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Imagine having a number of expert systems that provide predictions—for exam-

ple, diagnoses of what is wrong with patients based on their symptoms, or predic-

tions of whether there will be a landslide at some particular location. Which of these 

predictions should we believe most? Apparently, many of Google’s queries are people 

typing in symptoms and wanting diagnoses. 
Google’s ranking system, based on page rank, es-
sentially measures popularity. Other recommender 
systems base their predictions explicitly on some 
measure of how authoritative sources are. Scien-
tists (and the rest of us) should be suspicious of 
both answers. We would prefer the prediction that 
best fits the available evidence. To this end, seman-
tic science can provide a way to have explicit the-
ories that make predictions together with the data 
upon which to test the predictions.

To enable meaningful results (and avoid what is 
known as “garbage in”), we need to use consistent 
vocabulary for the data and the predictions. We 
don’t want a semantic mismatch between the data 
and the predictions. Users need to know what vo-
cabulary to use for the new cases. Thus we need 
some sort of ontology to enable terms to be used 
consistently (or made consistent).

The work on expert systems that peaked in the 
1980s has given rise to two seemingly separate 
fields. One is concerned with uncertainty and (sta-
tistical) learning that typically uses features or 
random variables. The other concentrates on on-
tologies and rich representations of knowledge 
with individuals and relations, but has essentially 
ignored uncertainty. This article is part of an en-
deavor to put these together, building on the ad-
vances in both.

The aim of semantic science is to have machine-
interpretable scientific knowledge. There have been 
considerable advances in developing ontologies and 
using them to describe data and processes.1,2

We are advocating adding the publication of sci-
entific theories that make predictions. Thus, the 
main components of our conception of semantic 
science are data about observations of the world, 
theories that make predictions about the data, and 
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ontologies that describe the vocabulary 
used by the data and the theories.3 The on-
tologies must define both the vocabulary 
needed to express application domains and 
the vocabularies of data and theories them-
selves. By publishing ontologies, data, and 
theories, researchers can use new data to 
evaluate existing theories, and new theories 
can be evaluated against existing data. The-
ories can be used to make predictions for 
new cases, and the predictions can be justi-
fied by reference to the empirical evidence.

This article is about how to define on-
tologies to represent observations and sci-
entific theories that make (probabilistic) 
predictions. These predictions can be used 
to evaluate the theories on available data 
and can be used for new cases. We are not 
trying to encompass all of the activities of 
science, but rather add one more desidera-
tum to the design of ontologies—namely, 
taking into account future uses of the on-
tologies for developing theories that make 
probabilistic predictions.

This semantic-science framework can 
also be motivated by starting with machine 
learning. We assume that the theories make 
predictions about individuals and relations, 
not just features, and thus are part of what 
has been called statistical relational learn-
ing.4,5 The data and the learned theories 
are assumed to be persistent. The theories 
are built using prior knowledge and multi-
ple heterogeneous data sources, and can be 
compared with other theories. When a the-

ory is used, the data upon which it is based 
are available for scrutiny. The theories and 
the data refer to formal ontologies to allow 
for semantic interoperability. We expect to 
have the highest standards for evaluation 
of theories, with declarations of which data 
were used for training; so, there is a clean 
separation of training and test data.

We also assume that probability is the 
appropriate form of prediction for scien-
tific theories.6,7 Probabilistic predictions 
minimize the prediction error for most 
error measures and are what is required 
(along with utilities) to make decisions.

We are building systems in two domains 
of earth sciences: minerals exploration and 
geohazards (predicting landslide suscepti-
bility). In both domains, there are multiple 
theories (models), and users are interested 
in asking what predictions different mod-
els make about a particular piece of land or 
about which land area best fits a model.

We base our ontologies on OWL, the 
W3C recommendation for representing on-
tologies.8 We see OWL as an “assembly 
language” for ontologies. This article de-
scribes a high-level design pattern for on-
tologies that is suitable for designing the 
rich hypothesis space needed for probabi-
listic reasoning and shows how the result-
ing ontologies can be represented in OWL 
DL (one of the species of OWL).

Semantic-Science Overview
As we mentioned in the introduction, our 
semantic-science framework consists of 
ontologies, data, and theories.

Ontologies specify the meaning of the 
vocabulary. These evolve slowly and are 
built by communities. We expect that, 
through a process of natural selection, a 
particular community will converge on 
useful ontologies that interoperate. For ex-
ample, the geology community is actively 
working on what symbols to use for rocks, 
minerals, and so on. (See http://onegeology. 
org, www.cgi-iugs.org, and www.seegrid.
csiro.au for international efforts to share 
information and to develop standardized 
vocabulary.) Shared ontologies are impor-
tant for semantic interoperability.

The data about observations are writ-
ten using the vocabulary of the ontology. 
In practice, this means that data sets are 
published with reference to the ontologies 
they use, so that we can recognize when 
different data sets are about the same or re-
lated phenomena. For example, in the ge-

ology domain, the observations might be 
of the rocks and minerals (and their spa-
tial relation with other land features such 
as rivers) found at a particular location of 
the earth. The observations do not include 
probabilities.

