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Abstract

There has been much recent progress in building ontologies
and publishing scientific data based on these ontologies. This
paper overviews issues and progress in the other half of se-
mantic science: having machine accessible scientific theories
that can make predictions on this data and can be used for
new cases. This paper presents the grand vision, issues that
have arisen in building such systems for the geological do-
main (minerals exploration and geo-hazards), and sketches
the formal foundations that underlie this vision.

Introduction
Our idea of semantic science is that scientists can publish
data and theories that can inter-operate by virtue of using
common ontologies. The theories can be judged by how
well they predict unseen data and can be used for new cases.

An ontology (Smith, 2003b) is a formal specification of
the meaning of the vocabulary used in an information sys-
tem. Ontologies are needed so that information sources can
inter-operate at a semantic level.

There has been recent success in publishing scientific data
that adheres to ontologies (McGuinness et al., 2007). Pub-
lishing data with respect to well-defined ontologies can al-
low for semantic inter-operation of the data sets; mean-
ingful queries can be made against multiple data sets that
were collected separately. Data repositories include the
Community Data Portal (http://cdp.ucar.edu/) and the Vir-
tual Solar-Terrestrial Observatory (http://vsto.hao.ucar.edu/
index.php).

Science operates by making refutable theories (Popper,
1959). These theories1 are judged by predictions, useful-
ness, and by elegance or plausibility. Theories make (prob-
abilistic) predictions about new cases. Theories may require
arbitrary computations to make predictions; indeed many
real theories need enormous computational resources. Se-
mantic science aims to provide an infrastructure to test the-
ories on data, and to make theories available for new cases.
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1Theories are often called hypotheses, laws or models depend-
ing on how well established they are. This distinction is redundant
in the semantic science realm where we can test how well these
actually perform on data.

Theories need to refer to ontologies as they need to inter-
operate with data. Theories specify what data they can make
predictions about, and make predictions that can be checked
against the relevant data and applied to new cases. It is the
ontologies that allow the inter-operation of the data and the
theories. Theories can be tested against all of the relevant
data sets, and data can be used to discriminate theories.

Given access to the theories, and information about how
they perform on the available data sets, practitioners can use
the best theories to make predictions on new cases. This thus
promises to form a new basis for expert systems.

Semantic science allows for a diversity of theories. Each
theory will specify what data it is prepared to make predic-
tions about. Some theories may be competing and some may
be complementary. For example, there may be multiple the-
ories that predict whether a patient has cancer. If they make
different predictions in some cases, they can be compared by
how well they predict the available data. There may be other
theories that make predictions about the type(s) of cancer for
patients with cancer. These theories are not applicable for
patients who don’t have cancer. When making predictions,
a doctor may use an ensemble of multiple complementary
theories: e.g., one to predict whether the patient has cancer
and another to predict the type of cancer.

Theories can make predictions in different forms. A the-
ory could make, e.g., a definitive prediction, a probabilis-
tic prediction, a range prediction, or a qualitative prediction.
Users can use whatever criteria they like to judge the theo-
ries, and use whichever theory or mix of theories they like.
For different evaluation criteria, there will be ways to judge
the theories on the criteria. We anticipate that probabilis-
tic predictions will be the most useful, as it is probabilities
that one gets from data, and probabilities are what is needed
(with utilities) to make decisions. However, there are many
cases where users will be reluctant to use probabilistic the-
ories (see below). Scientists who wish to judge theory by
elegance or simplicity, as well as fit to data, are free to do
so; they can use published data to determine its accuracy and
whatever criteria they like to evaluate elegance or simplicity.

We mean science in the broadest sense. We can imagine
having theories about what apartment someone would like,
or theories about what companies will be best to invest in,
or theories about diseases and symptoms. Search engines
such as Google are being used for diagnosis (Tang and Ng,
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Figure 1: Ontologies, Data and Theories in Semantic Sci-
ence

2006); it is arguably better to be able to specify symptoms
using an ontology and how well the theories predict data is
a better criterion for comparing diagnoses than popularity as
measured by pagerank (Page et al., 1999).

Figure 1 shows the relationship between ontologies, data
and theories. The data depends on the world and the ontol-
ogy. The theories depend on the ontology, indirectly on the
world (if a human is designing the theory), and directly on
some of the data (as we would expect that the best theories
would be based on as much data as possible). Given a new
case, a theory can be used to make a prediction. The real
case is more complicated, as there are many theories, many
ontologies, and lots of data, and they all evolve in time.

This work is complementary to providing services and
other tools to scientists, e.g., using the Semantic Grid
(De Roure et al., 2005). We expect that the semantic grid
will be important for implementing the ideas in this paper.

