A Framework for Ontologically-Grounded
Probabilistic Matching **

Rita Sharma ®* David Poole ® Clinton Smyth

AGeoreference Online Ltd.

bDepartment of Computer Science, University of British Columbia

Abstract

In all scientific disciplines there are multiple competing and complementary theories that
have been, and are being, developed. There are also observational data about which the the-
ories can potentially make predictions. To enable semantic inter-operation between the data
and the theories, we need ontologies to define the vocabulary used in them. For example,
in the domain of minerals exploration, research geologists spend careers developing mod-
els of where to find particular minerals. Similarly, geological surveys publish geological
descriptions of their jurisdictions as well as instances of mineral occurrences. The commu-
nity is starting to develop standardized ontologies to enable consistent use of vocabulary
and the semantic inter-operation between the model descriptions and the instance descrip-
tions. This paper describes a framework for representing instances and theories using these
ontologies, and describes ontologically-mediated probabilistic matching between instances
and theories. We give an example of our matcher in the geology domain, where the prob-
lem is to determine what minerals can be expected at a location, or which locations may
be expected to contain particular minerals. This is challenging as models and instances are
built asynchronously, and they are described in terms of individuals and properties at varied
levels of abstraction and detail. This paper shows, given a model, an instance, and a role
assignment that specifies which individuals correspond to each other, how to construct a
Bayesian network that can compute the probability that the instance matches the model.

Key words:
Probabilistic reasoning, ontologies, Bayesian networks, scientific theories, models,
instances, individuals, relational models

* Corresponding Author.

Email addresses: rsharma@cs.ubc.ca (Rita Sharma), poole@cs.ubc.ca (David
Poole), cpsmyth@msn. com (Clinton Smyth).

URLs: http://www.cs.ubc.ca/spider/rsharma/ (Rita Sharma),
http://www.cs.ubc.ca/spider/poole/ (David Poole),
http://www.georeferenceonline.com/ (Clinton Smyth).

Preprint submitted to Elsevier 29 April 2009

1 Introduction

We are interested in decision making and probabilistic reasoning in complex scien-
tific domains [Poole et al., 2008] in which both scientific theories (or hypotheses)
and data pertinent to them are available in computer-readable form. We want to
make probabilistic predictions in these domains [Schumm, 1991; Jaynes, 2003;
Howson and Urbach, 2006] and incorporate rich ontologies [Fox et al., 2006] to
allow for semantic interoperability between the theories and the data about which
they make predictions. Semantic interoperability between theories and data is a
prerequisite for making predictions from theories based on collections of data. For
computer-based systems, it also makes possible the provision, in human-readable
form, of explanations of conclusions reached by the computer system.

This paper shows how we combine probabilities and ontologies with these goals in
a pragmatic way. We want to use the available relevant data and represent the sort
of theories that scientists publish, building on ontologies that are being developed
by the scientific communities. We have built applications to make predictions about
where to best search for particular minerals or where different sorts of landslides
are more likely to occur. These systems contain multiple models that make predic-
tions that can be tested against existing data. These predictions can be, for example,
a basis of deciding where further exploration is required or an input to the compu-
tation of insurance premiums, in the case of landslides. The domains we consider
in this paper are characterized by having multiple individuals that are described at
various levels of abstraction and detail.

There are many examples of Bayesian approaches to the geological domains [De-
moulin and Chung, 2007; Chung and Fabbri, 2005]. Fuzzy sets [Dewitte and De-
moulin, 2008] have also been broadly applied to geological domains and other do-
mains addressed by geographic information systems [Robinson et al., 2003]. All
these applications take as values for some, if not all, of the parameters used in
the Bayesian or Fuzzy calculations, words from scientific classification systems or
taxonomies, for example, rock or soil type and geomorphological class. However,
what, exactly, is meant by these words, and the relationships that may exist be-
tween them (as, for example, in the sub-class relationship between “igneous rock”
and “granite”) is ignored by these calculations, and may be a significant source of
error in the results they produce. The often-hidden complexity inherent in these
classification systems is well-described by Arnold [2006] with respect to soil clas-
sification systems.

Modelling uncertainty and the use of ontologies have both been recognized as im-
portant, but seem to work in different realms. For example, in the 2004 review
book “Geographic Information Science and Mountain Geomorphology” [Bishop
and Schroder, 2004], there is a chapter entitled “A science of topography: From
qualitative ontology to digital representations” by Mark and Smith and another

chapter entitled “Artificial Intelligence in the study of mountain landscapes” by
Moody and Katz. The former talks about ontologies, but not uncertainty. The latter,
while it reviews fuzzy sets, neural networks, genetic algorithms and other tech-
niques applied to practical geomorphological problem-solving, makes no mention
of the ontological framework offered in the aforementioned chapter, and how this
framework allows for more rigorous management of the classification language in-
puts to the techniques reviewed.

There is body of work in combining ontologies and uncertainty, such as PR-OWL
[da Costa et al., 2005], OntoBayes [Yang and Calmet, 2005], BayesOWL [Ding
et al., 2006] and P-SHIF(D) and P-SHOIN-D [Lukasiewicz, 2008]. All of these add
uncertainty to the ontology. For our domain, we think that the appropriate method-
ology is to use the standard (non-probabilistic) ontologies that are currently being
developed, and allow the theories that use the ontologies to make probabilistic pre-
dictions. This is for two reasons. Pragmatically, developing ontologies is difficult,
and we want to be able to use standard ontologies and inter-operate with the data
sets that refer to these ontologies. We also think there is a fundamental difference
between definitions of vocabulary—that do not make empirical predictions—and
theories that make empirical predictions. The former we call ontologies, and the
latter theories. See [Poole et al., 2008] for more discussion of these issues.

A consequence of our approach is that probabilities (for theory property values) and
truth status values (true or false flags for instance property values) are additional
data elements carried within all our descriptions. How we work with these data
elements is a major focus of this paper.

This paper, and the system it describes, is part of our work to bridge the gap,
highlighted above, that appears to exist between Bayesian approaches to problem-
solving in the earth sciences and the ontological frameworks that are being built in
these sciences to assist with managing the complexities of their science languages.

There are three main components of our system:

e An ontology that defines the vocabulary used.

e A set of instances, which are descriptions of things in the world. For example, an
instance could be a particular rock outcrop, a volcano that used to exist, or apart-
ment #103 at 555 Short St. These have properties, but also have relationships to
other individuals that are important to know about.

e A set of models (or theories) that make probabilistic predictions. For example,
we may have a model of what rocks are likely to contain gold, a model of where
landslides may occur, or a model of an apartment that Sue would be content to
live in.

Intuitively, the models correspond to (conditional) probability statements, and the
instances correspond to observations that are conditioned on. The instances and
models are described in terms of individuals (objects, things) and their properties.

slope6gen by GRIDCODE
W 3 (19975)
I 15 (38226)
[7] 25 (67906)
[0 35 (64147)
W 45 (52360)
[90 (16708)

Map Sheet No: 92G065

Slope
(generalised)

> T T Y H
WA T {/, VN O~ 7 7N N D o]| contacts! by LINE_TYPE
o / N S 5 e
‘/ ,ﬁ} y// : B sessss Conformable (6)
.\Q/y /) : AAAAAA Disconformable 1)
/ ! smsmas Intusive (242)
e /55 ’] ssss5s Nonconformable (46)
p—— f : s Unconformable (153)
o 4 : faultsl by LINE_TYPE
Howe Sound .~ | e Dexral (1)
(sea) 5 | e Dextral/Down-to-the/NW (9)
;i : == == Displacement Uncertain (182)
: == Displacement Unknown (3)
X | Down-to-the-NE ©
S A S N T sy gty) NGS5 S b e et | e— Top-to-the-NE (@7
% 1 e TOP-t0-the-SW (70)
O T SRS SRR S i o Upright ©)
L o e Uprig
.“"'----i‘..,...,..,.--"‘ Te,
o i
v |
H i
% |
s v
. I
N : !
: l
* ',' | Map Sheet No: 92G065
R ; I
: i
= : =
.
B) 0 QAT gl faoR Contacts &
1 0
Lt i bl
kilometers | G Faults
\ ' el

Fig. 2. Structure input to the landslide application

The ontology is used to define the vocabulary so that the terminology can be used
consistently in the models and the instances. We consider models as scientific the-
ories that make probabilistic predictions and can be tested according to how well
they fit the data. We use the terms “theory” and “model” interchangeably. There can
be multiple competing and complementary theories that use the same vocabulary.

Example 1.1 One of the applications we are building, HazardMatch, is for pre-
dicting landslide susceptibility [Jackson, Jr. et al., 2008]. Some of the inputs to the
system are shown in Figures 1 and 2. Figure 1 shows the slope information for a

e S A/ o (NN (Y VW | e 4‘ ,,,,,,,,,,,,,,,,, e NG| :é M92G065ABCD by SoilSlide2m65score_ra:
/,/(i] 2 i 80,0001085,000 (31)
) i ; | 79,000 to 80,000 (1002)
// T | i 78,000 t0 79,000 (1531)
Vs) ! o) | all others (10979)
- W/XAZ,/ " i N : |
e (: : \\:\\\ } JacksonOutlines01Type by LSType
H i n ol | (21)
Howe Sound // i | i [rockfall 2)
(sea) ¢ [| | M rockslide (6)
P I | | B soil slide (22)
/4, ; : » N | [talus source (15)
J)—’j Y Z, \o :
ARG C’“ /4 I :
BT ALY W NN N i
) b 2 © |
/)] . |
N Y §>\> 1
! 3 Map Sheet No: 92G065
! ||| Observed Landslides
| :j‘ (black outlines) plotted
2 4 o Hali
Q”””"”””’””7"””””’””””””””‘ ””””””””””””” B over Soilslide Model 2
kilometers : 3 ||| Susceptibility Scores

Fig. 3. The output of one of the models matched

part of British Columbia near the Sea to Sky Highway. Figure 2 shows the contacts
and faults for the same area.