Scientific theories make predictions 
about (potentially) observable features or 
outcomes. These theories are often called 
hypotheses, laws, or models, and we do 
not distinguish between these terms. In 
the realm of semantic science, a distinc-
tion that depends on how well established 
theories (or laws or hypotheses) are is re-
dundant because we can access the rel-
evant data to determine how much they 
should be believed. There, of course, might 
be other reasons to distinguish these terms. 
Theories specify what data they can make 
predictions about, they make predictions 
that can be checked against all of the rel-
evant data, and they can be applied to new 
cases. As we mentioned before, we expect 
these theories to make probabilistic predic-
tions.6,7 Again, these probabilistic theories 
refer to ontologies. For example, we are de-
veloping theories in the geology domain 
that make predictions on where minerals 
are more likely to be found, and theories 
that make predictions about where various 
forms of landslides are likely to occur, in 
terms of emerging standards of the vocab-
ulary of earth sciences. The ontologies al-
low for the interoperation of the data and 
the theories.

Figure 1 shows the relationship between 
ontologies, data, and theories. The data de-
pend on the world and the ontology. The 
theories depend on the ontology, indirectly 
on the world (if a human is designing the 
theory), and directly on some of the data 
(because we would expect that the best the-
ories would be based on as much data as 
possible). Given a new case, we can use a 
theory to make a prediction. The real sit-
uation is more complicated, because there 
are many theories, ontologies, and hetero-
geneous data sets, and they all evolve in 
time. The same piece of data can act in the 
role of training data for one theory and in 
the role of a new case for another theory, 
and perhaps in both roles for theories that 
make multiple predictions (but we have to 
be careful not to judge a prediction by the 
data it was trained on). Often a prediction 
will rely on multiple theories (for example, 
in a diagnostic situation, there might be a 
theory that predicts whether a patient has 
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Figure 1. Ontologies, data, and theories 
in semantic science. The data depend 
on the world and the ontology. The 
theories depend on the ontology, 
indirectly on the world (if a human is 
designing the theory), and directly on 
some of the data. Given a new case, we 
can use a theory to make a prediction.
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cancer, a theory that predicts the type of 
cancer, and another that predicts the sever-
ity, and all might be needed to predict the 
outcome for a particular patient).

The idea of “science” here is meant to be 
very broad. We can have scientific theories 
about anything. As well as traditional sci-
entific disciplines such as geology or medi-
cine, we could have theories about some-
one’s preferences in real estate, theories 
about what companies are good to invest 
in, theories about how much a subway sys-
tem in a city will cost to build, or theories 
in any domain where we can have testable 
predictions.

Ontologies  
for Semantic Science
In philosophy, ontology is the study of 
existence.

In AI, an ontology is a specification of 
the meaning of the symbols in an infor-
mation system.9 In particular, an ontol-
ogy contains a commitment to what kinds 
of individuals and relationships are being 
modeled, specifies what vocabulary will 
be used for the individuals and relation-
ships, and gives axioms that restrict the 
use of the vocabulary. The axioms have 
two purposes: to show that some use of 
the terms is inconsistent with intended in-
terpretation, and to allow for inference to 
derive conclusions that are implicit in the 
use of the vocabulary. The simplest form 
of an ontology is a database schema with 
an informal natural language descrip-
tion of what the attributes and the con-
stants mean. More formal ontologies allow  
machine-understandable specifications.

For example, an ontology of real estate 
could specify that the term “building” will 
represent buildings. The ontology will 
not define a building but give some prop-
erties that restrict the use of the term. It 
might specify that buildings are human- 
constructed artifacts, or it might give some 
restriction on the size of a building so that 
shoe boxes cannot be buildings or so that 
cities cannot be buildings. It might state 
that a building cannot be at two geographi-
cally dispersed locations at the same time 
(so if you take off some part of the build-
ing and move it to a different location, it 
is no longer a single building). Although 
ontologies include a number of other kinds 
of information, taxonomies, which are 
essentially naming schemes for related 
things according to subclass, are one of 

the essential building blocks of an ontol-
ogy. We discuss rock taxonomies later in 
the article.

An ontology written in a language such 
as OWL specifies the vocabulary for indi-
viduals, classes, and properties. Sometimes 
classes and properties are defined in terms 
of more primitive classes and properties, 
but ultimately they are grounded in primi-
tive classes and properties that are not ac-
tually defined. This can work when people 
who adopt an ontology consistently use the 
notation with its intended meaning.

The primary purpose of an ontology is 
to document what the symbols mean—the 
mapping between symbols (usually the 
words in an information system such as a 

book or a computer) and concepts. In par-
ticular, an ontology should facilitate the 
following tasks:

Given a symbol used in an information 
system, a person should be able to use 
the ontology to determine what the sym-
bol means.
The ontology should enable a person to 
find the appropriate symbol for a con-
cept or determine that there is currently 
no appropriate symbol. Different us-
ers, or the same user at different times, 
should be able to find the same symbol 
for the same concept.
Through the use of axioms, the system 
should be able to infer some implicit 
knowledge or determine that some com-
bination of values is inconsistent.
The system should be able to construct a 
hypothesis space over which it can put a 
probability distribution. Integrating this 
task with the other tasks is the subject of 
this article.

