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Runping Qi and David Poole�

Department of Computer Science� University of British Columbia� Vancouver B� C� Canada

As in�uence diagrams become a popular representational tool for decision analysis� in�uence
diagram evaluation attracts more and more research interest� In this article� we present a new�
two�phase method for in�uence diagram evaluation� In our method� an in�uence diagram is �rst
mapped into a decision graph and then the analysis is carried out by evaluating the decision graph�
Our method is more e�cient than Howard and Matheson	s because� among other reasons� our
method generates a much smaller decision graph for the same in�uence diagram� Like those most
recent algorithms reported in the literature� our method also provides a clean interface between
in�uence diagram evaluation and Bayesian net evaluation� Consequently� various well�established
algorithms for Bayesian net evaluation can be used in in�uence diagram evaluation� Furthermore�
our method has a few unique merits� First� it takes advantage of asymmetry in in�uence diagrams
to avoid unnecessary computation� Second� by using heuristic search techniques� it provides an
explicit mechanism for making use of heuristic information that may be available in a domain�
speci�c form� These additional merits make our method more e�cient than the current algorithms
in general�
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�� INTRODUCTION

Decision trees were used as a simple tool both for problem modeling and optimal
policy computation in the early days of decision analysis �Rai�a ������ A decision
tree explicitly depicts all scenarios of a problem and speci�es the 	utility
 the agent
can get in each scenario� An optimal policy for the decision problem can be computed
from the decision tree representation of the problem by a simple 	average�out�and�
fold�back
 method �Rai�a ����� Smith ������

Though conceptually simple� decision trees have a number of drawbacks� First�
the dependencyindependency relationships among the variables in a decision prob�
lem cannot be represented in a decision tree� Second� a decision tree speci�es a
particular order for the assessment on the probability distributions of the random
variables in the decision problem� This order is in most cases not a natural assess�
ment order� Third� the size of a decision tree for a decision problem is exponential in
the number of variables of the decision problem� Finally� a decision tree is not easily
adaptable to changes in a decision problem� If a slight change is made in a problem�
one may have to draw a decision tree anew�

In�uence diagrams were proposed as an alternative to decision trees for decision
analysis �Howard and Matheson ����� Miller et al� ������ As a representation frame�
work� in�uence diagrams do not have the aforementioned drawbacks of decision trees�
The in�uence diagram representation is expressive enough to explicitly describe the
dependencyindependency relationships among the variables in the decision prob�
lem� it allows a more natural assessment order on the probabilities of the random
variables� it is compact� and it is easy to adapt to the changes in the problem�

The �rst method for in�uence diagram evaluation was proposed by Howard and
Matheson ������� In this method� an in�uence diagram is �rst transformed into a
decision tree and then an optimal policy is computed from the decision tree� After
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Shachter published his algorithm that evaluates in�uence diagrams directly �Shachter
������ the two�phase approach was largely abandoned� None of the recent algorithms
�Cooper ����� Shachter and Peot ����� Zhang at al� ����a� Zhang and Poole ����b�
needs a secondary representation� One reason for abandoning the two�phase ap�
proach might be that people believe that direct evaluation is more e�cient�

However� all those algorithms that evaluate in�uence diagrams directly su�er
from a common shortcoming in handling asymmetric decision problems �Covaliu and
Oliver ����� Fung and Shachter ����� Phillips ����� Shachter ����� Smith et al�
������ Decision problems are usually asymmetric in the sense that the set of possible
outcomes of a random variable may vary depending on di�erent conditioning states�
and the set of legitimate alternatives of a decision variable may vary depending on
di�erent information states� To be represented as an in�uence diagram� an asymmet�
ric decision problem must be 	symmetrized
 by adding arti�cial states and assuming
degenerate probability distributions �Smith et al� ������ This symmetrization results
in two problems� First� the number of information states of decision variables are
increased� Among the information states of a decision variable� many are 	impossi�
ble
 to reach �having zero probability�� The optimal choices for these states need not
be computed at all� However� conventional in�uence diagram evaluation algorithms
�Shachter ����� Shachter and Peot ����� Smith et al� ����� Zhang at al� ����a�
Zhang and Poole ����b� cannot avoid such computations� Second� for an informa�
tion state of a decision variable� some of the alternatives of the decision variable may
not be legitimate� thus they need not be considered at all when computing an opti�
mal choice for the variable in the information state� However� conventional in�uence
diagram algorithms have to consider all of the alternatives in order to compute an
optimal choice for a decision variable in any of its information states �including those
impossible states�� Thus� it is evident that conventional in�uence diagram evaluation
algorithms involve unnecessary computation�

In this paper� we present an approach for overcoming the aforementioned disad�
vantages� Our approach consists of two independent components� a simple extension
to in�uence diagrams and a two�phase method for in�uence diagram evaluation� Our
extension allows explicitly expressing the fact that some decision variable have dif�
ferent frames in di�erent information states� Our method� similar to Howard and
Matheson�s� evaluates an in�uence diagram in two conceptual steps� it �rst maps
an in�uence diagram into a decision graph �Qi ����� Qi and Poole ����� in such a
way that an optimal solution graph of the decision graph corresponds to an optimal
policy of the in�uence diagram� Thus the problem of computing an optimal policy is
reduced to the problem of searching for an optimal solution graph of a decision graph�
which can be accomplished by various algorithms �Qi ����� Qi and Poole ������ The
size of the decision graph generated by our method from an in�uence diagram can
be much smaller than that generated by Howard and Matheson�s method for the
same in�uence diagram� Like those most recent algorithms �Shachter and Peot �����
Zhang ����� Zhang et al� ����a� Zhang and Poole ����b�� our method provides a
clean interface between in�uence diagram evaluation and Bayesian net evaluation so
that various well�established algorithms for Bayesian net evaluation can be used in
in�uence diagram evaluation� In this sense� our method is essentially as e�cient as
the one proposed by Zhang and Poole �����b�� which rivals existing algorithms in
terms of e�ciency �Zhang ������ Furthermore� our method has a few additional mer�
its� First� it avoids computing decision choices for decision variables in impossible
states� We will show that avoiding such computation may lead to an exponential
factor of savings for typical decision problems� Second� by using heuristic search
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techniques� it provides an explicit mechanism for making use of heuristic information
that may be available in a domain�speci�c form� Finally� by using decision graphs
as an intermediate representation� the value of perfect information �Matheson �����
can be computed in a more e�cient way �Zhang at al� ����b�� This method works
for in�uence diagrams with or without our extension�

The rest of this paper is organized as follows� The next section introduces in�
�uence diagrams� Section � reviews the existing algorithms and illustrates their
disadvantages� In Section �� we present our approach for overcoming these disadvan�
tages� Section � gives an analysis on how much can be saved by exploiting asymmetry
in decision problems� Section � discusses related work in dealing with asymmetric
decision problems� Section � concludes the paper�

�� INFLUENCE DIAGRAMS AND INFLUENCE DIAGRAM

EVALUATION

An in�uence diagram is a direct acyclic graph with three types of nodes� random
nodes � decision nodes and value nodes � Each random node represents a random
variable whose value is dictated by some probability distribution� and each decision
node represents a decision variable whose value is to be chosen by the decision maker�
In this paper� we will use the term decision �random� variables and decision �random�
nodes interchangeably� The arcs into a random node� called conditional arcs � indicate
the probabilistic dependency of the random node� The arcs into a decision node�
called informational arcs � indicate the information available to the decision maker at
the time heshe must choose a value for the decision variable�

The following de�nition for in�uence diagrams is borrowed from Zhang et al�
����a�� An in�uence diagram I is de�ned as a quadruple I � �X�A�P �U� where

� �X�A� is a directed acyclic graph with node set X and arc set A� The node set
X is partitioned into a random node set C� a decision node set D and a value
node set U � All the nodes in U have no children�
Each decision node or random node has a set� called the frame� associated with
it� The frame of a node consists of all the possible outcomes of the �decision or
random� variable denoted by the node� For any node x � X � we use ��x� to
denote the parent set of node x in the graph and use �x to denote the frame of
node x � For any subset J � C�D � we use �J to denote the Cartesian productQ

x�J �x�
� P is a set of probability distributions Pfcj��c�g for all c � C � For each o � �c

and s � ��
c� � the distribution speci�es the conditional probability of event

c � o � given� ��c� � s�
� U is a set fgv � ��
v� � Rjv � Ug of value functions for the value nodes� where
R is the set of the real�

For a decision node di� a value x � ��
di� is called an information state of di� and
a mapping �i � ��di

� �di is called a decision function for di� The set of all the
decision functions for di� denoted by �i� is called the decision function space for

�In this paper� for any variable set J and any element e � �J � we use J � e to denote the set of
assignments that assign an element of e to the corresponding variable in J �
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di� Let D � fd�� ���� dng be the set of decision nodes in in�uence diagram I� The
Cartesian product � �

Qn
i���i is called the policy space of I�

Given a policy � � ���� � � � � �k� � � for I� a probability P� can be de�ned over
the random nodes and the decision nodes as follows�

P�fC�Dg�
Y
c�C

Pfcj��c�g
kY

i��

P�ifdij��di�g ���

where Pfcj��c�g is given in the speci�cation of the in�uence diagram� while P�ifdij��di�g
is given by �i as follows�

P�ifdij��di�g �

�
� if �i���di�� � di�
� otherwise� ���

For any value node v� ��v� must consist of only decision and random nodes� since
value nodes do not have children� Hence� we can talk about marginal probabilities
P�f��v�g� The expectation of the value node v under policy �� denoted by E��v�� is
de�ned as follows�

E��v� �
X
�
v�

P�f��v�ggv���v���

The summation E� �
P

v�U E��v� is called the expected value of I under the policy
�� The maximum of E� over all the possible policies is the optimal expected value
of I� An optimal policy is a policy that achieves the optimal expected value� To
evaluate an in�uence diagram is to determine its optimal expected value and to �nd
an optimal policy�

���� No�forgetting and stepwise decomposable in�uence diagrams

In this section� we introduce two classes of in�uence diagrams� which are the
focus of the literature�

An in�uence diagram is regular �Howard and Matheson ����� Shachter ����� if
there is a directed path containing all of the decision variables� Since the diagram is
acyclic� such a path de�nes an order for the decision nodes� This is the order in which
the decisions are made� An in�uence diagram is 	no�forgetting
 if each decision node
d and its parents are also parents of those decision nodes that are descendants of
d �Howard and Matheson ����� Shachter ������ Intuitively� the 	no�forgetting

property means that a decision maker remembers all the information that was earlier
available to himher and remembers all the previous decisions heshe made� The lack
of an arc from a node a to a decision node d in a no�forgetting in�uence diagram
means that the value of the variable a is not known to the decision maker when
decision d is to be made�

An in�uence diagram is called stepwise solvable �Zhang et al� ����a� Zhang and
Poole ����b� if its optimal policy can be computed by considering one decision node
at a time� A necessary and su�cient syntactic condition for the stepwise solvability
of in�uence diagrams� called stepwise�decomposability � is provided in �Zhang �����
Zhang et al� ����a��

Stepwise�decomposability is de�ned in terms of graph separation� Informally� an
in�uence diagram is stepwise decomposable if the parents of each decision node divide
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the in�uence diagram into two parts� In order to de�ne the property formally� we
need some notation and concepts�

Let nond�x� denote the set of nodes that are not descendants of x in the in�uence
diagram� Thus� nond�d� �D is the set of decision nodes that are not descendants
of node d � For a node set Z � let ��Z� � �z�Z��z� and ���Z� � Z � ��Z� �

The moral graph �Lauritzen and Spiegelhalter ����� of a directed graph G is an
undirected graph m�G� with the same node set such that there is an edge between
node x and node y in m�G� if and only if either there is an arc x � y or y � x
in G � or there are two arcs x � z and y � z in G and x �� y � A node x is
m�separated from a node y by a node set Z in a directed graph G if every path
between x and y in the moral graph m�G� contains at least one node in the set
Z � Because the 	m�separated
 relation is symmetric� we sometimes simply say that
two nodes x and y are m�separated by Z if x is m�separated from y by Z� Two
sets X and Y are m�separated by set Z if x and y are m�separated by set Z for
each x � X and each y � Y �

Let d be a decision node in G � let m�G� be the moral graph of G and let Gd

be the undirected graph obtained from m�G� by removing all the nodes in ��d� �
The downstream Yd of d is the set of all the nodes that are connected to d in
Gd � with d excluded� The upstream Xd of d is the set of all the nodes that are
not connected to d in Gd � The upstream Xd and the downstream Yd of d are
m�separated by ��d� � This property is important for in�uence diagrams because
m�separation implies conditional independence�

An in�uence diagram is stepwise decomposable if� for each decision node d and
for any node x � ���nond�d��D� � the following holds� fxg���x� � Xd���d� � This
de�nition implies that for each decision node d and any node x � ���nond�d��D��
fxg � ��x� and Yd are m�separated by ��d��

In a stepwise decomposable in�uence diagram� an arc into a decision node indi�
cates both information availability and functional dependence� More precisely� for
any decision node d and any other node x in a stepwise decomposable in�uence di�
agram� the presence of an arc x� d implies that the value of variable x is available
at the time when decision d is to be made� and it is not known that the information
is irrelevant to the decision� On the other hand� the absence of an arc x � d in a
stepwise decomposable in�uence diagram implies that either the value of variable x
is not available at the time when decision d is to be made� or it is known that the
information is irrelevant to the decision�

Stepwise decomposable in�uence diagrams have a number of advantages over
no�forgetting in�uence diagrams �Zhang ������ First� any no�forgetting in�uence
diagram is stepwise decomposable� thus� stepwise decomposability is more general
than no�forgetting� Second� stepwise decomposability allows representing the knowl�
edge that a piece of information �carried by a no�forgetting informational arc� is
irrelevant to the optimal decision function of the decision� Third� stepwise decom�
posability allows to model problems where the decision maker may 	forget
 some
information �Zhang ������ Finally� all irrelevant informational arcs can be automat�
ically detected and unharmfully removed from an in�uence diagram �Zhang �����
Zhang et al� ����c� so that it opens a possibility of simplifying in�uence diagrams
in a preprocessing step�

The results presented in this paper are applicable to regular stepwise decompos�
able in�uence diagrams �Qi ������ but we shall limit the exposition only to regular
in�uence diagrams with a single value node for simplicity�
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���� An example � the used car buyer problem

In order to illustrate how to use in�uence diagrams to represent decision problems�
let us consider the used car buyer problem �Howard ������ Joe is considering buying
a used car� The marked price is  ����� while a three year old car of this model is
worth  ����� if it has no defect� Joe is uncertain whether the car is a 	peach
 or
a 	lemon
� But Joe knows that� of the ten major subsystems in the car� a peach
has a defect in only one subsystem whereas a lemon has a defect in six subsystems�
Joe also knows that the probability for the used car being a peach is ��� and the
probability for the car being a lemon is ���� Finally� Joe knows that it will cost him
 �� to repair one defect and  ��� to repair six defects�

Observing Joe�s concern about the possibility that the car may be a lemon� the
dealer o�ers an 	anti�lemon guarantee
 option� For an additional  ��� the anti�
lemon guarantee will cover the full repair cost if the car is a lemon� and cover half
of the repair cost otherwise� At the same time� a mechanic suggests that some
mechanical examination should help Joe determine the car�s condition� In particular�
the mechanic gives Joe three alternatives� test the steering subsystem alone at a
cost of  �� test the fuel and electrical subsystems at a total cost of  ��� a two�test
sequence in which� the transmission subsystem will be tested at a cost of  ��� and
after knowing the test result� Joe can decide whether to test the di�erential subsystem
at an additional cost of  �� All tests are guaranteed to detect a defect if one exists
in the subsystem�s� being tested�

An in�uence diagram for the used car problem is shown in Fig� �� The random
variable CC represents the car�s condition� The frame for CC has two elements� peach
and lemon� The variable has no parent in the graph� thus� we specify its prior
probability distribution in Table ��

The decision variable T� represents the �rst test decision� The frame for T�
has four elements� nt� st� f�e and tr� representing respectively the options of
performing no test� testing the steering subsystem alone� testing the fuel and electrical
subsystems� and testing the transmission subsystem with a possibility of testing the
di�erential subsystem next�

The random variable R� represents the �rst test results� The frame for R� has
four elements� nr� zero� one and two� representing respectively the four possible
outcomes of the �rst test� no result� no defect� one defect and two defects� The
probability distribution of the variables� conditioned on T� and CC� is given in Table ��

The decision variable T� represents the second test decision� The frame for T�
has two elements� nt and diff� denoting the two options of performing no test and
testing the di�erential subsystem�

The random variable R� represents the second test results� The frame for the
random variable R� has three elements� nr� zero and one� representing respectively
the three possible outcomes of the second test� no result� no defect and one defect�
The probability distribution of the variables� conditioned on T�� R�� T� and CC� is
given in Table ��

The decision variable B represents the purchase decision� The frame for B has
three elements� �b� b and g� denoting respectively the options of not buying the
car� buying the car without the anti�lemon guarantee and buying the car with the
anti�lemon guarantee�
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R1
T1 T2 R2

CC

profitB

Figure �� An in�uence diagram for the used car buyer problem

Table �� The prior probability distribution of the car�s condition PfCCg

CC prob

peach ���

lemon ���

�� REVIEW OF ALGORITHMS FOR INFLUENCE DIAGRAM

EVALUATION

In this section� we review related research e�orts on in�uence diagram evaluation�
and classify them into two categories� Those in the �rst category use an intermedi�

Table �� The probability distribution of the �rst test result PfR�jT��CCg

T� CC R� prob

nt � nr ���
nt � others �

st � nr �
st � two �
st peach zero ��	
st peach one ���
st lemon zero ��

st lemon one ���

f�e � nr �
f�e peach zero ���
f�e peach one ���
f�e peach two �
f�e lemon zero ����
f�e lemon one ���
f�e lemon two ����
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Table �� The probability distribution of the second test result PfR�jT��R��T��CCg

T� R� T� CC R� prob

nt � � � nr ���
nt � � � others �

st � � � nr ���
st � � � others �

f�e � � � nr ���
f�en � � � others �

tr nr � � nr ���
tr nr � � others �
tr two � � nr ���
tr two � � others �
tr � nt � nr ���
tr � nt � others �
tr zero diff peach zero ���	
tr zero diff peach one ����
tr zero diff lemon zero ����
tr zero diff lemon one ����
tr one diff peach zero ���
tr one diff peach one �
tr one diff lemon zero ��


tr one diff lemon one ���

ate representation and evaluate an in�uence diagram in two conceptual steps� �rst
transforming the in�uence diagram into its intermediate representation and then
computing an optimal policy from the intermediate representation� Those in the sec�
ond category compute optimal policies directly from in�uence diagrams� Our method
belongs to the �rst category�

���� Howard and Matheson�s two�phase method

Howard and Matheson�s method belongs to the �rst category� It �rst transforms
an in�uence diagram into a decision tree and then evaluates an optimal policy from
the decision tree�

Howard and Matheson ������ discuss a way to transform a regular no�forgetting
in�uence diagram into a decision tree� The transformation involves two steps� An
in�uence diagram is �rst transformed into a decision tree network and then a decision
tree is constructed from the decision tree network� An in�uence diagram is a decision
tree network if it is regular and no�forgetting� and if all predecessors of each decision
node are direct parents of the decision node �Howard and Matheson ������ The basic
operation for transforming a regular� no�forgetting in�uence diagram into a decision
network is arc reversal �Howard and Matheson ����� Shachter ������ which will be
illustrated in the next subsection�

The major problem with this approach is that the resultant decision tree tends
to be large� The depth of the decision tree so obtained from an in�uence diagram
is equal to the number of variables in the in�uence diagram� Thus� the size of the
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decision tree is exponential in the number of variables in the in�uence diagram�

���� Methods for evaluating in�uence diagrams directly

The idea of evaluating in�uence diagrams directly was proposed in �Olmsted
������ The �rst complete algorithm for in�uence diagram evaluation was developed
by Shachter �������

Shachter�s algorithm� Shachter�s algorithm takes a reduction approach� The
algorithm evaluates an in�uence diagram by applying a series of value�preserving
reductions � A value�preserving reduction is an operation that can transform an
in�uence diagram into another one with the same optimal expected value�

Shachter identi�es four basic value�preserving reductions� namely� arc reversal �
barren node removal� random node removal and decision node removal �

The arc reversal operation is illustrated in Fig� �� Suppose a� b is an arc in an
in�uence diagram such that both a and b are random nodes and there is no other
directed path from node a to node b � The direction of the arc can be reversed and
both nodes inherit each other�s parents� This operation is an application of Bayes
Theorem� In Fig� �� we begin with conditional probability distributions Pfbja� y� zg
and Pfajx� yg � and end up with conditional probability distributions Pfajb� x� y� zg
and Pfbjx� y� zg � Formally� we have�

Pfbjx� y� zg�
X
a

Pfa� bjx� y� zg�
X
a

Pfbja� y� zg � Pfajx� yg

Pfajb� x� y� zg�
Pfa� bjx� y� zg

Pfbjx� y� zg
�
Pfbja� y� zg � Pfajx� yg

Pfbjx� y� zg

a b

x
zy

a b

x
zy

Figure �� An illustration of the arc reversal operation� reversing arc a � b

Barren node removal � A node in an in�uence diagram is called a barren node if it has
no child in the diagram� The barren node removal reduction states that any barren
node that is not a value node can be removed together with its incoming arcs�

Random node removal � If the value node is the only child of a random node x in
an in�uence diagram� then the node x can be removed by conditional expectation�
As a result of this operation� the random node x is removed and the old value node
is replaced with a new one that inherits all of the parents of both the old value node
and the random node� The reduction is illustrated in Fig� � where the value function
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g� of the new value node v� in the resultant in�uence diagram is given by�

g��a� b� c� �
X
x

g�x� b� c�� Pfxja� bg�

Decision node removal � A decision node is called a leaf decision node if it has no
decision node descendant� If a leaf decision node d has the value node v as its only
child and ��v� � fdg���d� � then the decision node can be removed by maximization�
The reduction is illustrated in Fig� � where the value function g� of the new value
node v� in the resultant in�uence diagram is given by�

g��b� � maxd g�d� b��

The maximizing operation also results in an optimal decision function �d for the leaf
decision node through

�d�b� � arg maxd g�d� b��

Note that the new value node has the same parent as the old value node� Thus�
some of the parents of d may become barren nodes as a result of this reduction�
In Fig� �� node a becomes a barren node� The arc from such a node represents
information available to the decision maker� but the information has no e�ect on
either the optimal expected value or the optimal policy of the in�uence diagram�
This kind of arc �such as a� d in Fig� �� is called an irrelevant arc� Irrelevant arcs
can be identi�ed and removed in a pre�processing step �Zhang ����� Zhang et al�
����a� Zhang et al� ����c��

a cb

v’vx

a cb

Figure �� An illustration of random node removal� x is removed by expectati on

v

b

d

a ba

v’

Figure �� An illustration of decision node removal� d is removed by maximization
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Other developments� In�uence diagrams are closely related to Bayesian nets
�Pearl ������ Quite a few algorithms have been developed in the literature �Jensen et
al� ����� Lauritzen and Spiegelhalter ����� Pearl ����� Shachter et al� ����� Zhang
and Poole ����a� for computing marginal probabilities and posterior probabilities
in Bayesian nets� Thus� it is natural to ask whether we can make use of these
Bayesian net algorithms for in�uence diagram evaluation� This problem is examined
in �Cooper ����� Ndilikilikesha ����� Shachter ����� Shachter and Peot ����� Shenoy
����� Shenoy ����� Zhang et al� ����a� Zhang and Poole ����b�� and the answer is
a�rmative�

Recall that a decision function for decision node d in an in�uence diagram is a
mapping from ��
d� to �d � It is observed in �Cooper ����� Shachter ����� Shachter
and Peot ����� Zhang and Poole ����b� that given a regular� no�forgetting in�uence
diagram� the optimal policy can be computed by sequentially computing the opti�
mal decision functions for decision nodes� one at a time� starting from the last one
backwards� The computation of the optimal decision function of a decision node is
independent of those decision nodes that precede the decision node�

Cooper ������ gives a recursive formula for computing the maximal expected
values and optimal policies of in�uence diagrams� To some extent� the formula serves
as a bridge between the evaluation of Bayesian nets and that of in�uence diagrams�

Shachter and Peot ������ show that the problem of in�uence diagram evaluation
can be reduced to a series of Bayesian net evaluations� To this end� the decision nodes
are transformed into random nodes with a uniform distribution� and the value node
of an in�uence diagram is replaced with an 	observed
 probabilistic utility node v�

with frame f�� �g and a normalized probability distribution� The optimal decision
function �n for the last decision node dn can be computed as follows� for each
element e � ��
dn� �

�n�e� � arg maxa��dn
Pfdn � a� ��dn� � ejv� � �g�

The optimal decision function �i of the decision node di is computed after the
optimal decision functions �i�� ���� �n have been obtained� The decision nodes
di�� � ���� dn are �rst replaced with their corresponding deterministic random�nodes
in the in�uence diagram� The decision function �i is then computed as follows� for
each element e � ��
di� �

�i�e� � arg maxa��di
Pfdi � a� ��di� � ej�i��� ���� �n� v

� � �g�

The problem of in�uence diagram evaluation is then reduced to a series of problems
of computing posterior probabilities in Bayesian nets� Shachter and Peot ������
also point out that an in�uence diagram can be converted into a cluster tree� which
is similar to the clique trees �Lauritzen and Spiegelhalter ����� of Bayesian nets�
and that the problem of evaluating the in�uence diagram can thus be reduced to
evaluating the cluster tree� A similar approach has also been used by Shenoy ������
for his valuation based systems and by Ndilikilikesha ������ for evaluating potential
in�uence diagrams �

Zhang and Poole �����b� propose a divide�and�conquer method for evaluating
stepwise decomposable in�uence diagrams� This method is further studied in �Zhang
et al� ����a� Zhang ������ Like Shachter and Peot�s algorithm� Zhang and Poole�s
method also deals with one decision node at a time� Unlike Shachter and Peot�s
algorithm� Zhang and Poole�s method takes a reduction approach� Suppose node d
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is a leaf decision node of a stepwise decomposable in�uence diagram I � The set
��d� separates the in�uence diagram into two parts� namely a body and a tail �
The tail is a simple in�uence diagram with only one decision node � d �� The body�s
value node is a new node whose value function is obtained by evaluating the tail� A
reduction step with respect to the decision node d transforms I to the body� The
main computation involved in a reduction step� however� is for evaluating the tail�

Since the tail is a simple in�uence diagram with only one decision node� its
evaluation can be directly reduced to a problem of computing posterior probabilities
in a Bayesian net� as suggested in �Shachter and Peot ����� Zhang et al� ����a��
The result of the evaluation consists of two parts� a value function g� � ��
d� � R �
and an optimal decision function �d � ��
d� � �d � The same reduction is applicable
to the resulting body�

���� Some common weaknesses of the previous algorithms

One common weakness of the algorithms that evaluate in�uence diagrams di�
rectly is that they fail to provide any explicit mechanism to make use of domain
dependent information �e�g�� a heuristic function estimating the optimal expected
values of in�uence diagrams�� even when it is available for some problems�

Another notable and common shortcoming of these algorithms is inherited from
the disadvantages of conventional in�uence diagrams for asymmetric decision prob�
lems� To be represented by an in�uence diagram� an asymmetric decision problem
must be 	symmetrized�
 This symmetrization results in many 	impossible
 infor�
mation states �they have zero probability�� The optimal choices for these impossible
states need not be computed at all� We use the used car problem to illustrate this
point�

The used car buyer problem is asymmetric in a number of aspects� First� the
set of the possible outcomes of the �rst test result varies� depending on the choice
for the �rst test� If the choice for the �rst test is nt� then there is only one possible
outcome for the �rst test result � nr �representing no result�� If the choice for the
�rst test is st or tr� then there are two possible outcomes for the �rst test result �
zero and one �representing no defect and one defect� respectively�� If the choice for
the �rst test is f�e� then there are three possible outcomes for the �rst test result �
zero� one and two �representing no defect� one defect and two defects� respectively��
However� in the in�uence diagram representation� the frame of the variable R� is a
common set of outcomes for all the three cases� The impossible combinations of the
test choices and the test results are characterized by assigning zero probability to
them �as shown in Table ��� A similar discussion is applicable to the variable R��
Second� from the problem statement we know that testing the di�erential subsystem
is possible only in the states where the �rst test performed is on the transmission
subsystem� However� in the in�uence diagram representation� it appears that the
second test is possible in any situation� while the fact that the option of testing the
di�erential subsystem is not available in some situations is characterized by assigning
unit probability to outcome nr of the variable R� conditioned on these situations�
Third� when we examine the information states of the decision variable T�� we will
see many combinations of test options and test results are impossible� For example�
if Joe �rst tests the transmission subsystem� it is impossible to observe nr and two� If
the in�uence diagram is evaluated by conventional algorithms� an optimal choice for
the second test will be computed for each of the information states� including many
impossible states� Similar argument is applicable to the decision variable B� Because
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it is not necessary to compute optimal choices of a decision variables for impossible
states� it is desirable to avoid the computation�

Existing algorithms for directly evaluating in�uence diagrams have two weak�
nesses� stemming from the symmetrization� The �rst one is that� for each decision
node d � they will perform a maximization operation conditioned on each information
state in ��
d� � even though the marginal probabilities of some states are zero� This
weakness arises from the fact that these algorithms compute the decision functions
in the reverse order of the decision nodes in the in�uence diagram� At the time
of computing the decision function for decision d � the marginal probabilities of the
information states in ��
d� are not computed yet� The second weakness is that opti�
mal choices for a decision node are chosen from the whole frame �d � instead of from
the corresponding e�ective frames� Thus� it is evident that these algorithms involve
unnecessary computation�

�� OUR SOLUTION

In this section� we present an approach for overcoming the aforementioned week�
nesses� Our approach consists of two independent components� a simple extension
to in�uence diagrams and a two�phase method for in�uence diagram evaluation�

Our extension allows explicitly expressing the fact that some decision variables
have di�erent frames in di�erent information states� We achieve this by introduc�
ing a framing function for each decision variable� which characterizes the available
alternatives for the decision variable in di�erent information states� With the help
of framing functions� our solution algorithm e�ectively ignores the unavailable alter�
natives when computing an optimal choice for a decision variable in any information
state� Our extension is inspired by the concepts of indicator valuations and e�ective
frames proposed by Shenoy �������

Conceptually� our evaluation method� similar to Howard and Matheson�s �Howard
and Matheson ������ consists of two steps� in order to evaluate an in�uence diagram�
a decision graph is generated and the evaluation is then carried out on the decision
graph� The �rst step will be described in this section� The second step can be carried
out by the search algorithms presented in �Qi ����� Qi and Poole ������ By using
those search algorithms� the two steps of decision graph generation and optimal
policy computation can be combined into one� and only a portion of the decision
graph needs to be generated� due to heuristic search� Our method successfully avoids
the unnecessary computations by pruning those impossible states and ignoring those
unavailable alternatives for the decision variables�

���� Extending in�uence diagrams

We extend in�uence diagrams by introducing framing functions to the de�nition
given in Section �� With this extension� an in�uence diagram I is a tuple I �
�X�A�P �U �F� where X�A�P �U have the same meaning as before� and F is a set
ffd � ��
d�jd�D � ��dg of framing functions for the decision nodes�

A framing function expresses the fact that the legitimate alternative set for a
decision variable may vary in di�erent information states� More speci�cally� for a
decision variable d and an information state s � ��
d� � fd�s� is the set of the
legitimate alternatives the decision maker can choose for d in information state s �
Following Shenoy ������� we call fd�s� the e�ective frame of decision variable d in
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information state s �
With this extension� a decision function �i must satisfy the following constraint�

For each s � ��
di� � �i�s� � fdi�s� � In words� the choice prescribed by a deci�
sion function for a decision variable d in an information state must be a legitimate
alternative�

In the used car problem� the framing functions for the �rst test decision and
the purchase decision are simple � they map every information state to the corre�
sponding frames� The frame function for the second test decision can be speci�ed as
follows�

fT��X� �

�
fnt� diffg if �T��X� � tr
fntg otherwise�

���� Decision graphs

Decision graphs �Qi ����� Qi and Poole ����� are a generalization of decision trees
�Qi and Poole ����� Rai�a ������ allowing structure sharing� A decision graph can be
viewed as an acyclic ANDOR graph �Pearl ����� Nilsson ����� with a maximization�
expectation evaluation function� Nodes in a decision graph are classi�ed into two
types� choice nodes and chance nodes � Each decision graph has exactly one root � A
subset of nodes is designated as terminals� Each terminal has a value associated with
it� A value is associated with each arc emanating from a choice node� A probability
is associated with each arc emanating from a chance node and the probabilities of
all the arcs from a chance node sum to unit�

A solution graph SG � w�r�t� a node M � of a decision graph DG is a graph with
the following characteristics�

�� M is in SG �
�� If a non�terminal chance node of DG is in SG � then all of its children are in

SG �
�� If a non�terminal choice node of DG is in SG � then exactly one of its children

is in SG �

A solution graph w�r�t� the root of a decision graph is simply referred to as a solution
graph of the decision graph�

Let DG be a decision graph� A max�exp evaluation of DG is a real�valued
function u de�ned as follows�

�� If N is a terminal� u�DG� N� � V �N� � where V �N� denotes the value associ�
ated with the terminal N �

�� If N is a chance node with k children N�� ���� Nk in DG �

u�DG� N� �
Pk

i�� p�N�Ni� � u�DG� Ni� � where p�N�Ni� is the probability on
the arc from node N to node Ni �

�� If N is a choice node with k children N�� ���� Nk in DG �
u�DG� n� � maxki��fv�N�Ni� ! u�DG� Ni�g� where v�N�Ni� is the value on the
arc arc from node N to node Ni �

The value given by u�DG� N� is called the max�exp value of the node N � Note that
the above de�nition is applicable to a solution graph as well since a solution graph
is a special decision graph�
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���� In�uence Diagram Evaluation via Stochastic Dynamic Programming

In this section� we establish a stochastic dynamic programming formulation for
in�uence diagram evaluation by studying the relationship among the conditional
expected values of in�uence diagrams�

A decision node d directly precedes another decision node d� if d precedes d�

and there is no other decision node d�� such that d precedes d�� and d�� precedes d� �
A decision node that is preceded by no other decision node is called a root decision
node� A decision node that precedes no other decision node is called a leaf decision
node� In a regular in�uence diagram� a decision node can directly precede at most
one decision node�

