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Abstract

This paper is part of a project to match descrip-
tions of real-world instances and probabilistic
models, both of which can be described at mul-
tiple level of abstraction and detail. We use an
ontology to control the vocabulary of the appli-
cation domain. This paper describes the issues
involved in probabilistic matching of hierarchi-
cal description of models and instances using
Bayesian decision theory, which combines on-
tologies and probabilities. We have two fielded
applications of this framework; one for landslide
prediction and one for mineral exploration.

1 Introduction

In many problem domains we need to match instances and
models of real-world phenomena. For example, in geol-
ogy, geological surveys of states, provinces and countries
publish descriptions of mineral occurrences in their juris-
diction; these form the instances in one of our applica-
tions. People spend careers describing probabilistic models
of where different minerals can be found. There are two
main tasks we consider:

• given an instance, determine which models best fits
it. This would be used, for example, by someone who
has the mineral rights on a piece of land and wants to
know what mineral deposits may be there based on the
description of the property.

• given a model, determine which instances best match
the model. This would be used by someone who has
a model of where gold can be found, and they want to
find which piece of land is most likely to contain gold,
based on their model.

These models and instances are typically described by dif-
ferent people at different levels of abstraction (some use

more general terms than others) and different levels of de-
tail (some have parts and sub-parts and some may be de-
scribed holistically). Descriptions of mineral occurrences
are recorded at varied levels of abstraction and detail be-
cause some areas have been explored in more detail than
others. There are some models that people spend careers in
developing and that are described in great detail for those
parts that the modeler cares about. Other models are less
well developed, and described only in general terms. Be-
cause the instance and model descriptions are generated
asynchronously, the levels of detail cannot be expected to
match. We do, however, need to make decisions based on
all of the information available.

This work has arisen from from an ongoing project in
which we are building decision-making tools for mineral
exploration (MineMatch) and hazard mapping (Hazard-
Match). MineMatch is similar in its goals to the Prospec-
tor expert system [Hart, 1975], but builds on the develop-
ments in probabilistic reasoning and ontologies of the last
30 years. In previous work [Smyth and Poole, 2004; Poole
and Smyth, 2005], we described models using qualitative
probabilities, based on the kappa calculus, which measures
uncertainty in degree of “surprise”. In this paper, we de-
velop an approach based on probability for making deci-
sions.

In MineMatch we work with more than 25,000 instances
of mineral occurrences that are described using various
taxonomies, including the British Geological Survey Rock
Classification scheme1 and the Micronex taxonomy of
Minerals2. We also work with more than 100 deposit
type models, including those described by the US Geo-
logical Survey3 and the British Columbia Geological Sur-
vey4. Similarly, in HazardMatch we work with tens of
thousands of spatial instances (polygons) described using
standard taxonomies of environmental modeling such as
rock type, geomorphology and geological age. To date we

1http://www.bgs.ac.uk/bgsrcs/
2http://micronex.golinfo.com
3http://minerals.cr.usgs.gov/team/depmod.html
4http://www.em.gov.bc.ca/Mining/Geolsurv/



have worked with approximately ten models of landslide
hazards which we compare with the spatial instances.

This work is quite different to other work on combining
probability and ontologies [Ding and Peng, 2004; Pool,
Fung, Cannon and Aikin, 2005; Costa, Laskey and Laskey,
2005] because we are using the ontologies to construct a
rich hypotheses space rather than (only) having probabil-
ities over the ontologies. The running example we use in
this paper is one where we can describe apartments and/or
houses and their models.

2 Models and Instances

Instances are things in the world. We describe instances by
naming them and specifying their features (values on vari-
ous properties). For example, an instance could be a partic-
ular rock outcrop, a volcano that used to exist, or apartment
#103 at 555 Short St. A feature of that apartment could be
that its size is large and it contains two bathrooms.