•

•

•

•

The main challenge in building an on-
tology is to find a structure that is simple 
enough for a human to comprehend, yet 
powerful enough to be able to represent the 
logical distinctions needed in the domain 
of interest.

This article takes a perspective on the 
role of the ontology and uncertainty for-
malisms that differs from many other re-
cent proposals.10,11 In particular, we do not 
include actual probabilities in the ontology. 
The ontology defines the vocabulary for a 
community who need to share vocabulary 
and the semantics of that vocabulary. As 
the community need not, and should not, 
agree on theories or probabilities, these 
should not be part of the ontology. The on-
tology should define the vocabulary to ex-
press theories, including the vocabulary 
to express probability. In essence, we ad-
vocate separating definitions from predic-
tions; the former forms the ontology, and 
the latter forms the theories. An ontology 
can provide definitions that involve prob-
abilities—for example, defining a fair coin 
to be one that has a 0.5 chance of landing 
heads—but these definitions do not make 
predictions until we have asserted or hy-
pothesized that a coin is fair.

There are five reasons why the ontolo-
gies should not contain the probabilities 
about the domain, even though the theories 
might be probabilistic.

First, ontologies come logically before 
observational data, and probabilities come 
logically after. In order to have data, you 
need a meaning for the data. Any data 
come explicitly or implicitly with an ontol-
ogy; otherwise they are just a sequence of 
bits with no meaning. In order to acquire 
data, we need to have some meaning asso-
ciated with the data, which is the ontology. 
To have reasonable probabilities, we need 
to use as much information as possible. 
That is, the probabilities need to depend 
on the data; to make a prediction on a new 
case, we want to use the posterior proba-
bility based on all previous data. It is pos-
sible that someone might reinterpret some 
data with a different ontology, and we have 
to be careful not to double-count that as 
evidence.

Second, data that adheres to an on-
tology can’t be used to falsify that ontol-
ogy. For example, if some data adhere to 
an ontology that specifies that a gneiss is 
a metamorphic rock, then by definition, 
all gneisses are metamorphic rocks, so 

We advocate separating 

definitions from 

predictions; the former 

forms the ontology,  

and the latter forms  

the theories. 
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that data cannot refute that fact. However 
scientific theories need to be refutable.12 
In probabilistic terms, evidence obtained 
from observations should change our belief 
in theories. This does not mean that ontolo-
gies should not change; we expect them to 
evolve as the requirements for representing 
data and theories change.

Third, to allow for semantic interopera-
bility, a community should agree on an on-
tology to make sure they use the same ter-
minology for the same things. However, as 
we mentioned before, a community cannot 
and should not agree on the probabilities, 
because people might have different pri-
ors and have access to different data, and 
the ontology should have a longer life than 
one data set. Also, we don’t want to update 
an ontology after each new data set, be-
cause then we need to map between these 
different ontologies. We do want to up-
date theories when new evidence becomes 
available.

Fourth, people should be allowed to dis-
agree about how the world works without 
disagreeing about the meaning of the terms. 
If two people have different theories, they 
should first agree on the terminology (for 
otherwise they would not know they have a 
disagreement)—this forms the ontology—
and then they should give their theories so 
that those theories can be compared.

Finally, the structure of the information 
a prediction depends on does not neces-
sarily follow the structure in the ontolo-
gies. For example, an ontology of lung can-
cer should specify what lung cancer is, but 
the prediction of whether someone will 
have lung cancer depends on many factors 
that depend on particular facts of the case 
and not just on other parts of ontologies. 
Whether a person has lung cancer may de-
pend on whether he or she worked in a bar 
that allowed smoking, but we wouldn’t ex-
pect bars to be part of the definition of can-
cer, nor would we expect lung cancer to be 
part of the definition of bars or even smok-
ing. As another example, the probability 
that a room will be used as a living room 
depends not just on properties of that room 
but also on other rooms.

In our vision of semantic science, the on-
tology should describe the vocabulary for 
any concept that needs to be shared be-
tween data and theories. In particular, we 
are making no claims as to the distinc-
tion between theoretical terms and obser-
vational terms.13 People can use whatever 

ontology they want. This freedom means 
that the philosophical debate about scien-
tific terms possibly becomes more impor-
tant, but the underlying technology needs 
to be neutral in this debate. We advocate 
that people designing scientific ontologies 
should take into account the (future) use of 
these ontologies in building theories.

Representations of Ontologies
Modern ontology languages such as OWL 
define classes, properties, and individuals. 
The semantics of OWL is defined in terms 
of sets: a class is a set of individuals (RDF 
calls the individuals “resources,” and in-
dividuals are also called “objects”), and a 
property is a set of individual-value pairs.

