pairs

Recall =
#of correctly Identified Duplicate Pairs

# of T rue Duplicate pairs

We reduce the deciding threshold with a step of 1 until the deciding threshold is equal
to the minimum likelihood ratio from both cases. For each value of threshold we com-
pute the precision and recall for both cases. As more pairs with lower similarity are
labelled as duplicates, recall increases, while precision begins to decrease. Figure 5
shows the precision versus recall for both cases. The resulting recall/precision curve
shows that with attribute dependence the precision of the prediction is 95% with 100%
recall, while with attribute independence precision is 70% for 100% recall. Also, with
attribute dependence 100% accuracy is achieved with more coverage than attribute in-
dependence.

8 Conclusion

Identity uncertainty is a significant problem in many fields. In this paper, we have pre-
sented a framework for reasoning about identity uncertainty in the context of “person
identity uncertainty”. We model the dependence/independence between the attributes
using a similarity network representation. The probabilistic modelling of identity un-
certainty is difficult, since the domain of some of the variables is very large (even un-
bounded). For efficient inference in the Bayesian network we represent the big CPTs
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using the intensional and extensional representation. We show how the intensional func-
tions can be computed efficiently without actually enumerating the values of variables.
As Figure 5 shows, the proposed approach considering attribute dependence achieved
a high level of accuracy over the standard approach considering the attribute indepen-
dence.
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