Models are concepts in someone’s head that describe some
phenomenon of interest. For example, someone may have a
model of what rocks are likely to contain gold, a model of
where landslides may occur, or a model of an apartment
that Sue would be content to live in. In the system we
consider here, models are named and described in terms
of probability distributions over the features of an instance
that manifests that phenomenon. For example, the gold
model will specify the probability over the features of a
particular instance that is likely to contain gold. The land-
slide model will specify the probability over the features
for a particular location that predict whether that location
is prone to landslides. The model of Sue’s apartment will
specify the features that predict whether Sue would be ex-
pected to like a particular apartment.

Given an instance and a model, the aim of matching, in the
context of this paper, is to determine the probability that the
instance manifests the phenomenon of the model.

3 Ontologies

The models and instances are described at different levels
of abstraction using ontologies. As part of the ontologies
we assume that we have taxonomic hierarchies that specify
the vocabulary for different levels of abstraction. The tax-
onomic hierarchy defines the hierarchical relationship be-
tween concepts. Figure 1 shows an example of a taxonomic
hierarchy. Abedroomis a kind ofroom. A masterbedroom
is a kind ofbedroom. In this figure,room is the topmost
class.

We do not assume that the ontologies include uncertainty
about properties and relations. Ontologies are created and
maintained by communities, which can agree on vocabu-
lary, even if they do not agree on probabilities and models.

room

bedroom

kidsbedroom

livingroom

tvroom

bathroom

masterbedroom

Figure 1: Part of a taxonomic hierarchy of room types.

The ontologies provide a hypothesis space over which we
can have probability distribution. We consider that prob-
abilistic models (scientific theories) that makes probabilis-
tic prediction about a domain will provide the uncertainty
knowledge about properties and relations.

4 Describing Model and Instances

We adopt the OWL [McGuinness and van Harmelen, 2004]
terminology of describing domains in terms of individuals,
classes and properties.

4.1 Instances

An instance is described by its value on various properties.
This can include its relationship to other individuals (e.g.,
its parts). We, however, do not only want to state positive
facts, but also negative facts such as that an apartment does
not contain a bedroom, or that the kitchen is a red colour
but is not a pink (without enumerating all of the non-pink
red colours). Thus we will represent instance descriptions
with the quadruples of form:

〈individual,property,value, truthvalue〉

wheretruthvalueis eitherpresentor absent

For example, to say that an apartment has a master bed-
room, but does not have a kid’s bedroom we could write:

〈apt1,containRoom,masterbedroom, present〉

〈apt1,containRoom,kidsbedroom,absent〉

It is important to distinguish an instance from its descrip-
tion. An instance is a real physical thing that exists in the
world we are reasoning about (the real world at some time,
some temporally extended world, or even some imaginary
world). A description is a set of quadruples.

4.2 Models

Models describe abstract instances rather than any partic-
ular instance. For example, apartment modelApt 13 may
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Figure 2: A Semantic network representation of apartment
modelApt 13.

describe features that Sue would love to have in an apart-
ment, e.g., she usually wants a master bedroom in her apart-
ment5. In particular, a model describes an instance that ex-
hibits some phenomenon. It specifies what must be in an
instance, what cannot be there and what we would expect
to be there.

A model describes a set of related individuals. One of these
individuals is the designated top-level individual. For ex-
ample, in modelApt 13 the individuals are the apartment,
bedrooms, beds etc, and the designated top-level individual
is the apartment.

A model is described in terms of quadruples of the form:

〈ind, prop,val, prob〉

whereind is an individual,prop is a property,val is either
an individual or a class or a primitive value (depending on
whetherprop is an objecttype property, or ahasTypeprop-
erty, or a datatype property), andprob is the probability.

This quadruple specifies that an instance individual that has
valueval on propertypropwill matches the model individ-
ual ind with probabilityprop.