There are many ways to define classes in 
OWL. They can be defined in terms of the 
union, intersection, or complement of other 
classes or in terms of property restrictions. 
A class A can also be specified by stating 
it is a subclass of some other class B. This 
latter specification loses much structure 
that can be useful. For the rest of this sec-
tion, we consider only the specification of 
classes that would otherwise be specified 
by just stating what classes they are imme-
diate subclasses of.

The notion of a subclass is important; 
however, it isn’t obvious that it should be 
primitive. Deriving the subclass property 
from more primitive notions exposes struc-
ture that is natural and can be exploited in 
probabilistic models.

An Aristotelian definition14 of class A 
is of the form “An A is a B such that C,” 
where B is a superclass of A and C is a con-
dition that defines how A is special among 
the subclasses of B. Aristotle called B the 
genus and C the differentia.15 Restricting 

all subclass definitions to be definitions in 
this form does not reduce what can be rep-
resented but provides random variables that 
can be exploited in probabilistic models.

Aristotelian definitions can be repre-
sented in logic and in OWL DL using what 
we call the multidimensional design pat-
tern, where the conditions in the differen-
tia are built from properties that form local 
dimensions. To define a class, first choose 
a superclass that will form the genus, then 
consider what values of what properties 
distinguish this class from the other sub-
classes of the genus. Each of these prop-
erties defines a (local) dimension. The do-
main of each property should be the most 
general class for which it makes sense. The 
subclass is then defined as equivalent to 
the superclass conjoined with the restric-
tions on the values of the properties de-
fining the dimensions. Thus, in the multi
dimensional design pattern, a class is never 
just stated to be a subclass of another class. 
There are still subclasses; the subclass re-
lation is just derived from more primitive 
constructs. Following the multidimensional 
design pattern does not restrict what can be 
represented.

Geologists have traditionally defined 
rocks along three major dimensions: gen-
esis (sedimentary, igneous, or metamor-
phic), composition, and texture. When de-
picted in a taxonomy, the rocks are typically 
classified using first genesis, then texture, 
then composition. Particular rocks, such as 
granite and limestone, are defined as hav-
ing particular values in each dimension (or 
some subset of the dimensions). There have 
been attempts to build rock taxonomies by 
splitting on the dimensions in order, as in 
the British Geological Survey Rock Classi-
fication System.16 However, these produce 
taxonomies that are difficult to use because 
they have to commit to an order in which 
subclass splits are made—grain size be-
fore composition, for example, or compo-
sition before grain size. If the former order 
is chosen, as in the case of the British Geo-
logical Survey system, it is difficult, if not 
impossible in a single word, to refer to all 
rocks of a particular composition, irrespec-
tive of grain size. This problem is well doc-
umented.17 A multidimensional approach 
to representing taxonomies solves these 
problems, makes the ontologies more ame-
nable to modern computer-reasoning capa-
bilities, and, we would argue, provides for 
more accurate scientific research.

For semantic interoperability, 

a community should  

agree on an ontology 

to make sure they use  

the same terminology  

for the same things. 
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Stephen Richard and his colleagues de-
fine nine dimensions in which to distin-
guish earth materials.18 One dimension 
is the consolidation degree, which speci-
fies whether some earth material is con-
solidated or unconsolidated. Rock is con-
solidated earth material. Volcanic ash is 
unconsolidated earth material. Another 
dimension is fabric type—the pervasive 
feature of a rock that specifies the di-
rectionality of the particles that are vis-
ible in it. This dimension is defined only 
for rocks (that is, for earth material that 
is consolidated). One value for fabric 
type is foliated, which means that the 
rock consists of thin sheets. Particular 
rocks are defined by their values on the 
dimensions.

Example 1. Richard and his colleagues 
define a gneiss as a metamorphic rock 
where the fabric type is foliated, the 
particle type is crystal, and the grain 
size is phaneritic (large enough to be 
seen by the human eye).18

When there are rocks that have similar 
descriptions (such as gneisses and schists), 
geologists decide whether one is a subclass 
of the other or what features distinguish 
these rocks, perhaps needing to invent new 
dimensions.

There is not a fixed set of dimensions 
that distinguish all individuals. Rather, dif-
ferent dimensions come into existence at 
different levels of abstraction. For example, 
the dimensions of size and weight might 
appear for physical individuals but are not 
applicable for abstract concepts. This idea 
can be traced back to Aristotle:

If genera are different and coordinate, their 
differentiae are themselves different in kind. 
Take as an instance the genus “animal” and 
the genus “knowledge.” “With feet,” “two-
footed,” “winged,” “aquatic,” are differentiae 
of “animal”; the species of knowledge are 
not distinguished by the same differentiae. 
One species of knowledge does not differ 
from another in being “two-footed.”15

Note that “coordinate” means that neither 
genus is subordinate to the other.

Multidimensional-Ontology	  
Assumptions
In this section we will be more formal in 
the assumptions behind multidimensional 

ontologies. We do this to show how the 
multidimensional structure can give us 
random variables with which we can de-
fine probabilistic models. To keep the 
discussion simple, we will ignore classes 
that are defined in terms of intersection, 
union, complement, or cardinality. Such 
classes are important but complicate the 
discussion.