Each polygon in the maps is an “instance”. Each instance is represented in terms
of individuals; here the individuals include the surface soil, underlying bedrock,
contacts, faults, rivers, etc. These individuals can have properties, that include the
relationship to other individuals, e.g., the existence and type of surrounding faults.

We also represent models of different types of landslides. These are created from
the literature on landslides and critiqued by experts. In HazardMatch, we work
with tens of thousands of spatial instances (polygons) described using standard
taxonomies of environmental modelling such as rock type, geomorphology and ge-
ological age. To date, we have worked with approximately ten models of landslide
hazards which we compare with the spatial instances.

Figure 3 shows the output of one of the models (“Soilslide Model 2”’) matched
against the instances for the same area as Figures 1 and 2. A soil slide is a kind of
landslide. The colored regions are the predictions of the soil slide model (in a log-
probability scale). The black-outlined regions are the observed soil slides. There
are similar predictions from the other models.

This output is for a previous version of our matcher [Poole and Smyth, 2005] which
used the likelihood of the model for each instance. The models used a coarse 5-
valued scale (always, usually, sometimes, rarely, never), and the predictions were
based on the kappa-calculus [Spohn, 1988; Pearl, 1989; Darwiche and Goldszmidt,
1994]. In our work on evaluating and refining the system, we found two main prob-
lems. First, the inputs could not be tuned with sufficient clarity. Second, the models

did not take prior information into account. In particular, users often thought that
some features should be made more important as they are more diagnostic. How
diagnostic a feature is depends on its prior probability, so we wanted to make prior
information explicit. To solve these problems, we had to base the system on more
rigorous foundations. We wanted to do this while keeping the system manageable:
being able to explain the system to the user is a major criteria for acceptance of the
system.

Example 1.2 In another application for modelling mineral occurrences, MineMatch
describes more than 25,000 instances of mineral occurrences using various tax-
onomies, including the British Geological Survey Rock Classification scheme !
and the Micronex taxonomy of Minerals > . We also work with more than 100 de-
posit type models, including those described by the US Geological Survey > and
the British Columbia Geological Survey *. We treat these as probabilistic models
even though they are stated in qualitative terms.

Note that we are not considering the problem of taxonomy alignment; the ontolo-
gies we use are (designed to be) about disjoint sets of concepts, and inter-operate
without confusion.

Using published models to make predictions for particular locations is challenging
for a number of reasons, including:

e The models and the instances are described by different people at various levels
of abstraction (using more or less general terms) and detail (in terms of parts and
sub-parts or holistically). Descriptions of mineral deposits or geological regions
are recorded at varied levels of abstraction and detail because some areas have
been explored in more detail than others, and the people describing the instances
have different backgrounds and goals. There are some models that people spend
careers developing, described in great detail for those parts that the modeler cares
about. Other models are less well developed, and described only in general terms.
Because the instance and model descriptions are generated by different people
according to their needs, the levels of abstraction and detail cannot be expected to
match. We do, however, need to make decisions based on all of the information
available.

e The ontologies used to define the vocabulary for the models and the instances are
large and under development. We cannot wait until the ontologies have stabilized
to start using them, particularly as the use of the ontologies suggests where they
need to be improved.

e The models are positive, in that people only specify positive models of the phe-
nomenon being modeled, not negative models. For example, people publish mod-

' http://www.bgs.ac.uk/bgsrcs/

2 http://micronex.golinfo.com

3 http://minerals.cr.usgs.gov/team/depmod.html
4 http://www.em.gov.bc.ca/Mining/Geolsurv/

els of where gold can be found, but do not give models of where gold cannot be
found. The models are not exhaustive, in that they define probabilities for a lim-
ited number, but not all contexts. For example, a model of where to find gold
does not specify whether gold is expected when the conditions of the model are
false. There may be contexts where no models are applicable.

e The models are neither disjoint nor covering. Often the models are refinements
of each other, and they do not cover all of the cases.

We expect many other domains to have these characteristics.
There are two tasks that we consider in this paper:

e given an instance, determine which models best fits it. This would be used, for
example, by someone who has the mineral rights on a piece of land and wants
to know what mineral deposits may be there, based on the description of the
property.

e given a model, determine which instances best match the model. This would be
used by someone who has a model of where, say, gold can be found, and wants
to find which of many pieces of land is most likely to contain gold, based on this
model.

MineMatch is similar in its goals to the Prospector expert system [Hart, 1975], but
builds on the developments in probabilistic reasoning and ontologies of the last 30
years. In previous work [Smyth and Poole, 2004; Poole and Smyth, 2005], we de-
scribed models using qualitative probabilities, based on the kappa calculus [Spohn,
1988; Pearl, 1989; Darwiche and Goldszmidt, 1994], which measures uncertainty
in degree of “surprise”. This work was extended by Lukasiewicz and Schellhase
[2007] to allow for conditional dependencies. In this paper, we develop an approach
based on probability for making decisions. An earlier version of this paper [Sharma
et al., 2007], which glosses over many of the details discussed in this paper, dis-
cussed how to construct a Bayesian network dynamically during the matching pro-
cess for computing the posterior probability of a match.

This paper takes a different perspective on combining ontology and probabilistic
reasoning than many other recent proposals. Koller et al. [1997] propose giving
probabilities over class relationships in a description logic. They do not consider
relations amongst individuals that are described using the ontology of the descrip-
tion logic. Ding and Peng [2004] proposed an extension to OWL for representing
particular Bayesian networks. They provide a means of translating an ontology
implementing the set constructors of OWL into a Bayesian network and are con-
cerned explicitly with set or class membership rather than relationships between
attributes. da Costa et al. [2005] proposed a probabilistic ontology language PR-
OWL to augment standard ontologies with probabilistic information about the do-
main. The probabilistic information includes structural information such as condi-
tional independence as well as numerical information such as error rates or sensor

error. PR-OWL is used to model the uncertainty in the observations (e.g., sensor
error, error rates), which we are not currently modelling in our framework.

We do not assume that the ontologies include uncertainty about properties and re-
lations. Ontologies are created and maintained by communities, which (hopefully)
can agree on vocabulary. However, communities should not agree on probabilities,
as the (posterior) probability depends on the prior and the data. People may have
different priors and, even if they have access to the same data, the data grows as
time progresses. The ontology should have a longer life than one data set; we don’t
want to update an ontology after each new dataset, and then be required to map
between these different ontologies.

We use standardized representations whenever appropriate. In particular, we use
OWL as the standard representation for ontologies. We use our own representations
for instances and models, as there are no standard languages that are adequate for
expressing what we need to (our statements could be reified into RDF, but it would
not make the paper more readable).

2 Inputs

The inputs to our matcher are ontologies, instances, models, and what we call su-
permodels. We describe each in turn.

2.1 Ontologies

In philosophy, ontology is the study of what exists. In Al, an ontology [Smith, 2003]
is a specification of the meaning of the symbols (or of the data) in an information
system. We assume that the ontologies are represented in formal representation
systems that can be processed by computers.

We adopt OWL [McGuinness and van Harmelen, 2004] to represent ontologies.
OWL represents the world in terms of individuals, classes and properties. OWL is
built on the Resource Description Framework (RDF) [Manola and Miller, 2004], a
language for individual-property-value triples. In this paper, we write a triple using
a standard mathematical notation: (i, p,v) represents that individual i has value v
on property p. RDF represents such triples in XML.

The owl:Thing class is a pre-defined class that is the most general class in OWL;
everything, whether it is an individual, class or property is an element of owl:Thing.
The owl:Class is the set of all OWL classes; its elements are the classes. Things in
OWL have types. The type of a thing is expressed using the rdf:type property. The
triple:

rock

sedimentar y/I\metamorphi c
/\ igneous /\
limestone /\

dolostone

A granite
AN A

Fig. 4. Part of a taxonomic hierarchy of rock types.
(i, rdf:type, c)
means individual i is in class ¢, where ¢ is an owl:Class.

Properties define relationships between individuals and values. The values are ei-
ther other individuals or datatype values. Each property has a domain and a range.
Class d is the domain of property p means that any individual with property p must
be of type d. Class r is the range of p means that all values of property p must
be members of class r. The range of a property could be a primitive datatype or a
class. In OWL, a property is a datatype property if its range is a primitive datatype.
Otherwise, it is an object property. We will not consider datatype properties in the
rest of this paper, as each datatype becomes a special case that will complicate the
discussion.

We distinguish enumerated individuals, which are those individuals that need to be
shared between models or instances, e.g., colours, sizes, minerals, days of the week.
We use the class EnumClass to be the class of enumerated individuals. Subclasses
of EnumClass are called enumerated classes. Enumerated classes will be used to
define the domains of discrete random variables. An object property whose range
is an enumerated class, is an enumerated property. An object property whose range
is not an enumerated class is called an entity property.

For this paper, we assume that the classes form a tree structure, a taxonomic hierar-
chy, where the children of a class (its immediate subclasses) are mutually disjoint.
This is achieved by using the owl:disjointWith property.