Background
Ontologies
In philosophy, ontology is the study of what exists. In AI,
ontology (Smith, 2003b) has come to mean a specification of
the meaning of the symbols (or of the data) in an information
system. In particular, an ontology contains a commitment to
what individuals and relationships are being modelled, spec-
ifies what vocabulary will be used for the individuals and
relationships, and gives axioms that restrict the use of the
vocabulary. The axioms have two purposes: to show that
some use of the terms is inconsistent with the intended in-
terpretation, and to allow for inference to derive conclusions
that are implicit in the use of the vocabulary.

By an ontology we mean whatever specification there is
of the meaning of the symbols. This can be in the head of
the person who created the data, or can be stated in some
language. Without an ontology, we do not have information,
but just a sequence of bits. The simplest form of an ontol-
ogy is a database schema with an informal natural language
descriptions of the attributes and the constants. Formal on-
tologies allow machine understandable specifications.

An ontology written in a language such as OWL
(McGuinness and van Harmelen, 2004) specifies individu-
als, classes and relationships and the vocabulary used to ex-
press them. Sometimes classes and relationships are defined

in terms of more primitive classes and relationships, but ul-
timately they are grounded out into primitive classes and re-
lationships that are not actually defined. For example, an
ontology could specify that the term “building” will repre-
sent buildings. The ontology will not define a building, but
give some properties that restrict the use of the term.

Ontologies date back to Aristotle (350 B.C.), who defined
terms using what has been called an Aristotelian definition
(Berg, 1982; Smith, 2003a). An Aristotelian definition of
A is of the form “An A is a B such that C”, where B is the
immediate super-class of A and C is a condition that defines
how A is special. Aristotle called the B the genus and C the
differentia (Sowa, 2000, p. 4).

To build Aristotelian definitions, we will use what we
call the multi-dimensional design pattern (Alexander et al.,
1977), where the differentia in the Aristotelian definition are
built from multiple properties. To define the conditions for
a class, we need to think about what properties distinguish
this class from the other subclasses of the super-class. Each
of these properties defines a (local) dimension. The domain
of each property is the most general class for which it makes
sense. In the multi-dimensional design pattern, classes are
only defined in terms of values of properties. The subclass
relation can be derived from this.

There is not a fixed number of dimensions that distinguish
all individuals. Rather, dimensions come into existence at
different levels of abstraction. For example, the dimensions
size and weight may appear for physical individuals, but are
not applicable for abstract concepts. “Number of units” may
be a dimension for apartment buildings but not be applica-
ble for other buildings such as sewage plants, where other
dimensions may be applicable.

This idea is due to Aristotle:

“If genera are different and co-ordinate, their differen-
tiae are themselves different in kind. Take as an in-
stance the genus ’animal’ and the genus ’knowledge’.
’With feet’, ’two-footed’, ’winged’, ’aquatic’, are dif-
ferentiae of ’animal’; the species of knowledge are not
distinguished by the same differentiae. One species of
knowledge does not differ from another in being ’two-
footed’.” (Aristotle, 350 B.C.)

Example 1 Geologists define rocks along three major di-
mensions: genesis (sedimentary, igneous or metamorphic),
composition and texture (Gillespie and Styles, 1999). Par-
ticular rocks, such as granite and limestone, are defined by
particular values in each dimension (or some subset of the
dimensions). Rock taxonomies built using this approach
that commit to splitting rock sub-type based on these dimen-
sions in a certian order (usually genesis first, then compo-
sition, then texture) do not conveniently represent the sub-
types that occur in real data Struik et al. (2002). The multi-
dimensional ontologies seem to be the natural specification.

Data and Ontologies
Scientists produce lots of data, and science cannot be carried
out without data. By data, we mean information about a
domain that is produced from sensing.



In linguistics the Sapir-Whorf Hypothesis (Sapir, 1929;
Whorf, 1940), says essentially that people’s perception and
thought are determined by what can be described in their
language. The Sapir-Whorf Hypothesis is controversial in
linguistics, but a stronger version of this hypothesis should
be uncontroversial in information systems:

What is stored and communicated by an information
system is constrained by the representation and the on-
tology used by the information system.

The reason that this should be less controversial is that the
representation and the ontology represent the language of
thought or mentalese (Pinker, 1994), not just the language
of communication.