In a multidimensional ontology,

dimensions are defined by functional 
properties or by each value of a non-
functional property,
classes are defined in terms of values on 
properties, and
the domain of a property that defines a 

dimension is the most general class on 
which the property makes sense.

Assuming that subclasses are defined 
only in terms of their values on properties 
does not restrict what can be represented. 
An explicitly stated subclass relationship 
can induce a Boolean property that is true 
on the subclass and is false otherwise. That 
is, if all you know is that A is a subclass 
of B, you can always invent a new Bool-
ean predicate is_A with domain B, and de-
fine A to be equivalent to B ^ is_A. For 
example, if someone states humans are a 
subclass of animals, this induces a prop-
erty is_human that is true of members of 
the humans class and is false otherwise. 
Part of this article is arguing that there are 
advantages in explicitly representing the 
predicates that define classes.

In particular, we make three assump-
tions about the ontology. First, the top 
class, Thing, is predefined.

Second, classes are one of two types:

•

•

•

Enumeration classes are predefined 
sets of values. For example, in geology, 
FabricTypeValue could be defined as 
the set of constants {aplitic, biogenic, 
foliated, ...}.
Nonenumeration classes are made up of 
individuals in the world of the applica-
tion domain and are defined in terms of 
values of properties. That is, a class A is 
defined as A ≡ B ^ C, where B, the genus 
of A, is a class and C, the differentia, is a 
Boolean formula of property restrictions.

Finally, there is a total ordering of classes 
and properties such that

Thing is first in the order,
the genus of a class must be before the 
class in the total ordering,
the domain and the range of a property 
must be before the property in the total 
ordering,
the properties that define a class must 
come before the class in the total order-
ing, and
this total ordering ensures that there are 
no cyclic definitions. For example, say-
ing a flat is an apartment and an apart-
ment is a flat, without saying what either 
one is, violates the acyclic condition.

(Suppose there is a cyclic set of definitions: 
A1 ≡ A0 ^ C1, A2 ≡ A1 ^ C2, …, Ak ≡ Ak–1 ^ 
Ck, A0 ≡ Ak ^ C0. This implies that all of 
the Ai are equivalent and imply all of the 
Ci. Such a cyclic representation is very mis-
leading and should be avoided. If there is a 
set of equivalent classes, this can be repre-
sented as having a canonical representation 
for the classes.)

Under this interpretation, a nonenumera-
tion class can be seen as a set of property 
restrictions. (Each genus that is not Thing 
can be reduced to its genus and a set of 
property restrictions, and this can be done 
recursively.)

Defining classes or subclasses only in 
terms of properties has four advantages 
over trying to specify the subclass relation 
directly (or even trying to impose a tree 
structure over the abstraction hierarchy).

First, it is easy to specify, compute, and 
explain subclasses in terms of the dimen-
sions, even though the induced subclass 
relationship might be very complex to 
depict.

Second, a concept does not need to spec-
ify values for all dimensions. Overlapping 

•

•

•
•

•

•

•

Defining classes  

or subclasses only  

in terms of properties  

has advantages over  

trying to specify the 

subclass relation directly.
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concepts can specify values for different 
sets of dimensions.

Third, it is often difficult to decide on 
which attribute to split a hierarchy. Differ-
ent splits might be applicable for different 
purposes. The multidimensional splitting 
means that you don’t have to make this (of-
ten arbitrary) choice.

Finally, this approach is important for 
probabilistic reasoning where the dimen-
sions create random variables (see the sec-
tion “From Ontologies to Possible Worlds 
and Random Variables”). This provides a 
way to have probabilistic models (and util-
ity models) over complex objects described 
using complex ontologies.

OWL and the  
Multidimensional Design Pattern
OWL was designed to allow for the speci-
fication and translation of ontologies. OWL 
allows for the specification of classes, 
properties, and individuals and relations 
between them.

It is possible to use OWL to specify on-
tologies using the multidimensional de-
sign pattern. It is interesting to note that 
we could find no tutorials or material for 
teaching or learning OWL that use this de-

sign pattern.
We divide the object properties into two 

classes:

A discrete property is an object property 
whose range is an enumeration class.
A referring property is an object prop-
erty whose range is a nonenumeration 
class (that is, the value is an individual 
in the world).

The dimensions of a multidimensional 
ontology are defined in terms of discrete 
properties.

Example 2. Consider representing a 
gneiss, as outlined in Example 1, using 
a multidimensional ontology in OWL. 
Suppose we already have rock defined 
(as an earth material with the consol-
idation degree of consolidated). We 
need to say a gneiss is a rock in which 
the genesis is metamorphic, the fab-
ric type is foliated, the particle type is 
crystal, and the grain size is phaneritic. 
To represent this we do the following:

First, we create the class Fabric
TypeValue (see Figure 2; we show only  

•

•

three values to keep it simple; Richard 
lists six values,18 but the earth science 
community may recognize additional 
values in the future).

Then, we create a functional property 
fabricType whose domain is Rock and 
whose range is FabricTypeValue (see 
Figure 3).