Figure 4 shows an example of a taxonomic hierarchy. An igneous rock is a kind of
rock. A granite is a kind of igneous rock. In this figure, rock is the topmost class.

Example 2.1 Our example mineral deposit ontology consists of four disjoint enu-
merated classes: geneticSetting, weatheringDegree, colour, and age and three dis-
joint object classes: mineralDeposit, rock, and mineral. A sub-tree of the British
Geological Survey Rock Classification scheme [Gillespie and Styles, 1999] is shown
in Figure 4.

Property Domain Range other properties
hasHostRock mineralDeposit rock

hasGeneticSetting | mineralDeposit geneticSetting functional
hasAge mineralDeposit U mineral | age functional
hasMineral rock mineral

hasWeatheringDeg | rock weatheringDegree | functional
hasColour mineral colour functional

Fig. 5. Properties in the Mineral Deposit Example

The enumerated classes consist of the following enumerated individuals:

colour = {clear, white, pink, blue,. ..}

geneticSetting = {greenStoneBelt,oceanRidge,. .. }
weatheringDegree = {weathered,unweathered }

age = {proterozoic, archean, palaeozoic, cainozoic,. .. }

The actual enumerated classes we use are much more complicated, and have a
hierarchical structure. For this paper, we only use the values specified here.

The mineral deposit ontology has two entity properties: hasHostRock, hasMineral,
and four enumerated properties: hasGeneticSetting, hasWeatheringDeg, hasAge,
and hasColour. The domains, ranges and whether the properties are functional are
summarized in the table of Figure 5.

2.2 Instances

An instance is a thing in the world we are reasoning about (the real world at some
time, some temporally extended world, or even some imaginary world). In the geo-
logical domain, an instance is often a particular location that someone has identified
as being interesting. It is important to distinguish an instance from its description.
While a description may be at a high level of abstraction, the instance itself isn’t.

An instance is described in terms of a set of related individuals (the instance indi-
viduals). One of these individuals is the designated top-level individual. For exam-
ple, in an instance describing a deposit, the individuals are the mineral deposit, its
rocks, their minerals etc. The designated top-level individual is the mineral deposit.

An instance individual is described by its values on various properties. This can
include its relationship to other individuals (e.g., its parts). We do not only want to
state positive facts, but also negative facts such as that a mineral deposit does not

10

contain a metamorphic rock, or that a mineral is red colour but is not a pink (without
enumerating all of the non-pink red colours). We represent instance descriptions
with the quadruples of the form:

(ind, P, value, truthvalue)

where P is a property, ind is an individual in the domain of P, truthvalue is either
present or absent, and value is an individual in the range of P.

For this paper, we assume that each individual has relationship to exactly one parent
individual (each individual is the value of only one tuple, and there are no cycles in
this relationship between individuals). The top-level individual is not the value of
any property. We also assume that the individuals are all distinct.

A description of an instance means a conjunction in first-order logic with limited
quantification. Enumerated individuals are logical constants. Object individuals are
variables in the translation. We assume an ordering for the tuples, where the tuple
with v as a value is before any other tuple containing v. The tuples can then be
interpreted as follows:

e A tuple (o,P,v,present), where P is an enumerated property, means the atom
P(o,v).

e A tuple (o, P,v,absent), where P is an enumerated property, means —P(o,v).

e A tuple (o, P,v, present), where P is an entity property, means 3v P(0,v) Av #
it \--- A\v # iy, where all following tuples (which, by the ordering assumed,
includes those containing v) are in the scope of the existential quantification, and
i1...i; are the previously defined individuals (the top-level individual and those
variables whose scope this is in).

e The tuple (o, P,v,absent), where P is an entity property, means —3v P(0,v) A
v # iy A\--- A\ v # i, where the other tuples containing v are in the scope of the
existential quantification and iy ... are the previously defined individuals.

The only free variable in the translation is the top-level individual.

Example 2.2 To say that mineral deposit mindep1 has a granitic rock, but does not
have a sedimentary rock we could write:

(mindepl, hasHostRock, rockl, present)
(rockl, rdf:type, granite, present)
(mindepl, hasHostRock, rock2, absent)
(rock2, rdf:type, sedimentary, present).

This means the first-order formula:

11

Jrock1 hasHostRock(mindep]1,rockl)

Atype(rockl,granite) A rockl # mindepl

A =3rock2 (hasHostRock(mindepl,rock2) A rock2 # rockl A rockl # mindepl
Ntype(rock2, sedimentary))

The first two tuples of this example together specify that mineral deposit mindep1
has a granitic rock. Note that if tuple (rockl, rdf:type, granite,present) is not speci-
fied, we can infer that the type of rockl is rock, which is the range of hasHostRock.
The last two tuples together specify that there is no sedimentary rock in mindep1.
However, it doesn’t preclude the existence of a second rock as long as it is not a
sedimentary rock.

We can use absent to specify the number of individuals of particular type, as is
shown in the following example.

Example 2.3 To specify that there are at least two rocks in mindep1, we explicitly
specify the presence of two rocks. We do not specify anything about a third rock.
Thus, we can specify the tuples:

(mindepl, hasHostRock, rock3, present)
(rock3, rdf:type, igneous, present)
(mindep1, hasHostRock, rock4, present)
(rock4, rdf:type, sedimentary, present)

To state that there are exactly two igneous rocks in mindepl, we state that two
igneous rocks exist, but there doesn’t exist a third igneous rock. Thus, we write as
follows:

(mindep1, hasHostRock, rock3, present)
(rock3, rdf:type, igneous, present)
(mindepl, hasHostRock, rock4, present)
(rock4, rdf:type, igneous, present)
(mindepl, hasHostRock, rock5, absent)
(rock5, rdf:type, igneous, present)

Example 2.4 To state that mineral deposit mindep 1 has an igneous rock rock3 that
is not a granite, we could write:

(mindepl, hasHostRock, rock3, present)
(rock3, rdf:type, igneous, present)
(rock3, rdf:type, granite, absent)

We can draw the tuples as a semantic network [Quillian, 1968]. The nodes repre-
sent individuals, classes and data types. The arcs are labelled with properties and
truth values. The arcs represent quadruples, labelled with the properties and the

12

asAge present\ hasHostRock

pr hasGeneticSetting
proterozoic
greenStoneBelt »

present

present resen hasWeatheringDeg
rdf:type P asMineral
present
Come D e
r t
P rdf:type

present presen hasAge
hasCol our
D

Fig. 6. A Semantic network representation of deposit instance depositl.

truth values. The semantic network representation of deposit instance depositl is
shown in Figure 6. The arc connecting individuals depositl and rockl, represents
quadruple (depositl, hasHostRock, rockl, present).

2.3 Models

A model specifies a probability distribution over instances. A model can be used to
make a prediction about the instance given the evidence provided by the description
of the instance.

The standard Bayesian view is that a model is used to determine the probability of a
prediction given the evidence. Here the evidence is the description of the instance.
Suppose M is a set of mutually exclusive and covering models:

13

P(prediction|instance)

= Z P(prediction|model instance)P(model|instance)
modeleM

P(inst del)P(model
= Z P(prediction|model ,instance) (ins ance|‘m0 el)P(model)
I P(instance)

P(instance|model)

= Z P(prediction|model ,instance) P(model)

modeleM P(instance)

and often we assume that P(prediction|model,instance) = P(prediction|model),
i.e., that the prediction is independent of the instance given the model.

Our models are complicated in a number of ways:

e The models that scientists (in our domains, at least) publish are not exclusive and
do not cover all of the cases.

e The models that are published are typically not detailed enough to give a predic-
tion for each instance.

e To make a prediction from a model, we need to identify a “match” between the
individuals in the model and the individuals in the instance. The models typically
specify roles, and we need to identify which individual specified to exist in an
instance fills each role in the model (or if there is no individual in the instance to
fulfill a role).

e We want an explanation as to why a prediction is reasonable. As people have to
act based on the advice of the system, they need to be convinced that the answers
produced are reasonable.

The contribution of a model is given by the product of three terms. If any of the
terms is close to zero, their product will be close to zero. We approximate the
sum above by only considering the top models; those where the product is highest.
This means that we only need to consider the models that have a non-trivial prior,
predict an item of interest, and predict the instance best. A conclusion based on
model averaging is difficult to explain to a user, but if the average is dominated by
a few models, a user can understand such an explanation.

The probability of an instance will be the product of a number of terms (using
the chain rule of probability, and some independence assumptions). The models
that experts give us are only partly specified. Some of the elements of the product
will be of the form P(instance_feature|model)/P(instance_feature), we assume
that any conditional probability that the model does not specify is equal to the
prior probability. Thus the probability given the model divided by the prior is 1 for
these features, and so doesn’t affect the product. We need the prior probabilities
for the predictions specified in a model. The priors are traditionally computed by
summing over a set of exclusive and covering hypotheses, but, as we don’t have a
set of exclusive and covering hypotheses, we assume that the prior probabilities are
specifies as part of a supermodel (see Section 2.4).

14

Models describe probabilities of the existence and properties of individuals. Each
model has a designated top-level individual that it is nominally about. A model can
also refer to other individuals that are related (perhaps indirectly) to the top-level
individual.

As an example, deposit model depModelA, which we will use as an ongoing exam-
ple, is a simplified model describing a particular type of deposit. The model predicts
that an instance that matched the model likely has the age that is Proterozoic, and
contains an igneous rock with zircon in the deposit. Note that the actual models we
use are more complicated than this; this model was constructed to show the issues.