As an example, suppose the world produces a determinis-
tic sequence of coin tosses: head, tail, head, tail, head, tail,
etc. If the representation and the ontology does not specify
the time of each observation or which is the next coin toss in
the sequence, that information will have been lost in trans-
lating the observation into the internal representation. The
best prediction would be to predict heads with probability
of 0.5. As another example, if some data adheres to an on-
tology that specifies that a house is a residential building,
then, by definition, all of the observed houses are residential
buildings, and so the data cannot refute the fact that houses
are residential buildings (i.e., we cannot observe houses that
are not residential buildings).

This hypothesis has a number of implications:

• An ontology mediates how perceptions of the world are
stored and communicated.

• If there is no distinction in the ontology, there will be no
distinction in the data. For example, if an ontology does
not have any sub-types of “granite”, and does not record
the information needed to distinguish between types of
granite, the data will not record any sub-types of granite
and none can be discovered.

• Ontologies must come before data. This may be confus-
ing as much work is done on building ontologies for exist-
ing data sets. This activity should be seen as reconstruct-
ing the ontology that was used to create the data set.

Note that a data set may record the output of a sensor that
you may not know the meaning of. The ontology will then
specify the meaning is just a real number, say, with some
range and precision.

Some people have argued that uncertainty should be ex-
plicitly represented in an ontology because of the inherent
uncertainty in data (Pool et al., 2005; Costa et al., 2005;
Laskey et al., 2007). While we believe that it is essential
to model the uncertainty in data, we don’t believe it should
be in the ontology. The main reason is the ontology is log-
ically prior to the data, but the models of uncertainty in the
data are logically posterior to the data: it is only by seeing
(some of) the data, that we can estimate the uncertainty (i.e.,
we want the uncertainty to reflect the posterior distribution
after we have seen some data). Because the probabilities are
posterior to the data, they should change as data comes in,
and so should not be part of the stable foundation of the data
that an ontology needs to be.

Theories
We would argue that theories are best described in terms of
probabilities (Polya, 1954) for two main reasons:
• Probabilities are what we get from data.
• Probabilities, together with utilities, are what is needed to

make decisions.
Like data, theories need to adhere to ontologies. There are

a number of reasons:
• Theories make predictions on data that adhere to an ontol-

ogy. To allow semantic interoperability between the data
and the theories, they should adhere to a common ontol-
ogy.

• People should be allowed to disagree about how the
world works without disagreeing about the meaning of
the terms. If two people have different theories, they
should first agree on the terminology (for otherwise they
would not know they have a disagreement)—this forms
the ontology—and then they should give their theories.
Their theories can then be compared to determine what
their disagreement is. It is by creating these disagree-
ments, and testing them on data, that science progresses.

Theories can expand the ontology by hypothesizing unob-
served objects or properties (hidden variables) that help ex-
plain the observations. By expanding the ontology, other
theories can refer to the theoretical constructs, and they
could appear in data. For example, a theory could postu-
late that the data is better explained by having a new form
of cancer; other theories could refer to this type of cancer
and this new type of cancer could even be recorded in data.
In this way the theories and the vocabulary can evolve as
science advances.

Semantic interoperability can only be achieved by adher-
ing to common ontologies. A community needs to agree on
an ontology to make sure they use the same terminology for
the same things. However, a community need not, and we
argue should not, agree on the probabilities, as people may
have different priors and have access to different data, and
the probabilities should change as more data comes in.

To make a prediction, we usually use many theories. The-
ories that individuals produce are typically very narrow, only
making predictions in very narrow cases. The theories that
are put together to make a predictions form a theory ensem-
ble. We judge individual theories by how well they fit into
ensembles.

The structure of probabilistic theories does not necessar-
ily follow the structure of the ontology. For example, an
ontology of lung cancer should specify what lung cancer
is, but whether someone will have lung cancer depends on
many factors that depends on particular facts of the case and
not just on other parts of ontologies (e.g., whether they have
other cancers and their work history that includes when they
worked in bars that allowed smoking). As another exam-
ple, the probability that a room will be used as a living room
depends not just on properties of that room, but on the prop-
erties of other rooms in an apartment.

There are major challenges in building probabilistic theo-
ries using ontologies based on languages such as OWL. The



main one being that OWL sees the world in terms of in-
dividuals, classes and properties, yet probability theory is
in terms of random variables. We discuss how to construct
random variables from ontologies in a later section.

Pragmatic considerations
We have been working on two domains in earth sciences
(Smyth et al., 2007) and a domain in finding apartments
(i.e., allowing theories to be created about when someone
will like an apartment). The earth sciences domains are
in minerals exploration in the MINEMATCH® system (http:
//www.georeferenceonline.com/minematch/) and for land-
slides in the HAZARDMATCH™ system.