Similarly, we create functional proper-
ties for geneticCategory, particleType, 
and grainSize, each with the domain 
EarthMaterial or Rock, as appropri-
ate, and a range that is an enumera-
tion class. (Some of these enumeration 
classes have a hierarchical structure. 
This can be achieved by having sub-
classes of enumeration classes and us-
ing OWL’s facility for a class to have 
some values or all values of a property 
in some class. A description of how 
to do this is beyond the scope of this 
article.)

Finally, we define Gneiss as a rock with 
the appropriate values on the proper-
ties (see Figure 4).

We claim that this multidimensional on-
tology fulfills the two main purposes of an 
ontology: given a concept, find the appro-
priate terminology or determine that one 
does not exist, and, given a symbol, deter-
mine what it means. To find the terminol-
ogy for a concept, start at the top (at Thing) 
and find the value for each property that 
is defined. A user will never encounter a 
question that does not make sense. Given 
a symbol in the ontology, the ontology will 
specify what values it has on the properties 
that define it.

From Ontologies to Possible 
Worlds and Random Variables
Although we have tried to argue that the 
multidimensional ontology is important in 
its own right, a main motivation is to use it 
as a foundation for specifying probabilis-
tic models. The general idea is that the di-
mensions form random variables for each 
individual.

For this article, we assume there is no 
uncertainty about the existence or iden-
tity of individuals. We assume that we are 
given a finite set of uniquely identifiable 
individuals in the world.

A possible world specifies, for each do-

EquivalentClasses(FabricTypeValue
	 ObjectOneOf(aplitic biogenic foliated))
DifferentIndividuals(aplitic biogenic foliated)

Figure 2. The OWL functional specification of the enumerated class FabricTypeValue. 
FabricTypeValue is an enumeration class that is equivalent to the collection {aplitic, 
biogenic, foliated}.

FunctionalObjectProperty(fabricType)
ObjectPropertyDomain(fabricType Rock)
ObjectPropertyRange(fabricType FabricTypeValue)

Figure 3. The OWL functional specification of the fabric dimension. This is equivalent 
to saying that rocks have a property called “fabricType” whose value must come 
from the set of values called “FabricTypeValue.”

EquivalentClasses(Gneiss
  ObjectIntersectionOf(
    Rock
    ObjectHasValue(geneticCategory metamorphic)
    ObjectHasValue(fabricType foliated)
    ObjectHasValue(particleType crystal)
    ObjectHasValue(grainSize phaneretic)))

Figure 4. Defining the class Gneiss in the OWL functional syntax. A gneiss is a 
metamorphic, foliated, crystal, phaneretic rock.
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main individual, a value for each property 
that is legal (is consistent with the ontol-
ogy) for that individual in the possible 
world. In particular, the individual must 
be in the domain of the property and must 
fulfill the cardinality and other restrictions 
in that world.

Although this construction gives fi-
nitely many possible worlds, the number of 
worlds grows like O(ednnin), where n is the 
number of individuals, e is the (maximum) 
size of the enumeration classes, d is the 
number of discrete properties, and i is the 
number of referring properties. To specify 
a probability distribution explicitly over 
such possible worlds is not feasible. Rather, 
we can describe the worlds in terms of ran-
dom variables. The structure of random 
variables lets us concisely state probabili-
ties using parameter sharing, by treating 
individuals about which we have the same 
information identically and by making ex-
plicit independence assumptions.

A natural specification is to have a Bool-
ean random variable for each individual-
property-value triple. There is, however, 
more structure that can be exploited for 
functional properties. For functional prop-
erties, there can be a random variable for 
each individual-property pair, where the 
domain of the random variable is the range 
of the property.

For example, in the geology domain, 
there are variables for the consolidation for 
each individual of type EarthMaterial and 
variables for the genetic category for each 
rock.

Given such random variables defined by 
properties, we can define random variables 
that specify the type of the individual. The 
type of an individual is a deterministic 
function of the genus and the properties 
that define the differentia.

This random-variable formulation is 
complicated by the fact that the random 
variables defined in terms of individual-
property pairs are not all defined in all 
worlds. In particular, a variable is defined 
only if the individual is of the type of the 
domain of the property that defines the 
variable. Thus, the existence of some ran-
dom variable might be dependent on the 
value of other variables. For example, sup-
pose you are uncertain whether an earth 
material is a gneiss, and the fabric type is 
defined only when the object is consoli-
dated (a rock). In terms of possible-worlds 
semantics, in any possible world where a 

particular individual is a rock, the fabric 
type is defined. In a possible world where 
the individual is not consolidated (or not 
earth material), the fabric type for that in-
dividual is not defined. Thus, when you 
talk about the fabric type of some object, 
you are implying it is a rock. This is remi-
niscent of context-specific independence,19 
but instead of one variable being irrelevant 
given some value of another, one variable 
is not defined given the value of the other.

Given an ontology made up of Aristo-
telian definitions, we define a possible-
worlds semantics as follows. Note that 
the possible worlds can be heterogeneous, 
each with different random variables de-
fined, so we have to be careful to refer to 

a random variable only in a context where 
it is defined. We can procedurally define 
what individual-variable-value triples are 
defined and what value they have in each 
world. Each different choice in the follow-
ing description will give a different possi-
ble world.