A model specifies the probability of property values associated with individuals.
For enumerated properties, we have the probability of the different values. For ob-
ject properties, we need to reason about the probability of the existence of objects.
These properties typically specify the role of an object, so we want the probability
of the existence of an object that fills a role. Poole [2007] argued that, to satisfy
the clarity principle (that all propositions are well defined), a model has to be clear
about what doesn’t exist when existence is false, and, when there is more than one
object that exists, a model has to be clear about which object it is referring to.

A model has two sorts of statements. One is to state the existence of an object in
the world. The second is to specify what is expected to be true about an object that
exists.

A model is described in terms of quadruples. A quadruple is of the form:
(ind, P,value, p)

where P is a property, ind is an individual in the domain of P, p is a probability,
and value is in the range of P. In particular, value is:

e an enumerated individual , if P is an enumerated property
e an object individual, if P is an entity property
e aclass, if P is the rdf:type property

Similarly to instances, we assume that each individual, apart from the designated
top-level individual, appears as the value in exactly one quadruple. We also assume
that graph induced by the (ind, value) pairs is acyclic. Thus an individual can only
be in the model if it is connected to the top-level individual.

Example 2.5 To state that mineral deposit model depModelA has a rock that fills a
particular role with probability 0.93, and that the rock that fills the role is definitely
an igneous rock, we write:

(depModelA, hasHostRock, rockB, 0.93)
(rockB, rdf:type, igneous, 1.0)

15

The probability 0.93 represents the probability of the existence of a rock that fills
the role. If it exists we call it rockB.

In some situations, we would like to have a probability distribution over which
class an individual is a member of. We can use rdf:type property to represent the
uncertainty over the types of an individual.

Example 2.6 Consider stating that mineral deposit model depModelA, with prob-
ability 0.77, has a rock that fills a particular role. A rock in that role, when it exists,
is of type igneous with probability 0.85. To state this we write:

(depModelA, hasHostRock, rockA, 0.77)
(rockA , rdf:type, igneous, 0.85)

The probability 0.77 represents the probability of the existence of a rock that fills
the role of rockA. If such a rock exists, it is of type igneous with probability 0.85.
Note that rockA, if it exists, is of type rock, which is the range of hasHostRock,
with probability 1.0.

Suppose a model M specifies the tuples

(ind, rdf:type,Cy, p1)
(ind ,rdf:type, Cy, pn)

for some individual ind. Let €,y = {C},...,C,}. We say that C; is a highest subclass
of C;j in Cipq if ACy € Ging such that C; C Cs and Cy C C, where C is the (strict)
subclass relation as specified in the ontology. There are three constraints on the
probability values py,..., pu:

o IfC; C Cj, then p; < Dj-

e Suppose Ci,...,C are the highest subclasses of C; then p; > Zle pi- The con-
straint holds because of the disjointness of subclasses.

o If Cy,...,Cy are all of the immediate subclasses of C; then p; = Z;{:l Di-

A functional enumerated property has only one value for each individual. How-
ever, it is possible that we may not know what that value is. A model specifies a
probability distribution over the values. Thus, for functional enumerated properties,
the model quadruples must follow the constraint: Let P be a functional enumer-
ated property and suppose that the model has k quadruples: (ind, P,valy,p;), ...,
(ind, P,valy, py). Then, Zﬂ-‘zl pi < 1. We need Zle pi = Vif {valy,... ,val;} is the
whole enumerated class. That is, we do not require that models are complete and
specify the probabilities for each value of a property, but, if they are complete, the
probabilities must sum to 1.

16

depositModel A

0.77 [hasHostRock

hasHostRock

Fig. 7. A Semantic network representation of mineral deposit model depModelA.

Example 2.7 A semantic network representation of mineral deposit model depModel A
is shown in Figure 7. The nodes represent individuals, classes and data types. The
arcs represent quadruples and are labelled with properties and probabilities. For ex-
ample, the arc connecting individuals depModelA and rockA, represents quadruple
(depModelA, hasHostRock, rockA, 0.77).

2.4 Supermodel

The role of the supermodel is to provide prior probabilities. In standard Bayesian
reasoning, the prior probability of an observation is computed by summing over all
models. However, we do not assume that our models are disjoint or covering, and
so need an extra specification of the prior probabilities.

A supermodel provides the following prior (background) information:

e The prior distribution of classes, i.e., the prior probability that an individual is of
type C, for any class C

e For each enumerated property P, and for each value v € range(P), the prior prob-
ability that an individual has value v for property P.

Consider the tree hierarchy of the classes in the ontology. To specify the prior dis-
tribution of classes, for each class C; that has children (immediate subclasses), the

17

supermodel contains P(C;|Cy) for each child C; of Ci. The prior probability of the
root class in the tree hierarchy is 1. Given these conditional probabilities, we can
compute the prior probability of any class (type) in a recursive manner by multi-
plying the probability of class given its immediate super-class and the probability
of its immediate super-class. Thus, for each immediate subclass C; of Cy

P(Cj) = P(C;j|Cy) x P(Cy)

Note that the complexity of computing the probability of C;, P(Cj), is linear in
depth of C; in the hierarchy and otherwise is not a function of the hierarchy’s size.

To specify the prior on properties, for each enumerated property P, with domain c/,
for each value v € range(P), we specify the prior probability that an individual of
type cl has value v for property P using quadruples of the form:

<Cl7P7v7p>

where p is the prior probability. Note that we add ¢/ as an argument to the quadru-
ple, even though it could be inferred from the property, to allow for future versions
that have different priors on subclasses of cl.

If P is a functional enumerated property, where the range of P is the set {vy,...,v,},
there are n quadruples (cl,P,vi, p1), ..., {(cl,P,vy, py) in the supermodel such that
Y., pi = 1. Non-functional properties do not have the constraint of summing to 1.

Example 2.8 Consider defining the prior probabilities for the mineral deposit on-
tology as given in Example 2.1. Some of the probabilities that supermodel specifies
are as follows:

In the Rock hierarchy, assume we have:

P(Rock) =1
P(igneous|Rock) = 0.45
P(sedimentary|Rock) = 0.2
P(graniteligneous) = 0.3

In the mineral hierarchy, assume we have:

P(sul phide|mineral) = 0.2
P(silicates|mineral) = 0.5
P(oxides|mineral) = 0.3
P(quartz|silicates) = 0.6
P(zircon|silicates) = 0.4

Assume that the enumerated classes have the following prior distributions > :

> For the sake of keeping the example simple, we assume that the domains of the properties

18

(mineralDeposit, hasAge, proterozoic,0.35)
(mineralDeposit, hasAge,archean,0.05)
(mineralDeposit, hasAge, cainozoic,0.35)
(mineralDeposit , hasAge, palaeozoic,0.25)

(mineralDeposit , hasGeneticSetting, greenStoneBelt,0.4)
(mineralDeposit , hasGeneticSetting, oceanRidge,0.6)

(rock, hasWeatheringDeg,weathered ,0.7)
(rock,hasWeatheringDeg,unweathered,0.3)

(mineral ,hasColour,white,0.4)
(mineral ,hasColour,blue,0.2)
(mineral ,hasColour,clear,0.1)
(mineral ,hasColour, pink,0.3)

(mineral ,hasAge, proterozoic,0.3)
(mineral ,hasAge,archean,0.2)
(mineral ,hasAge, cainozoic,0.35)
(mineral ,hasAge, palaeozoic,0.15)

2.5 Semantics of Models

A possible world is a complete description of a set of related individuals. It includes
all property values for these individuals, at the lowest level of detail. For example,
in a possible world, an individual cannot be a rock without being a specific sort of
rock.

A particular model and the supermodel defines a probability measure over a set of
possible worlds. We only need to specify the measure enough to be able to select the
set of possible worlds in which an instance is true. In particular, the possible worlds
need to describe the objects that are related to the designated top-level individual
of an instance. As described in Section 2.2, the meaning of an instance is a logical
formula with a single free variable corresponding to the top-level individual. The
measure over possible worlds must be able to give a probability of description with
respect to the designated top-level individual.

For this paper, we make strong independence assumptions. The only probabilistic
dependencies are those that are entailed by the logical dependency. An object only

in Example 2.1 are complete.

19

has a property when the object exists. Thus the propositions that specify that an
object has a property must be conditioned on the existence of the object.

To look-up the probability associated with a tuple, we first see if it is specified in the
model and, if so, use that value, otherwise we use the value from the supermodel.
Existence probabilities only come from the model.

We will define the semantics of models in terms of a first-order semantic tree
[Poole, 2007], which is like a familiar event tree, but allows for splits on first-order
formulae (taking into account the scoping of variables). Each world gets filtered
down the tree (to a unique position). The probability at any node is the measure
of the worlds that get filtered to that node. We need to define the measure well
enough so that the measure of the set of possible worlds that satisfy an instance can
be determined. We can stop filtering an instance description at a node if all future
splits won’t change the truth value of the instance description. As part of the de-
scription we allow for equality between model individuals and instance individuals;
the model individual is said to match the instance individual. At the top node the
top-level individuals match.

We assume a total ordering of the tuples in the model so that the tuple that contains
an individual as the value comes before any other tuples that contain the individual.