MineMatch contains about 25,000 descriptions of min-
eral occurrences (called instances) that are described us-
ing various taxonomies, including the British Geological
Survey rock classification scheme (http://www.bgs.ac.uk/
bgsrcs/) and the Micronex taxonomy of minerals (http://
micronex.golinfo.com). We are currently moving to OWL
representations of the ontologies. We also work with more
than 100 deposit models (these form the theories about
where to find particular minerals), including those described
by the US Geological Survey (http://minerals.cr.usgs.gov/
team/depmod.html) and the British Columbia Geological
Survey (http://www.em.gov.bc.ca/Mining/Geolsurv/). Sim-
ilarly, HazardMatch uses tens of thousands of spatial in-
stances (polygons) described using standard taxonomies of
environmental modeling such as rock type, geomorphology
and geological age. There are currently about 10 models of
different landslide types.

In these cases, the theories are derived from published
models.

These systems are used in various modes:

• In instance-to-models matching, one instance is compared
to multiple models. Finding the most likely models for the
instance can be used to determine what is the most likely
mineral or whether a landslide is predicted to occur at the
particular location described by the instance.

• In model-to-instances matching, one model is compared
to multiple instances. This can be used to find the loca-
tion(s) that are most likely to have landslides or contain
particular minerals.

• In instance-to-instances matching, one instance is com-
pared to multiple instances to find which other instances
are most like this instance.

• In model-to-models matching, one model is compared to
multiple models to find which other models are most like
this model.

These applications have a number of features that we be-
lieve will be shared by many scientific disciplines:

• The instances are heterogeneous, described at various lev-
els of abstraction (using more general or less general
terms) and detailed (described in terms of parts and sub-
parts or not). Similarly, the models use various levels of
abstraction and detail. Sometimes the distinctions that are

in the instance descriptions are not required by the mod-
els, and sometimes the instance descriptions do not make
distinctions that are needed by the models.

• The experts do not publish probabilities in their mod-
els, and are reluctant to have probabilities in the system.
There are a number of reasons for this. First, they have
very few data points for any model, so that the probabil-
ities will not be based on anything meaningful. Second,
the people who want to make decisions (those who want
to decide whether to mine the area, or insurance compa-
nies that decide on insurance premiums) will want to use
their own prior probabilities, and may take into account
more information than is used in the system. The system
is useful to reduce the combinatorial complexity: to find
those few areas that are most likely to contain ore-grade
minerals or be susceptible to landslides, and to provide
explanations that can be used for further analysis.

• The models are “positive”; there are models of where to
find a particular mineral, but people do not publish models
of where the mineral is absent. Similarly for landslides;
there are models of where particular types of landslides
are likely to occur, but not models of where landslides are
unlikely to occur.

• The models are neither covering, disjoint nor indepen-
dent. Often the models are variants of each other. Starting
from one model, people produce variants of that model to
suit their own purpose. Each model does not include all
of the cases where the phenomenon it is modelling may
occur.

Foundations
In this section, we describe the logical and probabilistic
foundations for building theories, and relate them to prag-
matic choices that we have used in our fielded systems.

Role of Models in Decision Making
The Bayesian view of using models for decision making is
that we would like to make a probabilistic prediction of x for
a new case based on a description d of that case. Thus we
want P(x|d). The role of the models is to provide a frame-
work for this prediction.

In terms of probabilities, we can use models as interme-
diaries:

P(x|d) = ∑
m∈Models

P(x|m∧d)P(m|d)

where Models is a set of mutually exclusive and covering
hypotheses. Thus, for each model, we need to decide what it
predicts, and how likely it is based on the description, d, of
the current case. Typically models are rich enough to convey
the information about the rest of the description, and so we
assume P(x|m∧d) = P(x|m).

There is a whole field of Bayesian modelling, which tries
to determine what features best predict (in unseen data) the
phenomenon of interest, and then builds probabilistic mod-
els of these.

Typically, we do not have P(m|d) which specifies how
likely the model is given the description, but instead have



predictions of the model, i.e., P(d|m). These two quantities
are related by Bayes’ theorem:

P(m|d) =
P(d|m)P(m)

P(d)

That is, we often have causal or consequential knowledge
and want to do evidential reasoning. For example, we model
the symptoms of chicken pox with P(fever|ch_pox) but want
P(ch_pox|fever). These are related by Bayes’ theorem:

P(ch_pox|fever) =
P(fever|ch_pox)×P(ch_pox)

P(fever)

The reason that we want to store causal or consequential
knowledge is that it is more stable to changing contexts. You
would expect the symptoms of chicken pox to be stable; they
would be the same whether the patient was at home, in a
school or in hospital. However, the probability that some-
one with a fever has chicken pox would be different in these
three contexts, as the prevalence of fever and chicken pox is
different in these three contexts.