For each individual i, and for each 
property p, enumerated using the total or-
dering assumed for the acyclicity of the 
hierarchy, if the individual i is in the do-
main of the property p in the world (and 
by the total ordering, this only depends 
on values already chosen), we follow this 
procedure:

If p is functional, choose a value v in the 
range of p that satisfies all of the other 
properties of p. We will say that the  
individual-property-value triple 〈i, p, v〉 
is true in this world and that 〈i, p, v′〉 for 
all values v′ ≠ v is false in this world.
If p is not functional, for each value v, 
choose either true or false for the value 

•

•

of 〈i, p, v〉 in this world, making sure the 
other constraints specified by the ontol-
ogy are satisfied.

An individual-property-value triple that is 
not assigned in the previous procedure is 
undefined.

To interpret any formula made up of val-
ues of global variables and of individual 
property-value triples, we use the standard 
logical connectives. However, we add a third 
truth value, undefined (⊥), interpreted as fol-
lows: for any operation op, ⊥op⊥ ≡ ⊥, true 
^ ⊥ ≡ ⊥, false ^ ⊥ ≡ false, true _ ⊥ ≡ true, 
false _ ⊥ ≡ ⊥, ¬⊥ ≡ ⊥. This logic was first 
introduced by Jan Łukasiewicz in 1920.20

For example, 〈i7,fabricType,foliated〉 will 
have the value ⊥ in any world where 〈i7,type, 
Rock〉 is false. The formula 〈i7,type,Rock〉 
^ 〈i7,fabricType,foliated〉 will be true or 
false in all worlds where 〈i7,type,Rock〉 is 
true.

We define a probability measure over 
the possible worlds and define conditional 
probabilities in the standard way. The prob-
ability of a hypothesis h, given evidence 
e, is the measure of the set of the worlds 
where h ^ e is true, divided by the prob-
ability of the measure of the worlds where 
e is true.

We say that conditional probability P(h|e) 
is well defined if e is true in some possible 
worlds and h ^ e does not have the value ⊥ 
in any possible world where e is true.

We can prove the following proposition:

Proposition 1. For P(〈i,prop,val〉|) 
to be well defined,  must logically im-
ply that i is in the class that is the do-
main of prop. That is, the formula that 
defines the class that is the domain of 
prop is true for i.

Proof. If  doesn’t imply that the do-
main of prop is true for i, then there is a 
possible world where  is true and the 
domain of prop is false for i, but then 
〈i,prop,val〉 ^  has the value ⊥ in that 
possible world, so the conditional prob-
ability is not well defined.

For example,

P(〈i,fabricType, foliated〉| 
		  〈i,particleType,crystal〉)

is not well defined because the conditions 
do not imply that i is in the domain of fab-

The possible worlds can be 

heterogeneous, each with 

different random variables 

defined, so we refer to a 

random variable only in a 

context where it’s defined. 
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ricType, which is Rock (which requires the 
consolidation degree to have the value con-
solidated, and sand has crystal particles 
but is not consolidated).

Given this restriction, we can specify 
probability distributions over the types 
and properties of individuals. Note that 
we end up with conditional probabilities 
over triples. Although it is possible to reify 
such statements11 so that they can be repre-
sented in RDF, we use quintuples that in-
clude probabilities and the providence of 
the triples. A standardized language for 
such statements will need to be developed 
when we have more experience in building 
diverse collections of theories.

An Example in Geology
Geological surveys publish descriptions of 
the geology of various locations in their ju-
risdictions. There is much work on devel-
oping ontologies to allow the interpretation 
of these data sets. Various models are also 
published, typically in natural language, 
that can be seen as theories that make pre-
dictions. In our applications, we have rep-
resented these ontologies, observations, 
and theories in order to make predictions. 
For example, given a model of where tho-
rium might occur, we can predict which 
location is most likely to be a candidate to 
contain thorium. Given a particular loca-
tion and multiple models, we can ask about 
which models best fit this location and so 

make predictions about that location.
Here we sketch part of a multidimen-

sional ontology, some observational data, 
and part of a model. We call a description 
of an observation of a set of interacting in-
dividuals in the domain an instance.

We can define instances in terms of in-
dividuals and properties using RDF triples. 
(Our application does not use RDF triples 
because we also want to be able to specify 
nonexistence—that no object in the world 
satisfies some description. Although this 
can be represented in RDF by reifying the 
statement, it isn’t very natural.) For exam-
ple, La Esperanza is a mineral occurrence 
in Argentina. Part of its description, in a 
functional syntax, is

Age(LaEsperanza    	
    Precambrian)
MineralEnhancedToOre(LaEspe	
    ranza muscovite)
RockHost(LaEsperanza rh1)
rdf:type(rh1 schist)
RockHost(LaEsperanza rh2)
rdf:type(rh2 gneiss)

The mineral occurrence is hosted in two 
rocks: a schist and a gneiss.