At each node in the semantic tree, we split on the top-most tuple in the total ordering
that is applicable (we will define recursively what is applicable; initially all tuples
are applicable). Suppose (ind, P,value, p) is the next applicable tuple. There are
two cases:

e P is an enumerated property. In this case, value must be an enumerated individ-
ual. The set of possible worlds filtered this node are divided into two: those where
the P(ind) = value is true and those where it is false. The probability masses of
these sets of worlds are divided in the ratio p: 1 — p.

e P is an entity property. In this case value must be an object individual. We first
split on whether there exists an individual that is in relation P to ind, i.e., whether
dvalue P(ind,value). This split divides the probability masses of the worlds in
the ratio p : 1 — p. The tuples that contain value are only applicable in the worlds
where existence is true; that is we ignore the other tuples what contain value in
the sub-tree where the existence is false. For the branch where the existence is
true, we assume that any object in the instance for which P(ind,value) is true is, a
priori, equally likely to match value. We then split on the equality between value
and the corresponding instance variables (with a uniform prior probability).

Thus, for an entity property, out of the worlds where existence is true, each individ-
ual that satisfies the existence has equal prior probability of being the match. The
probabilities of the match then depends on the how well the instance individual
matches the object individual.

20

We now can define the probability in a standard way: the probability of any instance
is the measure of the worlds in which the instance is true. Note that this averages
over role assignments: the prior probability of an individual filling a role is equal,
but the posterior probability can change.

3 Probabilistic Matching

The matcher is used in two modes:

e In instance-to-models matching, one instance is compared to multiple models.
Finding the most likely models for the instance can be used to determine what is
the most likely mineral or landslide to be at the particular location described by
the instance.

e In model-to-instances matching, one model is compared to multiple instances.
This can be used to find the location(s) that are most likely to have landslides or
contain particular minerals.

The basic problem is to determine the probability of the instance given the model.
The model specifies probabilities over roles of the top-level individual, and its re-
lated individuals. To determine the conditional probability, we need to determine
which individuals specified to exist in the instance fill the roles specified in the
instance. We call this correspondence a match. We write M; ~ I; to specify the
proposition that instance individual /; fills the role specified by the model individ-
ual M;. We use the same notation to give the match for the top-level individuals, M,
and /; of M and I respectively. We want to determine the posterior probability of
M; ~ I, given I’s description, M’s description, the domain ontology, and the super-
model. This is the probability the top-level individual of the instance fills the role
that the model is modeling.

3.1 Computing the probability of a model individual’s type

One of the sub-tasks in the algorithm below is to compute the probability that a
model individual is in some given class. This requires using probabilities from both
the model and the supermodel.

Suppose M; is an individual in a model M. Class C, is exceptional for M; if M
contains a tuple (M;,rdf:type,C,,, pn). We call C,, an exceptional class when M; is
clear from context.

The probability that M; is of type C, denoted by py can be calculated as follows:

o If (M;,rdf:type,Cy, pr) € M, return py

21

e clse if C; doesn’t have any subclasses that are exceptional for M;, p; can be
computed from the probability of lowest super-class C, of Cy that is exceptional
for M;. Let CSI, ...,C} .be the highest subclasses of C, that are exceptional for
M;. Then, (p, — Yci p.) is the probability that M; is of type C, but not of types
cl,... ,Csj . Suppose P(C,) denotes the prior probability that M; is of type C,,.

Then, ﬁ% is the prior probability that M; is of type Cy, given that M;

is of type C, but not of types C, ... ,C{ . Then, the probability that M; is of type
Ci> P> 1s:

; P(Cy)
l
k= (Pn— X - (D
e otherwise, p; can be derived, recursively, from the children of C in 7,
k=Y, D 2)

VC;Echildren(Cy,)

Example 3.1 Suppose we have the supermodel of Example 2.8, and the model of
Figure 7. We use the probabilities of the supermodel, as modified by the model.
Consider computing the probability that rock rockA is of type sedimentary. The
model specifies that rock rockA is of type igneous with probability 0.85. We use
the probabilities of the supermodel, taking into account this constraint. That is,
treat the probability of the model as constraints, otherwise using the ratios between
probabilities in the supermodel.

Suppose p;.q denotes the probability rockA is of type sedimentary. Then,

P(sedimentary)
=(1-0.85
Prea =) x P(Rock) — P(igneous)
0.2
=(1-0.85) X ————=
()X T=045)
=0.0545

The rock rockA is of type sedimentary with probability 0.0545.

3.2 Role Assignment

To determine the probability of a match between a model and an instance, we
need to know which model individuals correspond to which instance individuals.
The correspondence between the model individuals and the instance individuals is
called a role assignment. We use My = I; to mean that model individual M; corre-
sponds to instance individual /; and M) =_L to mean that model individual M does

22

not corresponds to any instance individual. A role assignment is a list of correspon-
dence statements of the forms M = I;, M, =L, that we define recursively on the
structure of the model, such that:

e M; = I;, where M; and I; are top-level individuals
e if M} = I; is in the role assignment (so that, in particular, My #_1), and M} has
children, the role assignment include assignments of the form M. = | or M, = I,
where M, is a child of M and I. is a child of /; such that:
- If M. = I. then M. and /. must be of compatlble types.
- Each child M. of M) appears exactly once in the list and each child I. of I;
appears at most once.
-+ M. =1 cannot appear if there is a child /. of /; that is of a compatible type to
M, and is not assigned to another model individual.

Example 3.2 In matching mineral deposit model depModelA shown in Figure 7
with deposit deposit1 shown in Figure 6, there are two legal role assignments:

e R1={depModelA =deposit1,rockA = rockl,rockB = 1 mineral A = minerall}
o R2={depModelA =depositl,rockA = 1 rockB = rockl,mineral B = minerall}

3.3 Individual Matching

Intuitively the model individuals represent roles. A particular role assignment spec-
ifies which individuals can be considered in the roles, but does not specify how well
these individuals fill the roles. If M; is a model individual and /; is an instance in-
dividual, such that My = I; is in the role assignment, then, M ~ I; represents the
proposition that /; fills the role that M; represents.

Example 3.3 Consider matching mineral deposit model depModelA as shown in
Figure 7 with mineral deposit deposit1 as shown in Figure 6, and the role assign-
ment {depModelA = deposit1,rockA = rockl,rockB = | ,mineral A = minerall}.
The match mineralA ~ minerall represents the proposition that minerall fills the
role of mineralA. The probability that it fills the role depends on its colour and
age. The match rockA ~ rock1 represents the proposition that rockl fills the role of
rockA. The match depModelA ~ deposit] represents the proposition that the role
of depModelA is met by deposit1. This is the proposition that we want to compute
the probability of.

4 Construction of Bayesian network

The high level algorithms for both tasks of the matcher (model-to-instances and
instance-to-models matching) are shown in Figures 8 and 9 respectively. For both

23

Input: O: Ontology, S: Supermodel, M: model, and I, set of instances
Output: ranking of instances
M; — the top-level individual of M
for each/ € [, do
I, «— the top-level individual of /
for each role assignment R do
Compute P(M; ~ I;|R)
end for
Let p; = maxg P(M; ~ L,|R)
end for
Return {(I, p;) : I € Iy} ordered by p;

Fig. 8. Algorithm for model-to-instances matching

Input: O: Ontology, S: Supermodel, M;,;: set of models, and /: instance
Output: ranking of models
I; — the top-level individual of 7
for each M € M,,; do
M; — the top-level individual of M
for each role assignment R do
Compute P(M; ~ I;|R)
end for
Let py = maxg P(M; ~ I;|R)
end for
Return {(M, py) : M € M, } ordered by py

Fig. 9. Algorithm for instance-to-models matching

tasks of the matcher, we need to compute the posterior probability of M; ~ I for the
role assignment R, P(M; ~ I;|R). Given instance (I), model (M), role assignment
(N) , ontology (O) and supermodel (S), in this section we show how to construct a
Bayesian network. We compute the probability P(M; ~ I;|R) from the constructed

Bayesian network.

The model description defines a Bayesian network, given 7, R, O and S. We can
construct the Bayes net dynamically during the matching process. There are two
phases. In the first phase we construct the graph structure and in the second phase
we construct the conditional probability tables. There are five kinds of random vari-

ables in the Bayesian network:

K1: For each model individual My, if My = I; € R, and for each functional enu-
merated property P specified in the model, a random variable, which we write
as (My, P), corresponds to individual-property pair. The domain (or values) of

(M, P) is the range of P.

K2: For each model individual My, if My =1I; € R, and for each non-functional
enumerated property P specified in the model, for each value V in the range
of P, a Boolean random variable, which we write as (M, P,V), corresponds to

24

Input: O: ontology, R: role assignment, M : model, and I: instance
Output: G: graph structure of Bayes net

Construct Nodes:

for each correspondence statement r of R do
if 7 is of the form M; =_ then
construct Boolean random variable (M =_1)
else
r is of the form M) = I;
construct a Boolean random variable <Mk ~ j>
for each functional enumerated property, P, of M; do
construct random variable (M, P)
values({Mj, P)) < range(P)
end for
for each non-functional enumerated property, P, of M; do
for each value V € range(P) do
construct Boolean random variable (M, P,V)
end for
end for
if (My,rdf:type,t;, p;) € M then
construct a random variable (M, rdf:type)
create the values of (M, rdf:type)
end if
end if
end for
Let N be the set of all the constructed random variables

Construct Arcs:

for each constructed random variable n of N do
if n is of the form (M ~ I;) or (My =1) then
parent(n) — (M, ~ I;) such that(M,, prop,My, prob) e M,(M,, ~I;) €N
else if 7 is of the form (M, P) or (My, P,V) then
parent(n) < (M ~ I;) such that (My ~I;) € N
end if
end for
Return graph structure G

Fig. 10. Algorithm for constructing the graph structure of the Bayes net

individual-property-value pair.