Let I be a regular� stepwise decomposable in�uence diagram with a single value
node v and with decision nodes d� � ���� dn in the precedence order� Let Ydk denote
the downstream of dk � Let I�dk� dk��� denote the subgraph consisting of dk � ��dk� �
��dk��� and those nodes in Ydk that are not m�separated from dk�� by ��dk��� �
Procedurally� I�dk� dk��� can be obtained from I as follows� ��� remove all nodes
that are m�separated from dk by ��dk�� excluding the nodes in ��dk� � ��� remove all
descendants of dk�� � ��� remove all barren nodes not in ��dk��� � ��� remove all arcs
among nodes in ��dk�� fdkg and assign uniform distributions to the root nodes in
��dk� � fdkg �

I�dk� dk��� is called the sector� of I from dk to dk�� � The sector I��� d��
contains only the nodes in ��d�� and those nodes that are not m�separated from
d� by ��d�� � The sector I�dn��� contains those nodes in ��dn� � fdng and those
nodes in the downstream Ydn of dn �

Note that the sector I��� d�� is a Bayesian net� Furthermore� because I is
stepwise decomposable� dk is the only decision node in the sector I�dk� dk��� that
is not in ��dk�� Similarly� dn is the only decision node in the sector I�dn��� that is
not in ��dn��

Let e be any event in I� and let E��vje� be de�ned as follows�

E��vje� �
X

o����v�

g�o� � P�f��v� � ojeg�

For each k with � 	 k 	 n � let Uk be a function de�ned as follows�

Uk�x� �� � E��vj��dk� � x� ���

Informally� Uk�x� �� is the expected value of the in�uence diagram with respect to
policy � � conditioned on ��dk� � x �

Let �� � ����� ���� �
�
n� be an optimal policy for in�uence diagram I and let Vk be

a function de�ned as
Vk�x� � Uk�x� �

���

Intuitively� Vk�x� is the optimal expected value of the in�uence diagram I condi�
tioned on ��dk� � x � In other words� Vk�x� is the expected value a decision maker
can obtain if heshe starts to make optimal decisions in the situation represented by
the event ��dk� � x �

�The assignment of uniform distributions to the root nodes in �
dk��fdkg is only to make I
dk � dk���
a Bayesian network� Since we will only be considering probabilities conditioned on �
dk�� fdkg � the distri�
butions of those nodes are irrelevant�

�Previously� such a part of an in�uence diagram has been called a section 
Zhang et al� ���a��
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Let V �
k�x� a� be an auxiliary function de�ned as�

V �
n�x� a� �

X
y����v�

g�y� � P��f��v� � yj��dn� � x� dn � ag ���

V �
k�x� a� �

X
y����dk���

Vk���y� � P��f��dk��� � yj��dk� � x� dk � ag ���

Intuitively� V �
k�x� a� is the optimal expected value of the in�uence diagram I con�

ditioned on ��dk� � x� dk � a � In other words� V �
k�x� a� is the expected value a

decision maker can obtain if he starts to make decisions in the situation represented
by the event ��dk� � x � and �rst chooses a for dk �in this situation� and then
follows an optimal policy for the remaining decisions�

The following theorem� taken from �Qi ������ establishes the computational struc�
ture of in�uence diagram evaluation in the form of �nite�stage stochastic dynamic
programming �Ross ������ A proof of this theorem is given in Appendix A�

Theorem �� Let I be a regular and stepwise decomposable in�uence diagram with
single value node� Let functions Vk and V �

k be de�ned as before� and let �� �
���� � ���� �

�
n� be an optimal policy for I � For any k with � 	 k � n � and x � ��
dk�

and a � �dk � the following relations hold�

V �
k�x� a� �

X
y����dk���

Vk���y� � Pf��dk��� � yj��dk� � x� dk � ag ���

Vk�x� � V �
k�x� �

�
k�x�� � maxa��dk

V �
k�x� a� ���

��k�x� � arg maxa��dk
fV �

k�x� a�g ���

E���v� �
X

x��d�

V��x� � Pf��d�� � xg� ���

where Pf��d�� � xg � P��f��d�� � xg and Pf��dk��� � yj��dk� � x� dk � ag �
P��f��dk��� � yj��dk� � x� dk � ag � both independent of �� � can be computed in
the sector I�dk� dk��� by any Bayesian net algorithm�

Equations � and � collectively form a variation of Bellman�s optimality equation
�Bellman ����� for stochastic dynamic programming�

Theorem � shows that functions V�� ���� Vn and ��� � ���� �
�
n � as well as E�� �v� can

be computed from V �
n � The computation process is similar to the one implied in the

recursive formula given in �Cooper ������ For an in�uence diagram� the computation
can be roughly divided into two parts� one for computing conditional probabilities�
which can be computed by using Bayesian net algorithms� and one for the summations
and maximizations as speci�ed in Equations � and �� The de�nition of V �

n is given
by Equation ��

���� Representing the Computational Structure by Decision Graphs

In this section� we use decision graphs to depict the computational structures
of the optimal expected values of in�uence diagrams� For each in�uence diagram�
we can construct a decision graph and de�ne a max�exp evaluation function for the
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decision graph in such a way that the solution graphs of the decision graph correspond
to the policies for the in�uence diagram� and the optimal solution graphs correspond
to the optimal policies�

Before we discuss how to construct decision graphs for in�uence diagrams� we
need some terminology�

Let d be a decision variable in an in�uence diagram� For each x � ��
d� � we call
assignments of the form ��d� � x parent situations for the decision variable d � For
each alternative a � �d � we call assignments of the form ��di� � x� d � a inclusive
situations for the decision variable d � Two situations are consistent if the variables
common to the two situations are assigned the same values�

For an in�uence diagram� we de�ne a decision graph in terms of situations� In
the graph� a choice node represents a parent situation and a chance node represents
an inclusive situation� The following is a speci�cation of such a decision graph for
an in�uence diagram�

� A chance node denoting the empty situation is the root of the decision graph�
� For each information state x � ��
d�� � there is a choice node� denoting the parent

situation ��d�� � x � as a child of the root in the decision graph� The arc from
the root to the node is labeled with the probability Pf��d�� � xg �

� Let N be a choice node in the decision graph denoting a parent situation ��d� �
x for some decision variable d and some x � ��
d� � Let fd�x� be the e�ective
frame for the decision variable d in the information state x � Then� N has
jfd�x�j children� each being a chance node corresponding to an alternative� in
fd�x� � The node corresponding to alternative a denotes the inclusive situation
��d� � x� d � a �

� The node denoting an inclusive ��dn� � x� dn � a is a terminal in the decision
graph� having value V �

n�x� a� �
� Let N be a chance node denoting an inclusive situation ��di��� � x� di�� � a �

and let A be the subset of the parent situations for decision variable di which
are consistent with ��di��� � x� di�� � a � Node N has jAj children� each being
a choice node denoting a parent situation in A � The arc from N to the child
denoting a parent situation ��di� � y is labeled with the conditional probability�

Pf��di� � yj��di��� � x� di�� � ag �

In such a decision graph� a choice node represents a situation of the form ��di� � x
for some i and x � ��
di� � In such a situation� the decision agent needs to decide
which alternative among fdi�x� should be selected for di � Thus� the choice node
has jfdi�x�j children� each for an alternative in fdi�x� � The child corresponding to
alternative a is a chance node� representing the probabilistic state ��di� � x� di � a �
From this probabilistic state� one of the information states of di�� may be reached�
The probability of reaching information state y is Pf��di��� � yj��di� � x� di � ag �

Let DG be a decision graph derived from an in�uence diagram� We can de�ne
an evaluation function� u � on DG as follows�

� If N is a terminal representing a situation ��dn� � x� dn � a � then

u�DG � N� � V �
n�x� a�

�Note that here we are using the e�ective frame fd
x� instead of the frame �d �
	Note that probabilities of this kind on arcs are not computed unless necessary� This point will be clear

in Section ����
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� If N is a chance node with children N�� ���� Nl � then

u�DG � N� �
lX

i��

p�N�Ni� � u�DG � Ni�

where p�N�Ni� is the probability on the arc from node N to node Ni �
� If N is a choice node with children N�� ���� Nl � then

u�DG � N� � maxli��fu�DG � Ni�g�

The following theorem can be easily proved by induction on nodes in the decision
graph�

Theorem �� ��� If N is a choice node representing a parent situation ��dk� � x �
then u�N� � Vk�x� �

��� If N is a chance node representing an inclusive situation ��dk� � x� dk � a �
then u�N� � V �

k�x� a� �
��� If N is the root� then u�N� is equal to the optimal expected value of the

in�uence diagram�

The correspondence between the optimal policies of the in�uence diagrams and the
optimal solution graphs becomes apparent� As a matter of fact� an optimal solution
graph of the decision graph can be viewed as a representation of decision tables in
which all the unreachable situations are removed �Zhang et al� ����c��

���� Avoiding unnecessary computations

We observe that the asymmetry of an in�uence diagram is re�ected by arcs with
zero probability in the corresponding decision graph� As we know� the value of a
chance node in a decision graph is the weighted sum of the values of its children� If
the probability on the arc to a child is known in advance to be zero� then there is
no need to compute the value of the child �as far as this chance node is concerned��
In case the probabilities on the arcs to a choice node are all zero� the value of the
node will never be required� Thus� we need not compute the max�exp value of� and
the optimal choice for� the node� In this case� the probability of the information
state denoted by the choice node is zero� Thus� it is equivalent to say we need not
compute the optimal choice for the corresponding decision variable for the impossible
information state� One way to avoid such computation for the impossible states is
by pruning those choice nodes corresponding to impossible states� The following
procedure for generating a decision graph for an in�uence diagram e�ectively realizes
this objective�

��� generate the root node and put it into set G �
��� if G is empty then stop�
��� pick a node N from G and set G to G� fNg�
��� if N is a terminal node then go to ����
��� generate the child set C�N� of node N � if N is a choice node� set G to G �

C�N� � otherwise let C ��N� be the subset of C�N� such that the probabilities
of the arcs from N to the nodes in C��N� are non�zero� set G to G � C��N� �

��� goto ����
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The above procedure will not expand a choice node unless its probability is not zero�
Thus� the procedure e�ectively ignores subgraphs rooted at nodes corresponding to
impossible states� Thus� the computation �for computing optimal choices for choice
nodes and for computing the conditional probabilities� involved in the subtrees is
totally avoided�

When applying the above procedure to the used car buyer problem� a decision
graph �tree� shown in Fig� � is generated� In the graph� the leftmost box represents
the only situation in which the �rst test decision is to be made� The boxes in
the middle column correspond to the information states in which the second test
decision is to be made� Similarly� the boxes in the right column correspond to the
information states in which the purchase decision is to be made� From the �gure we
see that among those nodes corresponding to the information states of the second
test� all but two have only one child because the e�ective frames of the second
test in the those information states have only a single element� Making use of the
framing function this way is equivalent to six prunings� each cutting a subtree under
a node corresponding to an information state of the second test� Those shadowed
boxes correspond to the impossible states� Our algorithm e�ectively detects those
impossible states and prune them when they are created� Each of such pruning
amounts to cutting a subtree under the corresponding node� Consequently� our
algorithm does not compute optimal choices for a decision node for those impossible
states� For the used car buyer problem� our algorithm computes optimal choices
for the purchase decision for only �� information states� and optimal choices for the
second test for only � information states �among which six can be computed trivially��
In contrast� whereas those algorithms that do not exploit asymmetry will compute
the optimal choices for the purchase decision for �� ��
 �
 �
 �� information states
and will compute optimal choices for the second test for �� information states�

Better performance will be achieved by using decision graph search algorithms
�Qi ����� Qi and Poole ������ By using these algorithms� the step for generating
decision graph and the step for computing optimal solution graph are combined� and
some subgraphs may not be processed at all�

To use these algorithms� we need a heuristic function that gives admissible es�
timation on u�s� for any situation s � Note that the notion of admissibility for a
heuristic function here is di�erent from the traditional one� Because we are maximiz�
ing merit instead of minimizing cost� we de�ne a heuristic function to be admissible
if it never under�estimates for any situation s � Formally� a function h is admissible
if h�s� � u�s� for any situation s � An obvious admissible heuristic function for an
in�uence diagram evaluation problem is the one returning !� for each situation�
Performance can be further enhanced if we can obtain a more informed heuristic
function by using domain�dependent knowledge�

���� A comparison with Howard and Matheson�s method

The relationship between our method and Howard and Matheson�s should now
be clear� In both methods� an in�uence diagram is �rst transformed into a secondary
representation from which an optimal policy is computed� However� there are a few
notable di�erences between the two methods�

First� Howard and Matheson�s method works only for no�forgetting in�uence di�
agrams while ours is applicable to regular stepwise decomposable in�uence diagrams�

Second� the sizes of the secondary representation generated by the two methods
are di�erent� For a given in�uence diagram� the depth of the decision tree obtained by
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Figure �� A decision graph �tree� generated for the used car buyer problem

Howard and Matheson�s method is equal to the number of variables in the in�uence
diagram� while the depth of the decision graph obtained by our method is �n � where
n is the number of decision variables in the in�uence diagram� Typically� there
are more random variables than decision variables in a decision problem� thus the



A New Method for Influence Diagram Evaluation ��

depth of the decision tree obtained by Howard and Matheson�s method is larger than
the depth of the decision graph obtained by ours for the same in�uence diagram�
Furthermore� the number of nodes in the decision tree obtained by Howard and
Matheson�s method from an in�uence diagram is exponential in the depth of the
tree� but this is not necessarily true for the decision graph obtained by our method�
In fact� the number of nodes in a decision graph obtained by our method is�

� ! j��
dn�j!
n��X
i��

�j��
di�j! j��
di�j � j�dij��

Third� both methods need to compute some conditional probabilities� In Howard
and Matheson�s method� these probabilities are computed by directly applying Bayes
theorem� while in our method� we can use those algorithms developed for Bayesian
net evaluation�

�� HOW MUCH CAN BE SAVED�

In this section� we give a general analysis of how much computation can be saved
by exploiting asymmetry for a typical class of decision problems� Since the number of
optimal choices to be computed is a relative measure on the time an algorithm takes
for evaluating an in�uence diagram� we compare the number of optimal choices to be
computed by our method against other methods� Consider the following generalized
buying problem�

Suppose we have to decide whether to buy an expensive and complex item�
Before making the decision� we can have n tests� denoted by T�� ���� Tn � on
the item� Suppose test Ti has ki alternatives and ji possible outcomes for
i � �� ���� n� Among the ki alternatives for test Ti� one stands for the option
of no�testing� Correspondingly� among the ji possible outcomes of test Ti�
one stands for no observation� resulting from the no�testing alternative�

An in�uence diagram for this problem is shown in Fig� �� In this in�uence diagram�
decision variable Ti has a frame of size ki � including an alternative nt for not
testing� and random variable Ri has a frame of size ji � including an outcome nr for
no observation� Let Hi � kiji� The size of ��
Ti� is "i��

l��Hl � Thus� the decision Ti
has "i��

l��Hl information states� the decision B has "n
l��Hl information states� If we

do not exploit the asymmetry of the problem� we will have to compute an optimal
choice for every decision and each of its information states� The total number isPn��

i�� "i��
l��Hl�

Let us consider for how many information states our method will compute optimal
choices for each decision variable� To do so� we simply count the number of choice
nodes in the decision graph �actually� decision tree� generated by our method from
the in�uence diagram�

Before counting� let us �rst make some notes on the conditional probabilities
we will use in the process of decision graph construction� During the process� we
need the conditional probabilities Pf��di���j��di�� dig � where di denotes Ti for
i � �� ���� n and dn�� denotes B � the purchase decision� First� because ��di��� �
��di� � fdi� Rig � we have�

Pf��di���j��di�� dig � Pf��di�� di� Rij��di�� dig � PfRij��di�� dig�
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Second� for any given information state y � ��
di� with � 	 i 	 n � the total
number of test�choicetest�result combinations is kiji � Among these combinations�
some have zero probability� as illustrated by the partial decision tree shown in Fig� ��
where shadowed boxes correspond to the zero probability combinations� The number
of conditionoutcome combinations with zero probability determines the degree of
asymmetry of the problem� Let Jir�y� denote the set of possible outcomes of Ri

if the choice for Ti in situation ��di� � y is ar � �Ti � In terms of probability
distributions� this is equivalent to saying that� for all y � ��
di� � for all ar � �di and
for all x � �Ri

� Jir�y�

PfRi � xj��di� � y� di � arg � �

and for all y � ��
di� and for all ar � �di

X
x�Jir
y�

PfRi � xj��di� � y� di � arg � ��

Thus� the total number of non�zero probability combinations of test�choicetest�

result� conditioned on ��di� � y � is bounded from above by
Pki

r�� jJir�y�j� Let

hi�y� �
Pki

r�� jJir�y�j and hi � maxy hi�y��
At the most conservative extreme� we can assume that for any y � ��
di�� there

exist some a � �di and some x � �Ri
such that

PfRi � xj��di� � y� di � ag � ��

In this case� the total number of non�zero probability combinations of test�choicestest�
results is bounded from above by kiji � ��

A reasonable assumption we can make about a practical decision problem is
that� for any decision variable� the choice of do�nothing will always lead to no result
while a choice other than do�nothing will always lead to some results� We call
this assumption the 	no action� no result
 assumption� For the generalized buying
problem� this assumption means that no�test choice nt for decision node Ti will
lead to no observation nr as the only possible outcome of Ri � and other test choices
will not lead to no observation nr� The partial decision tree in Fig� � depicts this
case� where shaded nodes correspond to the states with zero probability� In terms of
probability distributions� we have�

PfRi � xj��di� � y� di � ntg � �

PfRi � nrj��di� � y� di � ntg � �

for any x � �Ri
� x �� nr � and any y � ��
di�� and

PfRi � nrj��di� � y� di � ag � �

for any a � �di � a �� nt � and y � ��
di�� In this case� the total number of non�
zero probability combinations of test�choicestest�results is bounded from above by
� ! �ki � ���ji � ���

Now� let us count the number of choice nodes in the decision graph that corre�
spond to information states with non�zero probabilities� Based on the above analysis
of the probability distributions� we have the following� T� has one parent situation�
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BnRT1 2RR1 2T n-1R Tn

condition profit

Figure �� An in�uence diagram for a generalized buying problem

T� has at most h� parent situations with non�zero probabilities� T� has at most
h�h� parent situations with non�zero probabilities� etc�� and B has at most "n

l��hl
parent situations with non�zero probabilities� Thus� the total number of choice nodes
in the decision graph is bounded from above by

Pn��
i�� "i��

l��hl �
Let �i � Hi�hi � We call �i the 	savings factor
 with respect to decision Ti �

Since hi 	 � ! �ki � ���ji � �� � Hi� we have �i � �kiji���� ! �ki � ���ji � ��� � ��
The overall savings factor is given by

� �

Pn��
i�� "i��

l��HlPn��
i�� "i��

l��hl
�

"n
l��HlPn��

i�� "i��
l��hl

�
"n
l �lPn��

i��
�

�n
l
i

hl

�

It is reasonable to assume that hi � � for i � �� ���� n� Then we have � �
�n
i
��i
� �

For example� suppose ki � � �each test has three alternatives plus the alternative
of no test� and ji � � for i � �� ���� n� Then we have �i � ����� in the most
conservative extreme� and �i � ����� under the 	no action� no result
 assumption�

Then� the overall savings factor is bounded from below by 
������n

� in the most

conservative extreme� and by 
������n

� under the 	no action� no result
 assumption�
In the above analysis� we assume that test Ti has exactly ki alternatives in every

information state� In fact� the set of legitimate alternatives for test decision Ti in
an information state s is fTi�s� and may have fewer than ki elements� Thus� the
actual overall savings factor could be much greater than "n

i���i���
Finally� let us note that the above analysis is applicable to any decision problem�

as long as it satis�es the 	no action� no result
 assumption� Exploiting asymmetry
will lead to a savings factor that is exponential in the number of asymmetric decisions
in the decision problem�

It is worth pointing out that an exponential savings factor for an exponential
problem may not change the exponential nature of the problem� More speci�cally�
suppose that problem P will take algorithm A O�cn� time units and take algorithm
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Figure �� An illustration of the asymmetry of a decision variable

B O�c�	�n time units with 	 � � � We say that algorithm B has an exponential
savings factor in comparison with algorithm A because algorithm B runs 	n times
faster than algorithm A� Although algorithm B is still an exponential algorithm�
for a �xed time resource� algorithm B may be able to handle larger problems than
algorithm A� Let na and nb be the size of the largest problems algorithms A and B
can handle� respectively� Then na and nb satisfy�

cna � �c�	�nb

or
nb
na

�
log c

log c� log	
�

For example� let us consider again the generalized buying problem� Suppose that
each decision in the problem has two alternatives and each random node has three
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outcomes� i�e�� ki � � and ji � � for i � �� ��� n � It takes those algorithms that do
not exploit asymmetry O�� � ��n time units and it takes our algorithm O��n� time
units� In this case� we have c � � and 	 � � � Thus� we have nb � na log �� log � �
����na � Note that for the same 	 � the bigger the value of c � the smaller the ratio
nb�na �

By applying the analysis results to the used car buyer problem� we have� H� �
�� � H� � � � h� � � � and h� � � � Thus� �� � � and �� � � � � � ��!��!������!
� ! ��� � ��� �

�� RELATED WORK FOR HANDLING ASYMMETRIC DECISION

PROBLEMS

Recognizing that in�uence diagrams are not e�ective for asymmetric decision
problems� several researchers have recently proposed alternative representations�

Fung and Shachter ������ propose contingent in�uence diagrams for explicitly
expressing asymmetry of decision problems� In that representation� each variable
is associated with a set of contingencies� and associated with one relation for each
contingence� These relations collectively specify the conditional distribution of the
variable�

Covaliu and Oliver ������ propose a di�erent representation for representing de�
cision problems� This representation uses a decision diagram and a formulation table
to specify a decision problem� A decision diagram is a directed acyclic graph whose
directed paths identify all possible sequences of decisions and events in a decision
problem� In a sense� a decision diagram is a degenerate decision tree in which paths
having a common sequence of events are collapsed into one path �Covaliu and Oliver
������ Numerical data are stored in the formulation table�

Shenoy ������ proposes a 	factorization
 approach for representing degenerate
probability distributions� In that approach� a degenerate probability distribution
over a set of variables is decomposed into several factors over subsets of the variables
such that the their 	product
 is equivalent to the original distribution�

Smith et al� ������ present some interesting progress towards exploiting asym�
metry of decision problems� They observe that an asymmetric decision problem often
has some degenerate probability distributions� and that the in�uence diagram evalu�
ation can be speed up if these degenerate probability distributions are used properly�
Their philosophy is analogous to the one behind various algorithms for sparse matrix
computation� In their proposal� a conventional in�uence diagram is used to repre�
sent a decision problem at the level of relation� In addition� they propose to use a
decision tree�like representation to describe the conditional probability distributions
associated with the random variables in the in�uence diagram� The decision tree�
like representation is e�ective for economically representing degenerate conditional
probability distributions� They propose a modi�ed version of Shachter�s algorithm
�Shachter ����� for in�uence diagram evaluation� and show how the decision tree�like
representation can be used to increase the e�ciency of arc reversal � a fundamental
operation used in Shachter�s algorithm� However� their algorithm cannot avoid com�
puting optimal choices for decision variables with respect to impossible information
states�
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�� CONCLUSIONS

In this paper we analyzed some drawbacks of in�uence diagrams and existing
evaluation algorithms with asymmetric decision problems and we presented an ap�
proach for overcoming the drawbacks� Our approach consists of a simple extension to
in�uence diagrams and a two�phase method for in�uence diagram evaluation� The
extension facilitates expressing asymmetry in in�uence diagrams� The two�phase
method e�ectively avoids unnecessary computation� which leads to exponential sav�
ings for asymmetric decision problems�

To the best of our knowledge� our method is the only one enjoying all of the
following merits simultaneously�

��� It is applicable to a class of in�uence diagrams that are more general than
the class of no�forgetting in�uence diagrams�

��� It provides an interface to the algorithms developed for Bayesian net evalua�
tion�

��� It makes use of heuristic search techniques and domain dependent knowledge�
��� It takes the advantage of asymmetry in decision problems to avoid unnecessary

computation�
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A� PROOF OF THEOREM �

In this appendix� we present a proof of Theorem �� To prove the theorem� we
prove a number of intermediate results �rst�

Let � � ���� ���� �n� be any policy for I � We have the following results on I� �

Lemma �� For any j� k with � 	 j � k 	 n � the set ��v� is independent of ��dj�
and dj � given ��dk� � Formally� the following relation holds�

P�f��v� � oj��dk� � yg � P�f��v� � oj��dk� � y� ��dj� � x� dj � ag

for any o � ��
v� � y � ��
dk�� a � �dj � and for any x � ��
dj� consistent with y

�i�e�� the projections of x and y on the common variable are the same��

Proof Immediately follows from the m�separation property of a stepwise decom�
posable in�uence diagram�

Lemma �� For any k with � 	 k 	 n � and any o � ��
v� and x � ��
dk� �

P�f��v� � oj��dk� � x� dk � �k�x�g � P�f��v� � oj��dk� � xg�

Proof� Recall that� with respect to a policy � � ���� ����n� � the decision node
di � for i � �� ���� n � is characterized by the following probability distribution�

Pfdi � xj��di� � cg �

�
� if �i�c� � x�
� otherwise�

Thus�

P�f��v� � oj��dk� � xg

�
X

a���dk�

P�f��v� � oj��dk� � x� dk � ag � P�fdk � aj��dk� � xg

� P�f��v� � oj��dk� � x� dk � �k�x�g

�
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Lemma 	� For any x � ��
d�� � the probability P�f��d�� � xg depends only on
nodes in the sector I��� d�� � and is independent of � � Consequently� for any other
policy �� �

P�f��d�� � xg � P��f��d�� � xg�

Proof� Since all nodes not in I��� d�� are non�ancestors of the nodes in ��d�� �
they are irrelevant to the marginal probabilities of ��d�� � Since there is no decision
node in I��� d�� � then P�f��d�� � xg is independent of � � �

Lemma 
� ��� For any o � ��
v�� x � ��
dn� and a � �dn � the conditional
probability P�f��v� � oj��dn� � x� dn � ag depends only on those nodes in the
sector I�dn��� � and is independent of � � In other words� for any other policy �� �

P�f��v� � oj��dn� � x� dn � ag � P��f��v� � oj��dn� � x� dn � ag�

��� For any y � ��
dk���� x � ��
dk� and a � �dk � the conditional probability
P�f��dk��� � yj��dk� � x� dk � ag depends on only those nodes in the sector
I�dk� dk��� � and is independent of � � In other words� for any other policy �� �

P�f��dk��� � yj��dk� � x� dk � ag � P��f��dk��� � yj��dk� � x� dk � ag�

�	� Suppose �� � ����� ���� �
�
n� is another policy for I such that ��� � ��� ���� �

�
k�� �

�k�� for some k� � 	 k 	 n � then� for any j� � 	 j 	 k � and any x � ��
dj� �

P�f��dj� � xg � P��f��dj� � xg�

Proof� Follows from the de�nition of sectors and the m�separation property of a
stepwise decomposable in�uence diagram� �

Lemma � The expected value of the in�uence diagram with respect to policy � can
be expressed in terms of Uk as�

E��v� �
X

x����dk�

Uk�x� �� � P�f��dk� � xg�

Proof By the de�nition of E��v� � we have�

E��v� �
X

o����v�

g�o� � P�f��v� � og�

Since

P�f��v� � og �
X

x����dk�

P�f��v� � oj��dk� � xg � P�f��dk� � xg�

thus�

E��v� �
X

o����v�

g�o� �
X

x����dk�

P�f��v� � oj��dk� � xg � P�f��dk� � xg�

By changing the order of the two summations� we have�

E��v� �
X

x����dk�

P�f��dk� � xg �
X

o����v�

g�o� � P�f��v� � oj��dk� � xg�
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By the de�nition of Uk � we have�

E��v� �
X

x����dk�

Uk�x� �� � P�f��dk� � xg�

�

Lemma �� The following relation between functions Uk and Uk�� holds�

Uk���x� �� �
X

y����dk �

Uk�y� �� � P�f��dk� � yj��dk��� � xg

for any x � ��
dk��� �

Proof By the de�nition of Uk�� � we have�

Uk���x� �� �
X

o����v�

g�o� � P�f��v� � oj��dk��� � xg�

Since

P�f��v� � oj��dk��� � xg �X
y����dk �

P�f��v� � oj��dk��� � x� ��dk� � yg � P�f��dk� � yj��dk��� � xg�

then by Lemma �� we have�

Uk���x� �� �
X

o����v�

g�o��
X

y����dk�

P�f��v� � oj��dk� � yg�P�f��dk� � yj��dk��� � xg�

By reordering the two summations� we obtain�

Uk���x� �� �
X

y����dk�

P�f��dk� � yj��dk��� � xg�
X

o����v�

g�o��P�f��v� � oj��dk� � yg�

By the de�nition of Uk � we have�

Uk���x� �� �
X

y����dk�

Uk�y� �� � P�f��dk� � yj��dk� � xg�

�

Lemma �� Let �� � ����� ���� �
�
n� be another policy for I such that ��k � �k � ���� �

�
n �

�n � for some k� � 	 k 	 n � Then� Uj�x� �� � Uj�x� �
�� for each j� k 	 j 	 n and

each x � ��
dj� �

Proof By induction�
Basis � Consider Un � By the de�nition of Un � we have�

Un�x� �� �
X

o����v�

g�o� � P�f��v� � oj��dn� � xg
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and
Un�x� �

�� �
X

o����v�

g�o� � P��f��v� � oj��dn� � xg�

By Lemma �� we have�

P��f��v� � oj��dn� � xg � P��f��v� � oj��dn� � x� dn � ��n�x�g

and
P�f��v� � oj��dn� � xg � P�f��v� � oj��dn� � x� dn � �n�x�g�

Since �n � ��n � then by Lemma ������ we have�

P�f��v� � oj��dn� � x� dn � �n�x�g � P��f��v� � oj��dn� � x� dn � ��n�x�g�

Thus� Un�x� �� � Un�x� �
�� � Therefore� the basis holds�

Induction� Suppose Ui�x� �� � Ui�x� �
�� for all i� k � i 	 n � By Lemma �� we

have�
Ui���x� �� �

X
y����di�

Ui�y� �� � P�f��di� � yj��di��� � xg

and
Ui���x� �

�� �
X

y����di�

Ui�y� �
�� � P��f��di� � yj��di��� � xg�

By the induction hypothesis� we have�

Ui�y� �� � Ui�y� �
���

By Lemma �� we have�

P�f��di� � yj��di��� � xg � P�f��di� � yj��di��� � x� di�� � �i���x�g

and

P��f��di� � yj��di��� � xg � P��f��di� � yj��di��� � x� di�� � ��i���x�g�

Since �i�� � ��i�� � then by Lemma ������ we obtain�

P��f��di� � yj��di��� � x� di�� � ��i���x�g � P�f��di� � yj��di��� � x� di�� � �i���x�g�

Thus�
P�f��di� � yj��di��� � xg � P��f��di� � yj��di��� � xg�

Therefore�
Ui���x� �� � Ui���x� �

���

Therefore� the lemma holds in general� �
The next two lemmas characterize the relationship between Vk and V �

k �

Lemma �� For all k � �� ���� n �

V �
k�x� �

�
k�x�� � Vk�x��
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Proof

V �
k�x� �

�
k�x��

�
X

y����dk���

Vk���y� � P��f��dk��� � yj��dk� � x� dk � ��k�x�g

�
X

y����dk���

Vk���y� � P��f��dk��� � yj��dk� � xg by Lemma �

�
X

y����dk���

Uk���y� �
�� � P��f��dk��� � yj��dk� � xg by the de�nition of Vk

� Uk�x� �
�� by Lemma �

� Vk�x� by the de�nition of Vk �

�

Lemma �� For all k � �� ���� n �

V �
k�x� �

�
k�x�� � V �

k�x� a� for each x � ��
dk� and each a � �dk �

Proof Suppose the inequality does not hold� Thus� there exist x� � ��
dk� and
a� � �dk such that

V �
k�x�� a�� � V �

k�x�� �
�
k�x����

Construct a policy �� � ����� ���� �
�
n� such that ��i � ��i for all i � � 	 i 	 n� i �� k

and ��k�x�� � a� � and ��k�x� � ��k�x� � for all x � ��
dk�� x �� x� � For any x � ��
dk� �
any a � �dk and any y � ��
dk��� � by Lemma �� we have

Uk���x� �
�� � Uk���x� �

�� � Vk���x��

by Lemma �� we have

P��f��dk� � xg � P��f��dk� � xg�

by Lemma �� we have

P��f��dk��� � yj��dk� � x� dk � ag � P��f��dk��� � yj��dk� � x� dk � ag�

We can prove E�� �v� � E�� �v� by the following derivation�

E�� �v�

�
X

x����dk�

Uk�x� �
�� � P��f��dk� � xg

�
X

x����dk�

�
X

y����dk���

Uk���y� �
�� � P��f��dk��� � yj��dk� � xg� � P��f��dk� � xg

� �
X

y����dk���

Uk���y� �
�� � P��f��dk��� � yj��dk� � x�g� � P��f��dk� � x�g

!
X

x����dk�
�x��x�

�
X

y����dk���

Uk���y� �
�� � P��f��dk��� � yj��dk� � xg� � P��f��dk� � xg
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� �
X

y����dk���

Uk���y� �
�� � P��f��dk��� � yj��dk� � x�g� � P��f��dk� � x�g

!
X

x����dk�
�x��x�

�
X

y����dk���

Uk���y� �
�� � P��f��dk��� � yj��dk� � xg� � P��f��dk� � xg

� �
X

y����dk���

Vk���y� � P��f��dk��� � yj��dk� � x�� dk � ���x��g� � P��f��dk� � x�g

!E�� �v�� �
X

y����dk���

Vk���y� � P��f��dk��� � yj��dk� � x�g� � P��f��dk� � x�g

� �
X

y����dk���

Vk���y� � P��f��dk��� � yj��dk� � x�� dk � a�g� � P��f��dk� � x�g

!E�� �v�

��
X

y����dk���

Vk���y� � P��f��dk��� � yj��dk� � x�� dk � ���x��� � P��f��dk� � x�g

� �
X

y����dk���

Vk���y� � P��f��dk��� � yj��dk� � x�� dk � a�g� � P��f��dk� � x�g

!E�� �v�� V �
k�x�� �

��x��� � P��f��dk� � x�g

� V �
k�x�� a�� � P��f��dk� � x�g � V �

k�x�� �
��x��� � P��f��dk� � x�g! E�� �v�

� �V �
k�x�� a��� V �

k�x�� �
��x��� � P��f��dk� � x�g!E�� �v�

� E�� �v�

This contradicts the optimality assumption of �� � �
Proof of Theorem ��

The theorem follows from de�nitions of V and V � � and Lemmas �� �� �� � and
� directly� �
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