Example The semantic network representation of part
of an apartment modelApt 13 is shown in Figure 2.
The nodes represent individuals, classes and data types.
The top object in a semantic network represents the
individual that we are talking about. The individual
Apt 13 in Figure 2 is an apartment. Each arc is la-
beled with a probability. The valueval associated with
probability prob, individual ind, and arc fromind to
val, labeled with propertyprop, represent quadruple
〈ind, prop,val, prob〉. For example, individualsApt 13,

5For this paper do not think of these as preferences. We could
have a similar matcher for preferences, but this paper is about
models of uncertainty. Think of the model of what Sue would
like as the probability that she will move into the apartmentand
still be there after 6 months. This is, in fact, what the landlord is
interested in.

br1 and the arc connecting these two individuals represent
quadruple〈Apt 13,containsRoom,br1, p2〉.

5 Abstraction hierarchies and probabilities

When matching a model with an instance, we need to take
into consideration the type uncertainty (because the in-
stance and model are at varied levels of abstraction). To
cope with type uncertainty, we consider that taxonomic hi-
erarchies in the ontology are associated with probabilities.
In particular, given a taxonomic hierarchy, we want a mech-
anism that can computeP(Cj |Ck), whereCj is thesubClas-
sOf Ck. This is the probability that an individual is aCj

given all that you know about it is that it is aCk.

We are not considering that the probabilities associated
with hierarchies are part of individual models. We are con-
sidering them as a part ofsuper model.

In this paper we consider only taxonomic hierarchies which
are trees and where we can computeP(Cj |Ck), as discussed
in Section 5.1. We are working on techniques for comput-
ing P(Cj |Ck), when hierarchies are not trees, and where we
need to consider the problem of multiple inheritance, and
interdependence between subclasses.

5.1 Tree abstraction hierarchies

Each class in a taxonomic hierarchy specifies a probability
distribution over its immediate subclasses. That is, each
link in the tree hierarchy is associated with a conditional
probability. This is the probability that an individual is in
a classCj , given that all you know about it is that it is in a
classCk, and thatCj is the immediate subClassOfCk. For
example, the classroom in the hierarchy shown in Figure 1
has a probability distribution over its immediate subclasses.
Suppose we have as part of this distribution:

P(bedroom|room) = 0.3

P(bedroom|room) represents the probability that a random
room is abedroom.

Similarly, we can specify the probability of an immedi-
ate subClassOfbedroomgivenbedroom, with probabilities
such as:

P(masterbedroom|bedroom) = 0.2

P(masterbedroom|bedroom) represents the probability
that a room is amasterbedroomgiven all that you know
about it is that it is abedroom.

The prior probability that an individual is in a class can be
computed in a recursive manner by multiplying the prob-
abilities up in the tree. The probability that an individual



belongs to root class (room) is 1 (as it represents the set of
all individuals). That is,P(room) = 1. For example, given
the probability as above,P(masterbedroom) can be calcu-
lated as follows:

P(masterbedroom)

= P(masterbedroom|bedroom)×

P(bedroom|room)×P(room)

= 0.2×0.3

In this representation, computing the probability thati ∈Ck

given thati ∈ Cj is linear in depth difference ofCj andCk

and otherwise is not a function of the hierarchy’s size.

6 Supermodel

As discussed in Section 4.2 a model describes a concrete
instance that matches that model. In particular, it speci-
fies what must be in an instance, what cannot be there and
what we would expect to be there. However, a model does
not specify what happens when the model doesn’t hold (as
that depends on what other models there are, and the back-
ground probabilities). The role of the supermodel is to pro-
vide background information (that is beyond any model)
on how likely individual—property—valuetriples are. In
particular, the super model contains the following:

• the supermodel contains the probability distribution of
each class in the tree abstraction hierarchies as dis-
cussed in Section 5.1.

• the supermodel contains quadruples of the form:

〈cl, prop,val, prior〉

wherecl is a class in the taxonomic hierarchy,prop
is a property,val is either an individual or a class or
a primitive value, andprior is the prior (background)
probability.