K3: For each model individual My, if (Mj,rdf:type,C,p) € M, a random variable,
which we write as (M, rdf:type). The variable (My,rdf:type) is a hierarchically
structured variable [Sharma and Poole, 2005]. The values that (M, rdf:type) can
take are hierarchically structured into an abstraction tree of classes (tree hierar-

25

chy of the types of Mj).

K4: For each correspondence statement My = I; € R, a Boolean random variable,

which we write as <Mk ~ 1 j>. The Boolean random variable <Mk ~ 1 j> represents
that model individual M matches with instance individual /;.

K5: For each correspondence statement M; =1 € R, a Boolean random variable,

which we write as (M} =_1). The Boolean random variable (M) =) represents
that model individual M} doesn’t match with any instance individual.

The algorithm for constructing the graph structure of BN is shown in Figure 10.

The values of (M, rdf:type) are hierarchically structured into an abstraction tree of
classes that can be the type of M. We create the domain of (M, rdf:type) with only
few values that are necessary for computing the posterior probability of match. The
creation of the values of (My,rdf:type) is discussed in Section 4.1.

Example 4.1 Consider matching the mineral deposit model depModelA as shown
in Figure 7 with the instance depositl as shown in Figure 6. For the role assignment
R1 of Example 3.2, the constructed Bayesian network is shown in Figure 11. The
domains of the variables (depModelA, hasGeneticSetting), (depModelA, hasAge),
(mineralA, hasColour), and (mineralA, hasAge) are given below:

domain({depModelA,hasAge)) = { palaeozoic,archean, cainozeic}
domain({depModelA,hasGeneticSetting)) = {greenStoneBelt,oceanRidge}
domain({mineralA, hasColour)) = {white,blue, pink,clear}
domain({(depModelA,hasAge)) = { palaeozoic,archean, cainozeic}

The computation of the values of (rockA,rdf:type) is discussed in Example 4.2.

4.1 Creating the values of (My, rdf:type)

The variable (M, rdf:type) is a hierarchically structured variable [Sharma and Poole,
2005]. The types of Mj are hierarchically structured into an abstraction tree of
classes. For efficient inference in Bayesian network, we can compute the domain
of (M, rdf:type), given the model and instance descriptions, with few values that
are necessary to compute the posterior probability of match [Sharma and Poole,
2005].

Suppose model individual M} corresponds to instance individual /; and I; is of type
C)p but not of types C;b, o ,C’a‘b. The instance description provides observation for
the constructed Bayesian network. Thus, the values that are true for (M, rdf:type)
are C,, but not C;b, . ,Clgb. The observations (the type of ;) divides the tree hierar-
chy of My ’s types into three regions R1, R2, and R3:

26

depModelA
0.8 hasHostRock

asAge 0.93

hasGeneticSetting pe

0.95

hasMineral
greenStoneBelt @ 0.86
sedimentar

0.85 dif type hasWeatkeringDeg

083 0.98
' hasMineral 0.74 \ rdf:type asColour
@ @

rdf:type
0.82/ hasColour hasAge

@ 0.78 Modd
Cone

rockA = rockl, minerad A = mineral,
rockB = ~, mineralB = ~

(role assignment)

0.83

<depModelA ~ depositl>

<depModelA ,hasGeneticSetting> I
<depModelA ,hasAge>

<rockA ,haswWeatheringDeg>
<minerad A 1~minerall >
<rockA ,rdf:type>
<mineralA ,hasColour>
<mineraA ,rdf:type> <minerdA hasAge

Bayesian network

Fig. 11. A Bayesian network defined by the semantic network shown in Figure 7 for the role
assignment: depModelA = depositl, rockA = rockl, rockB = L, mineral A = minerall

R1: consists of C), and its super-classes, i.e., the classes that are true for the observa-
tion.

R2: consists of subclasses of C,, that are not C;b,...,C’;b, 1.e., the classes that we
know nothing about.

R3: the rest of the classes from the tree hierarchy of M;’s types, i.e., it includes the

27

Fig. 12. Observing that Cp is present and C7 and C8 are absent divide the abstraction
hierarchy of M;’s types into three regions R1, R2, and R3.

classes that we know are false (or absent).

For example, suppose / is of type C, but not of types C7 and C8 as shown in Figure
12. The regions R1, R2, and R3 are shown by the bold lines in Figure 12.

We do not need to distinguish between the values of (M}, rdf:type) that we know
are false. Then, we can consider that (M}, rdf:type) has two values: one represents
all the values that are false and another represents all the values we know noth-
ing about. Suppose (V4) represents all the values that are false and (Viorknow)
represents all the values we know nothing about. Thus,

Vtatse = “(Croor — Cp) U (absent observation)”
Viotknow = *‘Cp — (absent observation)”

domain((My,rdf:type)) = {Vuorknow: Vfalse }

If M, has exceptional classes in region R2, we need to partition the values repre-
sented by v,ormow 10t0 subsets based on the exceptional classes of M that are in
region R2. Let V,, be the union of C,, and the set of the exceptional classes of M
that are in region R2.

We can construct the domain of (M}, rdf:type) by values v that corresponds to each
exceptional class Cy € V,, as discussed by Sharma and Poole [2005]. We compute
the value v* for each exceptional class Cy € V,, as follows:

e V¢ = “Cy - {absent classes that are subclasses of C;}”, if C; doesn’t have excep-
tional strict subclasses in V,,

e Otherwise, v* =“Cy, —C) —--- — C,, - {absent classes that are subclasses of C; }”
where Cy,...,C,, are the highest exceptional strict subclasses of Cy in V.

28

Let v{,...,v} be the abstract values that represent non-empty sets and corresponds
to exceptional classes Cy € V,,. Then, the domain of (M, rdf:type) is:

domain({My,rdf:type)) = {V{,...,v{, v aise }

The variable (M}, rdf:type) has only those values that are necessary for computing
the posterior probability of match. Please refer to [Sharma and Poole, 2005] for the
details about the computing the values of a hierarchically structured variable.

Example 4.2 Consider determining the domain of variable (rockA,rdf:type) as
shown in Figure 11. The individual rockA corresponds to instance individual rockl,
which is of type granite. Given the observation that rockl is of type granite, the do-
main of (rockA,rdf:type) contains only two values: “granite” and “rock — granite”.

29 ¢

domain((rockA,rdf:type)) = {“granite”, “rock — granite”}
4.2 Construct tables

After constructing the graph structure of the Bayes net, we construct the conditional
probability tables (CPTs) for each node in the Bayesian network, given the model
(M) and supermodel (S). The CPTs for each type of variable is computed as follows:

K1: For random variable (My, P), where P is a functional enumerated property, we
compute P((My,P) = V;| (My ~ I;)) as follows:

Di if (My,P,Vi,pi) eM

P((My,P) =V;|(My ~1;) =true) =" .
((My, P) z|< k]>) {p’,x(l—):,jpj) otherwise

P((My,P) = Vi| (M.~ I;) = false) = p}

where p' is the prior probability that M, has value V; for property P. The proba-

bility p!. is defined by the supermodel. We take p’. from quadruple (cl,P,V;, p.) €

S, such that domain(P) = cl.

Example 4.3 Consider computing the conditional probability of node (depModelA, hasAge)
as shown in Figure 11 conditioned on node (depModelA ~ deposit1). The con-

ditional probability P({depModelA, hasAge) = large| (depModelA ~ deposit1))

is:

P((depModelA,hasAge) = proterozoic|(depModelA ~ depositl) = true) = 0.8
P({(depModelA,hasAge) = proterozoic| (depModelA ~ depositl) = false) =0.35

The value 0.8 is defined by the mineral deposit model depModelA as shown in
Figure 7. The value 0.35 is defined by the supermodel as shown in Example 2.8.

29

K2: Boolean node (M, P,V), where P is a non-functional enumerated property. The
conditional probability P((M,P,V)|{My ~ 1;)) is given by:

P <MkaPaV7p> eEM

P((My,PV) =true| (M ~1;) =true) =)
(M) |< g]>) {pr otherwise

P((My,P,V) =true| (My ~ I;) = false) = p,

where p, is the prior probability that M, has value V for property P. The probabil-
ity p, is defined by the supermodel (S). We take p, from quadruple {(cl,P,V, p,) €
S, such that domain(P) = cl.
K3: For random variable (M, rdf:type), we compute P((Mj, rdf:type) = v| (M ~ I;))
for each value v of (M, rdf:type). As discussed in Section 4.1, value v of (M}, rdf:type)
represents a set difference. Suppose v = “C, —CJ, —--- — Ck . Then,

P((My,rdf:type) = v| (M ~ I;) = true)

=Pn— Z pi;z

J=1k

where p, is the probability that M}, is of type C,,. We can compute the probability
Pn using equations (1) and (2) as discussed in Section 3.1.

P({My,rdf:type) = v| (Mg ~ I;) = false)

—P(G)) - ¥ P(CL)
J=1k

where P(C;) is the prior probability that M is of type C;. We can compute P(C;)

by multiplying the probabilities up in the abstraction hierarchy as discussed in
Section 2.4.