This has an impact on how diagnostic a feature is. Sup-
pose fever and spots are common given chicken pox, e.g.,
P(fever|ch_pox) = 0.9, P(spots|ch_pox) = 0.9. Suppose
fever has many causes and spots has few. Then spots is
more diagnostic of chicken pox, i.e., P(ch_pox|spots) >
P(ch_pox|fever), as P(fever) > P(spots).

Note also that the probabilities needed for the predic-
tion, namely P(x|m) are of the same form as P(d|m)—they
all specify what the model predicts. Rather than making a
model to be for a particular feature, a model makes predic-
tions about all of its features.

Probabilities, Ontologies and Existence
There seems to be a fundamental mismatch between the ran-
dom variable formalization of probability and the formal-
ization of modern ontologies in terms of individuals, classes
and properties. Interestingly, Bayesian networks and ontolo-
gies both have their roots in the expert systems of the 1970’s
and 1980’s (Henrion et al., 1991). Both fields have advanced
our understanding of reasoning, and part of our research is
to bring these together.

The way to reconcile these views is for an individual-
property pair to correspond to a random variable. This com-
plicates the probabilistic modelling as the individuals only
come into existence at run-time, and so the random variables
are unknown at modelling time. This has spurred a body
of research in first-order probabilistic models (e.g., Poole
(1993), Kersting and De Raedt (2007)).

When dealing with probabilities and individuals we need
to deal with three phases:

• the probability of existence (Poole, 2007) — the probabil-
ity that an individual that fits a description actually exists

• the probability distribution over the types of the individ-
ual. This is complicated when there are complex hierar-
chical classes that can be the types of the individuals.

• the probability of property values. Functional properties
give a random variable for each individual with a non-zero

probability of being in the domain of the property. Non-
functional properties have a Boolean random variable for
each value in the range and each individual with a non-
zero probability of being in the domain of the property.

Aristotelian definitions, where a class is defined in terms of
its immediate super-class and differentia, provide a way to
reduce the second case to the third case. The differentia are
described in terms of property values with appropriate do-
mains. By having a probability distribution over the val-
ues of the properties (perhaps conditioned on other variable
assignments), we can induce a probability distribution over
the classes. Note that Aristotelian definitions are general:
any class hierarchy can be represented by Aristotelian defi-
nitions by introducing new properties.

For example, a granite can be defined as a rock
with the property genesis having value igneous, property
composition having value felsic, and texture is coarse. By
having a probability distribution over the values of genesis,
a probability distribution over the value of composition, and
a probability distribution over the values of texture, we can
determine the prior probability that a rock is a granite.

Note that the probabilistic formulation is complicated
by existence prerequisites: only individuals that exist have
properties, and only individuals in the domain of a property
can have values for that property.

Bayesian modelling meets pragmatism
Bayesian modelling of scientific reasoning seems like the
appropriate formulation of the role of theories or models in
science. However, the pragmatic considerations discussed
above lead us to not adopt it directly, although it remains the
gold standard. Our theories (or models) are based on quali-
tative probabilistic matching, with the following properties:

• Rather than using probabilities that experts do not want to
give, and cannot judge the output from, we use qualitative
probabilities(Smyth and Poole, 2004; Poole and Smyth,
2005), using a 5-point scale (always, usually, sometimes,
rarely, never) that is derived from the terminology used in
published papers. These qualitative probabilities act like
log-probabilities, where the values add rather than multi-
ply (Pearl, 1989; Darwiche and Goldszmidt, 1994).

• The models need to be fleshed out for each instance. Mod-
els refer to multiple individuals, but they do not refer to
the named individuals in the instances. Models specify
roles that can be filled by the instance individuals. The
predictions of the model for an instance can only be de-
termined given a role assignment that specifies which in-
stance individuals fill the roles in the model.

• Rather than averaging over all possibilities and role as-
signments, we choose the most likely ones.

• We allow for diverse data about instances and models at
multiple levels of abstraction and detail. We also require
prior probabilities of the descriptions; we do not assume
that we can get the probability of a description from the
set of models (as we could if the models were exclusive
and covering).



• The explanations for the answers are as important as the
answers themselves.

Conclusions
This paper has presented the big picture of what we see as
semantic science as well as the pragmatic considerations that
have gone into our fielded systems that are a first try at re-
alizing our vision. This view of semantic science is meant
to complement other views that provide ontologically-based
views of data (McGuinness et al., 2007) and ontology-based
services (De Roure et al., 2005).
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