That is, the prior probability that an individual of
type cl has valueval for property prop is avail-
able from the supermodel. For example, quadruple
〈room,hasColour, “green′′,0.4〉 tells us that the prior
probability of a random room has “green” colour is
0.4.

7 Probabilistic Matching

One objective of the matcher is to rank the models or in-
stances given instance and model descriptions. The basic
problem is to match an instance with a model. When we
say that a modelM matches an instancei, we writeM ∼ i
to mean thatM matches withi. Note thatM is the top-level
individual in the model andi is the top-level individual in

the instance. We want to determine the posterior probabil-
ity of M ∼ i given thei’s description, which specifies the
probability that the instancei manifests the phenomenon
that the model is modeling.

In general,Mk ∼ i j represents that model individualMk

matches the instance individuali j , where a model individ-
ual is one of the individuals described in the model (i.e.,
it is one of the first elements of a quadruple), and an in-
stance individual is one of the individuals described in the
instance description.

We cannot directly determine the match between model
and instance unless we know which model individuals cor-
respond to which instance individuals.

We useMk = i j to denote that model individualMk corre-
sponds to instance individuali j andMk =⊥ to denote that
individual Mk does not corresponds to any instance indi-
vidual. A role assignment is a list of correspondence state-
ments of the formsMk = i j , Mk =⊥ such that eachMk ap-
pears exactly once in the list and eachi j appears at most
once.

Note that match,∼, does not define the role assignment. It
defines the degree of match, given a role assignment.

Given a role assignment, the model description defines
a Bayesian network. The problem of matching a model
M with an instancei reduces to computingP(M ∼
i|observation) from the constructed Bayesian network,
where observation is the instancei’s description.

7.1 Construction of Bayesian network

Given a role assignment, the semantic network defines a
Bayesian network. We can construct it dynamically during
the inference as follows:

• there is a Boolean node
〈

Mk ∼ i j
〉

for each correspon-
dence statementMk = i j , wherei j 6=⊥ of the role as-
signment.

• there is a Boolean node for each correspondence state-
mentMk =⊥ of the role assignment, which we will
write 〈Mk =⊥〉. This node will be observed with value
true.

• for each individualMk in the model description and
for each functional propertyprop such thatprop is
hasTypeor datatype, there is a random variable which
we will write 〈Mk, prop〉. The domain of〈Mk, prop〉
is the range of propertyprop.

• for each individualMk in the model description and
for each non-functional propertyprop such thatprop
is datatype or the range ofprop is class (i.e.,prop
is hasType) and for each valueV in the range of
prop, there is a Boolean variable, which we will write
〈Mk, prop,V〉.



• the parent of each
〈

Mk ∼ i j
〉

node, and each〈Mk =⊥〉
node, is node

〈

Mp ∼ ip
〉

such that there is a directed
edge fromMp to Mk in the semantic network (i.e.,
quadruple

〈

Mp, prop,Mk, prob
〉

exists in the model
description).

• the parent of each〈Mk,P〉, and each〈Mk,P,V〉 node is
node

〈

Mk ∼ i j
〉

.

• the probability distribution of each
〈

Mk ∼ i j
〉

node
conditioned on its parent

〈

Mp ∼ ip
〉

is:

P(
〈

Mk ∼ i j
〉

= true|
〈

Mp ∼ ip
〉

= true) = p

P(
〈

Mk ∼ i j
〉

= true|
〈

Mp ∼ ip
〉

= f alse) = prior

where p is the probability associated with the indi-
vidual Mk in the semantic network. That is, quadru-
ple

〈

Mp, prop,Mk, prob
〉

is the part of the model de-
scription. The prior probabilityprior is taken from
quadruple

〈

Mp, prop,Mk, prior
〉

that exists in the su-
permodel.