Example 4.4 Consider computing the conditional probability of Boolean node
(rockA, rdf:type) as shown in Figure 11 conditioned on its parent node (rockA ~ rockl).
As shown in Example 4.2 the variable (rockA,rdf:type) has two values “granite”,

and “rock — granite”. Then,

P({rockA,rdf:type) = “granite”| (rockA ~ rockl) = true)
=0.85x0.3
=0.255

P((rockA,rdf:type) = “rock — granite”
=1.0-0.255
=0.745

(rockA ~ rockl) = true)

K4: Boolean node <Mk ~1 j>. We compute the conditional probability P(<Mk ~1 j> | <M P~ I,,>)
as follows:

30

P((My ~ ;) = true| (M), ~ I,) = true) = p
P((My ~1;) =true| (M), ~ I,) = false) = P({My ~ I;) = true)

where p is associated with quadruple <Mp, prop, M, p> eM.
K5: Boolean node (M =_1). We compute the conditional probability table P((My =L1) | (M, ~ I,,))
as follows:

P((My=L) =true| (M, ~1I,) =true)=1—p
P((My =1) =true| (M, ~ I,) = false) =1—P((My ~ I;) = true)

where p is associated with quadruple (M, prop, My, p) € M.

The probability P((Mj ~ I;) = true), in cases K4 and K5, represents the prior
probability that model individual M is matching with instance individual /;. The
computation of P({My ~ I;) = true) is discussed in Section 4.3.

4.3 Computation of P((My ~ I;) = true)

The cases K4 and K5 of Section 4.2 require the computation of probability P(<Mk ~ j> =
true). In this section we show how to compute it.

Consider computing the prior probability P({rockA ~ rockl) = true) in the Bayes
net as shown in Figure 11. Suppose rockA in mineral deposit model depModelA
represents a role of rock in a mineral deposit. Then, mineralA represents a min-
eral we would expect to be in a rock that fills that role. As shown in Figure 7,
this mineral has certain properties. It is zircon, white and archean. The prior prob-
ability of having such a mineral is actually constrained by the mineral’s proper-
ties. That is, the prior probability P(({mineralA ~ minerall) = true) is constrained
by propositions: (mineralA,hasAge) = archean, (mineralA,rdf:type) = zircon, and
(mineralA, hasColour) = white.

P((mineralA,hasAge) = archean)
= P(archean| (mineralA ~ minerall) = true) x P((mineralA ~ minerall) = true)
+P(archean| (mineralA ~ minerall) = false) x P({mineralA ~ minerall) = false)

So,

P((mineralA,hasAge) = archean)
> P(archean| (mineralA ~ minerall) = true) X P({mineralA ~ minerall) = true)

Thus, as long as P(archean| (mineralA ~ minerall) = true) # 0,

31

P(archean)

P({(mineralA ~ minerall) =t <
({minera minerall) = true) < P(archean| (mineralA ~ minerall) = true)

P((mi [A ~ mi 1) =t < —
((minera minerall) = true) < 078

Similarly,

P(white)
P(white| (mineral A ~ minerall) = true)

P((mineralA ~ minerall) = true) <

P((mineralA ~ minerall) = true) < ——
({(minera minerall) = true) < 0.8

P(zircon)

P({mi [A ~ mi 1) =t <
({minera minerall) = true) < P(zircon| (mineralA ~ minerall) = true)

P({mineralA ~ minerall) = true) < ——

0.83

Thus,
04 02 02
P((mi [A ~mi 1) = <mi
({(minera minerall) = true) < min { 082’078 0.83 }
P({(mineralA ~ minerall) = true) < 0.241

Any value which is less than 0.241 can be used for P({mineralA ~ minerall) =
true). However, if a mineral that we need in a deposit of interest doesn’t have
any other properties that can make P({mineralA ~ minerall) = true) less than
0.241, we can consider P({mineralA ~ minerall) = true) = 0.241. For our im-
plementation, we assume that all of the constraints are given and we consider
P((mineralA ~ minerall) = true) =0.2.

In general, we can constrain the prior probability of any <Mk ~1 j> node by all of
its direct children in the constructed Bayesian network. Let Ay, ..., A, be the direct
children of <Mk ~ Ij>. Then,

P(<Mk ~ Ij> =true) < Pmin

where
Dmin = Min, P4
e A PA| (My ~I;) =true)
Note that P(A;) may be given or it is computed recursively from its children. Any
value less than or equal to pjui, can be taken for P((My ~ I;) = true).

32

4.4 Computation of P(M; ~ I;|R, observation)

After constructing a Bayesian network, given a role assignment R, from the seman-
tic network, we want to compute the posterior probability of M; ~ I, i.e, P(M; ~
I;|observation,R). The observation is the instance I’s description.

To insert the evidence in the constructed Bayesian network, we need to map the
instance description to the evidence for the constructed Bayesian network. An in-
stance description is a set of triples and quadruples of the forms: <I j,rdf:type,C>,
(I;,P,V, present), and (I;,P,V,absent). We map the instance description to the ev-
idence for the constructed Bayesian network as follows:

e a quadruple of the forms <I PV, present> and <I PV, absent>, if P is non-
functional enumerated property, provides observation for random variable (M, P, V'),
itMy=1; e R
— the quadruple g[i, PV, present> provides observation: (M, P,V) = true
— the quadruple (I;,P,V, absent> provides observation: (M, P,V) = false

e aquadruple of the forms <I PV, present> and <I PV, absent>, if P is functional
enumerated property, provides observation for random variable (My, P), if M) =
I; € R
— the quadruple gl i, PV, present) provides observation: (My,P) =V
— the quadruple (I;,P,V, absent> provides observation: (M, P) #V

e the quadruples of types <Ip,P, 1 j,absent>, if P is an entity property, provides
observations: VM s.t. type(My) C type(I;), (My ~L) = true

e the quadruples of the form (I;,rdf:type,C), and (I;,rdf:type,Cy,absent) pro-
vides observation for (My,rdf:type) variable, if My = I; € R. The evidence for
(M, rdf:type) is the disjunction of all those values of (M, rdf:type) that are true
for I;.

We can compute the posterior probability of match, P(M; ~ I|R,observation),
from the constructed Bayesian network using any standard inference algorithms,
e.g., VE [Zhang and Poole, 1994]. The random variable (M; ~ I;) in the constructed
BN is the query variable.

Example 4.5 Consider computing the conditional probability of matching mineral

deposit model depModelA with deposit deposit1, P({(depModelA ~ deposit1) |observation, R),
for the role assignment R. The role assignment R consists of statements: depModelA =
depositl, rockA = rockl, mineral A = minerall, rockB = 1. The Bayesian net-

work constructed for matching depModelA with deposit1 for the role assignment

R is shown in Figure 11. We can compute P({depModelA ~ deposit1) |observation,R)

from this Bayesian network. The observation is the description of deposit deposit 1.

The observation is:

(depModelA, hasSize) = proterozoic
(depModelA, hasgeneticSetting) = greenStoneBelt

33

(rockA,rdf:type) = “‘Granite”
(rockA,hasWeatheringDeg) = weathered
(mineralA, hasColour) = pink
(mineralA, hasAge) = archean
(mineralA,rdf:type) = zircon

We use the VE algorithm to compute P({depModelA ~ deposit1) |observation,R).
The conditional probability P({(depModelA ~ depositl) |observation,R) is given
below:

P({(depModelA ~ deposit1) = true|observation,R) = 0.81
P((depModelA ~ depositl) = false|observation,R) = 0.19

In the algorithms of Figures 8 and 9, to compute the probability of a match between
a model and an instance, we need to maximize the probability of a match over
all possible role assignments and choose the role assignment that maximizes it.
However, when there are many individuals the number of role assignments are too
many for maximizing over all role assignments. We, therefore, do a greedy search
for the best role assignment for the children of a node. We commit the best match
for a single model-instance individual role assignment, before considering the other
role assignments.

5 Evaluation

It may seem that we should evaluate the current system by simply testing the predic-
tions against real data (as in Figure 3). However, while this may test the reliability
of the theory being used, it may not provide an evaluation of our framework, or
even our system. For example, Figure 3 is an evaluation of Soilslide Model 2 (and
our representation of it) as much as an evaluation of HazardMatch itself.

Our framework is meant to evaluate multiple theories, good, bad and in between.
The fact that some of the theories are poor predictors of the data should not be seen
as discrediting of our approach but a vindication of it. MineMatch, HazardMatch
and other applications of our matching system will be most successful when we
can say that some theory does not actually work very well, and we can convince
the authors of the theory that we have a faithful representation of their theory, and
based on the evidence, the theory does not perform well. In this way, others can
know that the theory doesn’t work well, and hopefully the authors of the theory
will refine or abandon the theory.

This should be seen as an instance of what is known as the cycle of perception

[Mackworth, 1978; Neisser, 1976]. Our matcher is one part of a closed loop of (1)
theory (model) specification, (2) data preparation, (3) matching, (4) results evalu-

34

ation, and (5) theory refinement, which is equivalent to (1). This closed loop for
HazardMatch is documented by [Jackson, Jr. et al., 2008].

We make strong independence assumptions in this work, mainly because these as-
sumptions are adequate to represent current published theories ¢ . However, we ex-
pect that, when people start writing theories using a more formal representation,
they will want to have more than the naive Bayes assumption that underlies this
work. Lukasiewicz and Schellhase [2007] present a way to extend our previous
work to allow conditional probabilities. We expect that we, and others, will ex-
tend this work to include more sophisticated modelling abilities including distribu-
tions over real quantities (e.g., slopes or geological time), probabilistic dependen-
cies, and designing ontologies with their integration into probabilistic predictions
in mind [Poole et al., 2009].