One model that can make a prediction 
on this mineral deposit is the US Geologi-
cal Survey’s Thorium-Rare-Earth Vein 
(TREV) model (http://pubs.usgs.gov/bul/
b2004/html/bull2004thorium_rareearth_

veins.htm). Here we explain a small part 
of this model, shown in Figure 5. This is 
like a semantic network in that the nodes 
are objects (in roles) or values and the arcs 
are properties. It is like a Bayesian belief 
network in that it defines the probability of 
a property value and the probability of the 
existence of an object that fills a role, con-
ditioned on all of its ancestors. It represents 
a naive Bayesian model in that the proper-
ties are independent of each other given 
the roles assigned by the parents. The roles 
are implicit in the diagram. We describe 
the syntax and semantics elsewhere.21

We do not allow arbitrary probabilities 
of first-order formulas but here use a sim-
ple language that gives a naive Bayesian 
model of the existence of objects that fill 
roles and of the properties of these objects.

The knowledge represented in Figure 5 
represents conditional probabilities of the 
form

P(∃HR1 r1(HR1) ^ rockHost(TREV,HR1) 
|  thoriumRareEarthModel(TREV)) = 1.0 
P(particleType(HR1) = crystal | r1(HR1) 
   ^ rockHost(TREV,HR1) 
   ^ thoriumRareEarthModel(TREV))  
	 = 0.9 
P(geneticCategory(HR1) =  
	 metamorphic | r1(HR1) 
   ^ rockHost(TREV,HR1) 
   ^ thoriumRareEarthModel(TREV))  
	 = 0.75 
P(elementEnhancedToOre(Min1) = Th  
	 | r2(Min1) 
   ^ mineralization(TREV,Min1) 
   ^ thoriumRareEarthModel(TREV))  
	 = 0.9

where r1 is true of the object that satisfied 
the role represented by the node labeled 
HR1 and where r2 is true of the object that 
satisfied the role represented by the node 
labeled Min1.

From the complete model, we wish to 
compute the probability that La Esperanza 
will have ore-grade thorium. What is im-
portant for this article is noticing that both 
the model and the instance refer to the 
same ontology. The instance can be built 
without any knowledge of any (probabi-
listic) models. Similarly, the model can be 
built without knowing about mineral oc-
currences in Argentina. The ontology en-
ables the model to make predictions about 
the instance. These predictions can then be 
used by exploration geologists to make de-
cisions. The predictions of various models 

TREV

HR1 Min1

mineralization
1.0

elementEnhancedToOre
0.9

particleType
0.9

geneticCategory
0.75

rockHost
1.0

elementEnhancedToOre
0.9

crystal metamorphic Th REE

Figure 5. Part of the Thorium-Rare-Earth Vein (TREV) model. The TREV model 
predicts a rock host that is crystal and usually metamorphic, and contains 
mineralization of thorium (Th) and rare-earth elements (REE), with associated 
probabilities.
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can also be used to evaluate the theories.
Finding good languages for theories and 

instances is an ongoing research activity. 
We need to define ontologies that support a 
wide variety of theories. Multidimensional 
ontologies are a good candidate for this.

Designing ontologies is difficult. There 
are many objectives that need to be 

simultaneously considered. For building 
scientific ontologies, we have suggested that 
the ability to use the ontology for defining 
probabilistic theories is essential. We have 
outlined a way that this can be done in a 
straightforward manner that should not dis-
tract ontology designers from the other is-
sues that need to be considered.

The multidimensional design pattern 
provides more structure than stating the 
subclass relation directly. We argue that 
it is more natural and show how it can be 
used for probabilistic modeling.

This interaction between ontologies and 
probabilistic reasoning forms the founda-
tion of applications we are building in min-
erals exploration and landslide prediction. 
This article considers only one aspect of 
the problem. Another aspect is, given de-
scriptions of theories and individuals in the 
world at various levels of abstraction and 
detail, how to use them to make coherent 
decisions, which will also involve model-
ing utilities. A further aspect is that the 
assumption that we know the correspon-
dence between individuals in the world 
and the model is not generally applicable. 
We need to determine which model indi-
viduals correspond to which individuals in 
the world (that is, which individuals fill the 
roles in the model). We also need to model 
and reason about existence and nonexis-
tence. These are ongoing research topics 
that build on the foundations given in this 
article.

With respect to other efforts on the Se-
mantic Web, semantic science seems to 
be an area where the bootstrapping prob-
lem might be the least difficult: scientists 
and their funders want their results to be 
as widely used as possible. There are large 
efforts going on to define ontologies in the 
sciences. The way that science can most 
fruitfully be applied is to have the theo-
ries be used for new predictions. We want a 
user to be able to ask, “What does the best 
science predict in this case?” Finally, this 

work directly addresses the issue of trust, 
which is the current top layer of the Se-
mantic Web. We don’t believe that appeal 
to traditional authority is the most appro-
priate basis for trusting a conclusion. We 
advocate that a user should be able to say 
“Show us the evidence” and ask “How well 
does this predictor actually work, com-
pared to the alternatives?” There is still a 
long way to go to bring this vision to frui-
tion, but the prize seems to be worth the 
effort.
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