• the probability distribution for each〈Mk =⊥〉 node
conditioned on its parent

〈

Mp ∼ ip
〉

is:

P(〈Mk =⊥〉= true|
〈

Mp ∼ ip
〉

= true) = 1− p

P(〈Mk =⊥〉 = true|
〈

Mp ∼ ip
〉

= f alse) = 1− prior

where p is the probability associated with the indi-
vidual Mk in the semantic network. That is, quadru-
ple

〈

Mp, prop,Mk, p
〉

is the part of model description.
The prior probabilityprior is taken from quadruple
〈

Mp, prop,Mk, prior
〉

that exists in the supermodel.

• The domain of a〈Mk, prop〉 node is the range of
prop. To specify the conditional probability of
〈Mk, prop〉 node conditioned on its parent

〈

Mk ∼ i j
〉

,
we do not have the distribution over all the values of
〈Mk, prop〉, rather, we have the probability for values
that model cares about. The conditional probability
P(〈Mk, prop〉 |

〈

Mk ∼ i j
〉

is:

– If the range of prop is class,
P(〈Mk, prop〉 |

〈

Mk ∼ i j
〉

) is:

P(〈Mk, prop〉 ∈V|
〈

Mk ∼ i j
〉

= true) = prob

P(〈Mk, prop〉 ∈V|
〈

Mk ∼ i j
〉

= f alse) = prior

– If prop is datatype property:

P(〈Mk, prop〉 = V|
〈

Mk ∼ i j
〉

= true) = prob

P(〈Mk, prop〉 = V|
〈

Mk ∼ i j
〉

= f alse) = prior

whereprob is the probability associated with quadru-
ple 〈Mk, prop,V, prob〉 in the model description. The
prior probability prior is taken from the quadruple
〈Mk, prop,V, prior〉 that exists in the supermodel.

• The probability distribution for each〈Mk, prop,V〉
node conditioned on its parent

〈

Mk ∼ i j
〉

is:

P(〈Mk, prop,V〉 = true|
〈

Mk ∼ i j
〉

= true) = p

P(〈Mk, prop,V〉 = true|
〈

Mk ∼ i j
〉

= f alse) = prior

where p is the probability associated with value
V in the semantic network. That is, quadruple
〈Mk, prop,V, p〉 exists in the model description. The
prior probability prior is defined by the supermodel,
i.e., quadruple〈Mk, prop,V, prior〉 exists in the super-
model.

Example Consider matching the apartment model
Apt 13 as shown in Figure 2 with instanceapt1 defined as
follows:

〈apt1,hasSize, “ large′′〉
〈apt1,containsRoom,R1, present〉
〈R1,type,masterbedroom, present〉
〈R1,containsBed,b1, present〉
〈b1,type,bed, present〉
〈apt1,containsRoom,R2, present〉
〈R2,type, room, present〉

For the individualbr1 of the model as shown in Figure2,
we can have the following possible mappings:

br1 = R1
br1 = R2
br1 =⊥

Whenbr1 maps toR1, we can have the following possible
mappings forbr2:

br2 = R2
br2 =⊥

When both model and instance have many individuals of
the same types there are many possible role assignments.

For the role assignment:Apt 13= apt1,br1= R1,bed1=
b1,br2 =⊥, the semantic network shown in Figure 2 de-
fines a Bayesian network as shown in Figure 3.

The Boolean variable〈Apt 13∼ apt1〉 denotes whether
modelApt 13 matches with instanceapt1. The Boolean
variable〈br1∼ R1〉 represents whether individualbr1 of
the model matches with the individualR1 of the instance.
The Boolean variable〈br2,⊥〉 represents whether individ-
ual br2 of the model does not map to any individual of
instance.

The conditional probabilities of the Bayesian network
shown in Figure 3 are constructed using the supermodel
andApt 13’s description. Some of these probabilities are
shown below:

P(〈Apt 13∼ apt1〉 = true) = p0

P(〈Apt 13,hasSize〉 = “large”| 〈Apt 13∼ apt1〉 = true) = p1
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br1 = R1, bed1 = b1, br2 =⊥.