6 Conclusion

In this paper we have described a framework for decision making in rich domains,
where we can describe the world at multiple levels of abstraction and detail and
have probabilistic models at different levels of abstraction and detail, and are able
to use them to make decisions. We are building knowledge-based decision tools in
various domains such as mineral exploration and hazard mapping, where we need
to have probabilistic reasoning and rich ontologies.

This paper only solves part of the problem. The assumption that the type of the indi-
viduals are from taxonomic hierarchies is not generally applicable. In some cases,
we may need to represent the types of the individuals by restriction on some of
their properties. In this case we need to model the inter-dependencies between the
properties. These are ongoing research topics that build on the foundations given in
this paper.

References

Arnold, R.W. (2006). Soil survey and soil classification. In S. Grunwald (Ed.),
Environmental Soil-Landscape Modeling. Taylor and Francis, New York.

Bishop, M.P. and Schroder, J.E. (Eds.) (2004). Geographic Information Science
and Mountain Geomorphology. Springer, Berlin.

6 Current published theories are written in natural language which is difficult to translate
into a formal representation. They do specify the existence of objects, but do not have
complicated conditional statements beyond the statement of the condition in which the
theory is applicable.

35

Chung, C. and Fabbri, A.G. (2005). Systematic procedures of landslide hazard
mapping for risk assessment using spatial prediction models. In T. Glade, M. An-
derson, and M. Crozier (Eds.), Landslide Hazard and Risk. John Wiley and Sons,
New York.

da Costa, P.C.G., Laskey, K.B., and Laskey, K.J. (2005). PR-OWL: A
Bayesian ontology language for the semantic web. In Proceedings of
the ISWC Workshop on Uncertainty Reasoning for the Semantic Web.
Galway, Ireland. URL http://sunsite.informatik.rwth-aachen.de/
Publications/CEUR-WS//Vol-173/.

Darwiche, A. and Goldszmidt, M. (1994). On the relation between kappa calculus
and probabilistic reasoning. In Proceedings of the Tenth Annual Conference on
Uncertainty in Artificial Intelligence (UAI-94), pp. 145—153. Morgan Kaufmann.

Demoulin, A. and Chung, C. (2007). Mapping landslide susceptibility from small
datasets: A case study in the Pays de Herve (E Belgium). Geomorphology, 89(3-
4): 391-404.

Dewitte, O. and Demoulin, A. (2008). Combining high-resolution spatial data in
landslidemapping: a fuzzy-set-based approach in W Belgium. Geophysical Re-
search Abstracts 10, EGU2008-A-04579, SRef-ID: 1607-7962/gra/EGU2008-A-
04579, EGU General Assembly.

Ding, Z. and Peng, Y. (2004). A probabilistic extension to ontology language OWL.
In Proceedings of the 37th Annual Hawaii International Conference on System
Sciences (HICSS 04).

Ding, Z., Peng, Y., and Pan, R. (2006). Bayesowl: Uncertainty modeling in seman-
tic web ontologies. In Z. Ma (Ed.), Soft Computing in Ontologies and Semantic
Web, volume 204 of Studies in Fuzziness and Soft Computing. Springer.

Fox, P., McGuinness, D., Middleton, D., Cinquini, L., Darnell, J., Garcia, J.,
West, P., Benedict, J., and Solomon, S. (2006). Semantically-enabled large-
scale science data repositories. In 5th International Semantic Web Conference
(ISWC06), volume 4273 of Lecture Notes in Computer Science, pp. 792-805.
Springer-Verlag. URL http://www.ksl.stanford.edu/KSL_Abstracts/
KSL-06-19 .html.

Gillespie, M.R. and Styles, M.T. (1999). BGS rock classification scheme, volume
1: Classification of igneous rocks. Research Report (2nd edition) RR 99-06,
British Geological Survey. URL http://www.bgs.ac.uk/bgsrcs/.

Hart, P. (1975). Progress on a computer-based consultant. In Proceedings of Inter-
national Joint Conference on Artificial Intelligence, pp. 831-841.

Howson, C. and Urbach, P. (2006). Scientific Reasoning: the Bayesian Approach.
Open Court, Chicago, Illinois, 3rd edition.

Jackson, Jr., L.E., Smyth, C.P., and Poole, D. (2008). Hazardmatch: an application
of artificial intelligence to landslide susceptibility mapping, Howe Sound area,
British Columbia. In 4th Canadian Conference on Geohazards.

Jaynes, E.T. (2003). Probability Theory: The Logic of Science. Cambridge Univer-
sity Press. URL http://omega.albany.edu:8008/JaynesBook.html.

Koller, D., Levy, A., and Pfeffer, A. (1997). P-classic: A tractable probabilistic
description logic. In Proceedings of 14th National Conference on Artificial In-

36

telligence, pp. 390-397.

Lukasiewicz, T. (2008). Expressive probabilistic description logics. Artificial In-
telligence, 172(6-7): 852—-883.

Lukasiewicz, T. and Schellhase, J. (2007). Variable-strength conditional prefer-
ences for ranking objects in ontologies. Journal Web Semantics, 5(3): 180—194.

Mackworth, A.K. (1978). Vision research strategy: Black magic, metaphors, mech-
anisms, miniworlds and maps. In E. Riseman and A. Hanson (Eds.), Computer
Vision Systems, pp. 53—-59. Academic Press.

Manola, F. and Miller, E. (2004). RDF Primer. W3C Recommendation 10 February
2004. URL http://www.w3.org/TR/rdf-primer/.

McGuinness, D. and van Harmelen, F. (2004). OWL web ontology language
overview. W3C Recommendation 10 February 2004, W3C.

Neisser, U. (1976). Cognition and Reality. Freeman, San Francisco, CA. URL
http://huwi.org/2.php.

Pearl, J. (1989). Probabilistic semantics for nonmonotonic reasoning: A survey.
In R.J. Brachman, H.J. Levesque, and R. Reiter (Eds.), Proc. Frst International
Conf. on Principles of Knowledge Representation and Reasoning, pp. 505-516.
Toronto.

Poole, D. and Smyth, C. (2005). Type uncertainty in ontologically-grounded qual-
itative probabilistic matching. In Eighth European Conference on Symbolic and
Quantitative Approaches to Reasoning with Uncertainty (ECSQARU-2005), pp.
763-774.

Poole, D. (2007). Logical generative models for probabilistic reasoning about ex-
istence, roles and identity. In 22nd AAAI Conference on Al (AAAI-07). URL
http://www.cs.ubc.ca/spider/poole/papers/AAAIO7-Poole.pdf.

Poole, D., Smyth, C., and Sharma, R. (2008). Semantic science: Ontologies, data
and probabilistic theories. In P.C. da Costa, C. d’Amato, N. Fanizzi, K.B.
Laskey, K. Laskey, T. Lukasiewicz, M. Nickles, and M. Pool (Eds.), Uncer-
tainty Reasoning for the Semantic Web I, LNAI/LNCS. Springer. URL http:
//www.cs.ubc.ca/spider/poole/papers/SemSciChapter2008. pdf.

Poole, D., Smyth, C., and Sharma, R. (2009). Ontology design for scientific the-
ories that make probabilistic predictions. [EEE Intelligent Systems, pp. 27—
36. URL http://www2.computer.org/portal/web/computingnow/2009/
0209/x1poo.

Quillian, M. (1968). Semantic memory. In M. Minsky (Ed.), Semantic Information
Processing, pp. 227-270. MIT Press, Cambridge, MA.

Robinson, V.B., Petry, EE., and Cobb, M.A. (2003). Special issue on incorporating
fuzzy sets in geographic information systems. Transactions in GIS, 7(1).

Schumm, S.A. (1991). A Scientific Approach to Earth Science: Ten Ways to be
Wrong. Cambridge University Press.

Sharma, R. and Poole, D. (2005). Probabilistic reasoning with hierarchically struc-
tured variables. In Proceedings of the Nineteenth International Joint Conference
on Artificial Intelligence (IJCAI-05), pp. 1391-1397.

Sharma, R., Poole, D., and Smyth, C. (2007). A system for ontologically-grounded
probabilistic matching. In Proceedings of the Fifth UAI Bayesian Modeling Ap-

37

plications Workshop (UAI-AW 2007).

Smith, B. (2003). Ontology. In L. Floridi (Ed.), Blackwell Guide to the Philosophy
of Computing and Information, pp. 155-166. Oxford:Blackwell.

Smyth, C. and Poole, D. (2004). Qualitative probabilistic matching with hierar-
chical descriptions. In Proceedings of Ninth International Conference on the
Principles of Knowledge Representation and Reasoning (KR-2004).

Spohn, W. (1988). A general non-probabilistic theory of inductive reasoning. In
Proceedings of the Fourth Annual Conference on Uncertainty in Artificial Intel-
ligence (UAI-88), pp. 149-158.

Yang, Y. and Calmet, J. (2005). Ontobayes: An ontology-driven uncertainty model.
In Proceedings of the International Conference on Computational Intelligence
for Modelling, Control and Automation and International Conference on Intelli-
gent Agents, Web Technologies and Internet Commerce, volume 1, pp. 457-463.

Zhang, N. and Poole, D. (1994). A simple approach to Bayesian network compu-
tation. In Proc. of the 10th Candian Conference on Artificial Intelligence, pp.
171-178.

38