When 〈Apt 13∼ apt1〉 = f alse, P(〈Apt 13,hasSize〉 =
“large”| 〈Apt 13∼ apt1〉 = f alse) is the prior probability
thatApt 13 is of size “large”.

After constructing a Bayesian network, given a role assign-
ment, from the semantic network, we want to compute the
posterior probability ofM ∼ i, i.e, P(M ∼ i|observation).
The observation is the instancei’s description, which can
be at different level of abstraction thanM’s description. In
the Bayesian network shown in Figure 3, the model in-
dividual br1 maps to instance individualR1. The model
specifies〈br1,type,bedroom, p4〉 and instance specifies
〈R1,type,masterbedroom, present〉, which are at different
level of abstraction. To insert the evidence in the con-
structed Bayesian network, we need to take this differ-
ence into consideration. In particular, we need to map
the instance description to the evidence for the constructed
Bayesian network.

7.2 Mapping an instance description to evidence

An instance description is a set of quadruples of the forms
〈ik, prop,V, present〉, and〈ik, prop,V,absent〉. We map the
instance description to the evidence for the constructed
Bayesian network as follows:

• the quadruple〈ik, prop,V, present〉, if prop is non-
functional, provides observation:〈ik, prop,V〉 = true
for the constructed Bayesian network.

• the quadruple〈ik, prop,V,absent〉, if prop is non-
functional, provides observation:〈ik, prop,V〉 =
f alse.

• the quadruple 〈ik, prop,v, present〉, if prop is
functional and datatype, provides observation:
〈ik, prop〉 = v.

• the quadruple〈ik, prop,v, present〉, if prop is func-
tional objecttype orprop is hasType, provides obser-
vation: 〈ik, prop〉 ∈ v. We have two cases:

– If the observation〈ik, prop〉 ∈ v implies “true” or
“false” for the node

〈

Mp, prop
〉

, such thatMp =
ik exists in the role assignmnet, we do the normal
(usual) conditioning in the Bayesian network.

– If the observation〈ik, prop〉 ∈ v does not imply
“true” or “false” for the node

〈

Mp, prop
〉

, such
thatMp = ik exists in the role assignment (i.e,v
is the superclass of valueV of

〈

Mp, prop
〉

), we
provide soft evidence for the node

〈

Mp, prop
〉

in
the constructed Bayesian network.
For the soft conditioning, we create an observed
child 〈Mk, prop〉 of

〈

Mp, prop
〉

, Mk is the same
type asMp. We observed〈Mk, prop〉 ∈ v. The

conditional probability of〈Mk, prop〉 ∈ v is:

P(〈Mk, prop〉 ∈ v|
〈

Mp, prop
〉

∈V) = 1.0

P(〈Mk, prop〉 ∈ v|
〈

Mp, prop
〉

6∈V) = P(v|¬V)

Using Bayes rule, probabilityP(v|¬V)can be
computed as follows:

P(v|¬V) =
P(v)−P(V)

1−P(V)

where P(v) and P(V) are the probabilities of
classesv andV respectively. We can compute
P(v) andP(V) using the probabilities associated
with the abstraction hierarchies6 as discussed in
Section 5.1.

7.3 Inference

We can compute the posterior probability of match,P(M ∼
i|observation), from the constructed Bayesian network us-
ing any standard inference algorithms, e.g., VE [Zhang and
Poole, 1994]. The posterior probability of match depends
on the role assignments of the individuals. We maximize it
over all possible role assignments.

8 Conclusion

In this paper, we have proposed a framework for decision
making in rich domains, where we can describe the obser-
vations (or instances) in the world at multiple levels of ab-
straction and detail and have probabilistic models at differ-
ent levels of abstraction and detail, and be able to use them
to make decisions. We can build knowledge-based deci-
sion tools in various domains such as mineral exploration
and hazard mappings, where we need to have probabilistic
reasoning and rich ontologies.
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